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(Here k is a positive integer.) The function g(u,v) is locally constant on a subset of the
unit square (0, 1)? with measure 1. Its shape is that of a stairway ascending to infinity as
an harmonic sum at (1,1).

In Figures 4.1 and 4.2 one can compare the distribution of neighbor odd denominators
for a small ) with the density on the superimposed quadrangles Vj. In the case of the
even denominators the corresponding distribution has a prominent density for even small
values of @) (see Figure 4.3).

5. Other facets of Farey fractions

Here we present other aspects of the gaps between Farey fractions. The first one refers
to the frequency with which different gaps appear, the second is concerned with the
distribution of the index of members of §, and the third one deals, more generally, with
the distribution of angles of all the lines determined by the origin with lattice points
inside a domain in R2.
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Figure 4.1: The set Cso.1.». Figure 4.2: Theset O = T U kL:Jl Vi .

5.1. Jumping Champions of §,. Finding the maximum or the minimum of a certain
sequence may be both interesting and difficult. Two remarkable examples require to
find X,,, the length of the longest increasing subsequence of a random permutation of
the integers from 1 to n, and respectively to find A,, the largest eigenvalue of an X n
random GUE matrix. Recently in [BDJ1999] and [TW2000] it was shown that X, and
An share the same distribution and in [RW2002] are presented many other appearances
of the same distribution in limit theorems from widely different areas.

Being confined both in magnitude to the interval [0, 1] and in size of the denominators
to [1, Q], the definition of §, makes trivial the question on how large is the maximum
or the minimum spacing between neighbor fractions. Of course, these are 1/@) and
1/Q(Q — 1), respectively, attained by the distances of the fraction (Q — 1)/Q to its
neighbors. A finer way to analyze the distribution of the gaps is to find the frequency with
which they appear. The most encountered difference is called the jumping champion,
or shortly LIC . For the Farey sequence Cobeli, Ford and Zaharescu [CFZ2002] have
estimated the size of a set of possible candidates for LJC and studied the arithmetic
structure of LJC .

For a set M = {v1,...,vam} of real numbers ordered increasingly, let D(M) =
{Vig1 —7vi + 1 < i < M — 1} be the set of gaps between consecutive elements.
The elements of D(M) are arranged in ascending order, keeping in the list all the dif-
ferences with their mulitplicities. The champion of M is the element of D (M) with the
highest multiplicity. When more numbers have the same highest multiplicity in D(M),
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Figure 4.3: The set C500,0’2. Figure 4.4: The set 61200’3’12.

those numbers share the position of champion.

Depending on M, finding the LJC of a set may prove a complex task. Certainly this
is the case when M = P, the set of primes less than or equal to n. Odlyzko, Rubin-
stein and Wolf [ORW1999] give empirical and heuristic evidences based on the r-tuple
conjecture that the LJC for primes are the primorials 6, 30, 210, 2310, ..., except for a
few small values of n, when LJC are 1, 2 or 4. Similarities seem to exist between the
arithmetical properties of the elements of D(P,) and D(J,), but in the case of Farey
fractions the results are proved unconditionally.

Since §, is symmetric with respect to 1/2, we take Mg = §, N [0,1/2]. Then
|ID(M@)| = (|8,] —1)/2. For @ small, 1 < @ < 9, all the elements of D(My)
are distinct, so they all share the position of champion. For ) = 10, we have

M _{0i1111121331§2§%1
0= 1%10°9'8°7°6’5°9°4’7°10°3°8°5° 779 2
and

1111111111 111111
D(Mm):{ ————————————————

10790’ 727 567427 307457 36° 28’ 70’ 30" 247 40" 357 63” 18J°
The gap 1/30 appears twice in D(Mg), so it is the LIC of Fjo. In Table 1 are listed
some champions with a record number of appearances through different values of ) <
400, in other words ‘Champs among champions’. One can see that a condition for a
number to be a champion is to be highly composite.
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. ! 17 . " ’
For any two consecutive elements of §,, say %, %, the gap between them is % - % =
ﬁ, so the basic set to look at is 7, the set of the pairs of consecutive denominators of

Farey fractions. This is given by

To={(g1,92) : 1<q1,02<Q, 1 + 2> Q, ged(qr,q2) =1} .

Table 1: Selected champions with a record number of appearances.

1/Champion Decomposition No. of appearances || The values of Q

6 2-3 3 3,4,6

12 22.3 4 4-6,12

30 2-3-5 7 6-12

70 2:5-7 7 11-17

210 2:-3:5-7 10 17,21-28, 30

390 2-3-5-13 6 30-32, 3941

420 22.3.5.7 12 28-32, 35-41

546 2-3-7-13 10 41-50

840 2%5.3.5.7 11 41, 47-50, 55-60
1260 22.32.5.7 17 47-50, 55, 59-70
2310 2-3-5-7-11 27 70-96

6930 2.32.5.7-11 43 126-168

8190 2.32.5.7-13 38 130-153, 167-180
10010 2:5.-7-11-13 40 167-206
18018 2.32.7-11-13 70 201-270
30030 2-3-5-7-11-13 87 231-233, 269-352
39270 2:3:5-7-11-17 56 269-272, 349400

We denote by h(D, Q) the number of gaps of length 1/D in M. Then h(D, Q) is the
multiplicity of 1/D in D(M ), and this can be written as:

h(D,Q) Z‘{((h;(h) €To: q@2=D, 1 < Q2}‘

Z‘{qID :oged(q, D) =1, 2 <q<Q, §+q>Q}‘-
This gives a partition of D(Mg), therefore
|D(Mg)| = > h(D,Q).
D>1
Then any champion verifies:

M(Q) = maxh(D, Q).

The size of LJC is given by

_ logQ o ( losQ
M(Q) = exp (2 82 og @ T ((loglog Q)2>) |
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Next we look at the set of champions (strictly speaking inverses of champions):
Champs(Q) = {D : h(D,Q) = M(Q)}.

The characteristic of Champs(Q) is that its elements have close to the maximum possi-
ble number of prime factors for integers of their size. Thus, if D € Champs(Q) then

1 1
8@ o 6@ 1\
(log log Q)*
where w(n) is the number of distinct prime factors of n. As a consequence, most of

the prime factors of a champion are small. Indeed, one can show that the largest prime
factor of any D € Champs(Q), is < (log Q)3.

w(D) = loglog Q)

Various other results related to the champions of §, are proved in [CFZ2002]. Specifi-
cally, it is studied H(Q), the number of distinct gaps (participants in the competition for
LJC ) and G,(Q), the number of gaps with multiplicity > r. For H(Q) it is shown that

Q? ( Q? 1
————exp | —c1+/loglog @ log log lo Q) < HQ) K . ,
(log Q) Vloglog Qloglog log (@< log @y ViToza

where § = 1 — % and ¢ > 0 is constant. Depending on r, different bounds for
G,(Q) are also proved. An example is one given in a closed form:
QQ
Gr(Q) = TG
(@) (log Q)+e(D)

O(M)
which is valid when r = e \legloglog @/,

5.2. Moments of the index of Farey fractions. Here we present some asymptotic for-
mulae concerning the distribution of the index of Farey fractions of order @) as () — oo.
First let us have a closer look at the definition of the index. With the notations introduced
in Section 3.4, one sees that T'(z,y) = (y, ky — z) for any (z,y) € Ti. Starting with
ki(z,y) = [1;$], for j > 2 one has recursively

ki(z,y) = (kj—10T)(z,y) .

Also, forj > 1
LJ'+1($7 y) = kj(.’l?, y)Lj (.’E, y) - Lj*1($7 y)7
with Lo(z,y) = z, L (z,y) = y.
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On the other hand, noticing that for any ¢’, ¢”, ¢", consecutive denominators of fractions
ql qll . qll qIH q—l q - Q+q_1
from §, w-e have T(G’ 5) = (5’ ?)’ we get kl(’T, 6”) = [TJ], and then, for
any r € N it follows that,
gG-1 G\ _ G-1 G\ _ 1. (Litr=1 i+r
Frg ( o 1) =k oT"( Yo ,é) =k ( ) ,%)
— [Q+Qj+r—1]
qj+r )

Finally, one should notice that the index of a Farey fraction -y is the integer that reduces
the fraction that gives -y as the mediant of its neighbor fractions in § . Indeed, the index
satisfy the equalities:

Q+ Qj—1:| (Qj—l Qj> gji+1+gj—1  ajp1 +aj_1
v(yj) = |————| =k | =35 | = = .
() [ 9 Q’Q gj aj

The index has interesting properties. Hall and Shiu [HS2001] discovered some very re-
markable exact formulae involving the index of Farey fractions, and they also proved a
number of asymptotic results. Boca, Gologan and Zaharescu [BGZ2002] found asymp-
totic formulae for the moments of the index. They proved that

QlogQ, fora<l,
<0 {Qlog?Q, fora=1, (5.1)
QR%log @, forl <a<2.

> v(7)* = 2B.N(Q)

Here B, is a constant given by

1+s]¢ > >
B, = // [ ; ] dsdt = ZkaArea('ﬁc) < Zkafg < 0.
o~ k=1 k=1

The moment of order 2 was calculated in [HS2001] with an error term of size O(Q log? Q).
Similar formulae for moments of order @ € (0, 3/2) were also established for the Farey
fractions from a subinterval of [0, 1].

In [HS2001] and [BGZ2002] it is also investigated the twisted sum
Spt(Q) = Z vQ(¥i)vQ(Vi+h) »
73 €8N0

where 0 < ¢ < 1. Boca, Gologan and Zaharescu [BGZ2002] proved that for any integer
h>1and 0 <t <1, we have

Shi(Q) = tA(R)N(Q) + Op(Q%*F9),

where A(h) = 2 [ ki(s,t)kny1(s,t) dsdt are rational positive constants of size <
1 + log h. In the case ¢ = 1, they get a better error term of size O(Q log? Q).
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5.3. The distribution of lattice points visible from the origin. Let O C R? be a
domain that contains the origin with respect to which it is star-shaped. The boundary
of  is parametrized by z = rq(0) cos 0, y = rq(f)siné and rq (@) is supposed to be
continuous and piecewise C'! on [0, 27]. Forany @ > 1,let Qg = {(Qz,Qy): (z,y) €
2} be the Q-dilation of Q. Then visible from the origin are those lattice points from ¢
with relatively prime coordinates. Let

32, Q) ={(a,q) € Q:a,q€Z, (a,q) =1} .
Then the cardinality of §(Q, Q) is

rea 2
N = N(©,Q) = #5(2,Q) ~ %,

as ) = oo. Boca, Cobeli and Zaharescu [BCZ2000] found the nearest neighbor dis-
tribution of angles of all the lines determined by the origin with points from F(£2, Q).
Without restricting the generality, one may assume that € is included in the second oc-
tant. Let m/4 = 0y < 61 < --- < On = /2 be the angles corresponding to pornts from
(9, Q). The angles are normalized to N = 6y = ANGy /7 < 6, = ANO, |7 < --- <
Oy = ANOy /m = 2N, to get a sequence of N points with average consecutive spacing
equal to 1. Then the first spacing measure is defined by
N(Q,Q)

1
Ha,Q = m Z 5§j—éj—1'

The main result of [BCZ2000] says that as () — oo the sequence (10,Q)Q>1 converges
weakly to a probability measure 1. Let G (t) be the repartition function of f1¢. This

is obtained as the limit as Q — oo of the proportion of differences 5j — éj_l that are

> t. Explicitly, this can be written as G (¢ ft dpq(z) and
/2
pn(t20)) = e [ 7O mt.0)db,
w/4

in which the kernel nq (¢, ) is given by

L for r2(8)t € (0, ),
9 oy~ 2~ o 108 iy forr(0)t € [ 4N,
t’ = A 1 1 —4)‘
na(t,6) IO 5+ 34/1— 2(0)15

for r2(0)t € [4), 00).

,,.2(9)15 log n \/17 s

2(6)t
o _ 4Area(q)
where A := A\(Q) = () and r(&) (@). Tt is shown that the support of pgq is

rQ
included in the interval [24Area(f2) /(73 M?), o00], where M = M (f2) = sup, (6).
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Two sets of particular interest are the ()-dilations of the Farey triangle, (identified with
§) and the unit disk D. The later example provides a density function with the larger
vanishing interval beyond zero, that is the strongest repulsion occurs among the lines de-
termined by the origin and lattice points from QD. Moreover, the density corresponding
to the measure pp equals g; (2).

6. §, in Mathematical Physics

Lately, Number Theory and in particular the Farey sequence and the Farey tree play an
important role in mathematical physics. For historical notes and a generalization of the
Farey tree to an extended Farey tree see Lagarias and Tresser [LT1995]. The concept of
Farey web was introduced and examined by K. Brucks, J. Ringland and C. Tresser (see
[BRT2002]). The results are utilized to solve problems on the organization of frequency-
locking. Amoroso [Amo1995] has considered some equivalent conditions to RH. Re-
cently considerable interest raised among physicists the hope to find a direct connection
between the Lee-Yang theory of phase transition and the Riemann Hypothesis. Trying
to find insights, different statistical mechanics spin chain models based on §, were in-
troduced and studied by Knauf [Kna1993], [Kna1994], Contucci and Knauf [CK1997],
Kleban and Ozliik [KO] (see also Landford [LR1996] and Cvitanovié¢ [Cvil992]). An-
other example is presented by Kholodenko [Kho2001], who shows that the statistical
mechanics of Einstein 2 4+ 1 gravity on the punctured torus may be modeled by the
number-theoretic Farey spin chain partition function Z (B) =<¢(B—1)/¢(B).

The partition given by the Farey fractions on the interval [0, 1] clearly has some frac-
tal properties. This is studied using a Farey measure (see the presentation from Cvi-
tanovi¢ [Cvil992] and Cesaratto and Piacquadio [CP2001] on the behind doors physical
motivations). The Farey measure is the unique probability measure on [0, 1] that assigns
the equal mass 27" to each of the 2" intervals belonging to the partition of [0, 1] ob-
tained by starting with the fractions 0/1 and 1/1 and inserting recursively, in n steps,
the mediant of any two consecutive fractions. Cesaratto and Piacquadio [CP1998] com-
pare the Hausdorff spectrum, the computational spectrum, and the Legendre spectrum
for the hyperbolic measure, which is induced by the Farey tree partition. Their argu-
ments show that this measure is fundamentally different from any self-similar measure,
but it behaves very much like the self-similar measures.

A class of quasiparticles, called fractons, which obey fractal statistics is studied by da
Cruz and R. de Oliveira [Cru2000], [CO2000], [Cru2001]. They find that the Haus-
dorff dimensions of their trajectories, is given by the Farey sequences. Da Cruz also
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discusses some mathematical properties of the anyons, the duality of their trajectories,
the exclusion statistics, and a two-parameter renormalization group flow.

A large potential of applications to problems in electrical engineering appeared after
Penner [Pen2002] introduced several new families of wavelets. The expansions of Pen-
ner’s wavelets rely on equally spaced multiscale sampling methods that depend on §,.
Next we present with more details other physical problems related to the Farey sequence.

6.1. Chaotic dynamical systems—Thermodynamic averages. An important tool used
to study the paths to chaos are the thermodynamic averages, that is sums over configura-
tions or mode-locking intervals. In particular, the interaction of couples of configurations
deserves interest, since it preserves the phenomenon in its generality.

Thermodynamic averages for §, were considered by Hall [Hall1970], S. Kanemitsu,
R. Sita Rama Chandra Rao and A. Siva Rama Sarma [KRS1982], S. Kanemitsu, T.
Kuzumaki and M. Yoshimoto [KKY?2000], Artuso, Cvitanovi¢ and Kenny [ACK1989].
These averages are sums over different expressions involving denominators of Farey
fractions. One characteristic example are moments of the spacings:
N(Q)-1 N(Q)-1 1
To(a, B) := Z (v — -1 (Vjs1 — ’)’j)ﬂ = Z o a8 B

o
=2 j=2 919; 9541

for which Hall and Tanenbaum [HT1984] and Hall [Hal1994] get asymptotic formulae.
Characteristic for T (a, ) is its threshold across the line o + 3 = 2.

Even earlier several authors obtained various estimates or even identities for sums of
functions with variables equal to consecutive denominators of Farey fractions. For ex-
ample, Robertson [Rob1968] studies the asymptotic behavior of the sum

N(Q)
Ag(enf) =Y 4jd}s-
i=1

He showed that as () — oo,
Ala, B) N E [ 1 B Ma+ 1DT(B+1)
QotA+2 2 | (a+1)(B+1) a+pB+3 ’

fora > —1and 8 > —2(8 # —1). Lehner and Newman [LN1968] considered the
more general sum

So(f):=" > fldd",

(¢59")€Ty
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in which Té is the set of all pairs of consecutive denominators of fractions from § o and
f(z,y) is a function of two integral variables. Observing the identity

So(f) = + > Y (fmyn) + f(n,m) = f(m,n —m)),
2sns@ 65,%2’1

they get as a consequence estimates such as

Z Q 121og 2

lg"(q" + g" ~ 7T2 ’
wamer 4 (¢ +q")

or
_ (32-3m@? 9
Z vV q’q” = T + O(Q log Q) .
(¢',q")ETH
Among other results, taking f(z,y) = z*y? with 0 < «, £, they show that

Ala, B) log Q
W:(”“’ﬂw( Q ) /

where ¢, g are constants explicitly calculable. The numerator of the error term was
lowered by Kanemitsu [Kan1978] to (log Q)%/3(log log Q) <.

A more general perspective on this type of problems follows by counting the lattice
points with coprime components from a given region 2 C (0, R)x (0, R) C R?. Assume
09 (the boundary of ) is rectifiable and f is a C'* function on 2. We denote

§'=509:= Y  flab).
(a,b)eQNZ?
(a,b)=1

Then, using Mobius sumation, Boca, Cobeli and Zaharescu [BCZ2001, Lemma 2] showed

WQ/ ey dvdy| < (|52 +[ L] )Areatsn g v

+ 1 flloo (R + length(09) log R) ,

where | f[,, = supg gy lf(z,y)|- In particular, taking 2 = T, the Farey triangle,
one gets sums of values of a function with two variables given by consecutive denomi-
nators of Farey fractions. Moreover one could arrange to restrict the summation only to
fractions situated in a certain interval I C [0, 1] (see Boca et al. [BCZ2001, Lemma 8]).
We remark that this setting covers a wide range of situations, since starting with any two
consecutive denominators ¢, ¢" say, one could get recursively in terms only of ¢’, ¢" and
@ any other denominator of a fraction from §,.
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The sums TQ(a, () are cousins of the larger intervals moments between elements of § o
which are defined as

N(Q)

Sq(m,h) :== > (vj+n— %)™

J
(Here we use the the convention 7y, @ = for all integers j.) Easier to evaluate are
those corresponding to intervals of a second, that is when & = 1. The sum Sp(1,1)
is immediate, and Borel [Bor1948] used this fact to show that >~ 1/(¢q’) = 5 for any
integer n, the summation being taken over all integer pairs (g, ') mutually prime and
such that ¢ < n, ¢’ < n, ¢ + ¢’ > n. Higher moments were studied by Hall [Hal1970],
and later by Kanemitsu [Kan1978] and Kanemitsu, Rao and Sarma [KRS1982] who
obtained a smaller error term when m = 2 and 3. For m = 2 their result is

12InQ 12 a@Q) 1 In% Q (Inln Q)1+
oz (" w ta) OE( @ |
For m > 3, Hall [Hal1970] proves

D

Il
—

SQ(2, 1) =

2¢(m — 1 log?
im0 (29),
Q™ (m) Q

where 8 = 1 form = 3, 0 = 0 if m > 4. Kanemitsu [Kan1978] and Kanemitsu et
al. [KRS1982] improves the error term of Hall to 30¢(2)'Q *log @ + O(Q~™1).

Kanemitsu, Kuzumaki and Yoshimoto [KKY2000] get an even better result with the
error term of size O(Q' 2™ log Q) for m = 2,3,4 and O(Q ™ 3) for m > 5.

Sq(m,1) =

Of particular interest are the square moments of larger spacings between Farey fractions.
For intervals of a third Hall [Hal1994] proved the estimate

36InQ A InQ
e to oG

S0(2,2) =

5
2

where

12 3¢'(2) 3 C(2k) — 1
A_P<37— © +§+ln2+2;72k_1 )

Answering to Hall’s conjecture that a similar formula should be valid for larger intervals,
Boca, Cobeli and Zaharescu [BCZ2001] have determined an asymptotic estimation for
the larger intervals quadratic moment. Their result is that for any h > 3,

12(2h — 1)1logQ ~ B(h) log!/("+2) @
20)2 + 73 + O 2+1/(h+2) J°
7Q Q QD)

where B(h) is a constant given explicitly.

Sq(2,h) =
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In order to get the estimate for the square moment, in [BCZ2001] is evaluated the more
general sum involving Farey arcs:

Sou(h) = Y (V41 =) (Vihe1 = Vish),
’YjESQ(I)

for any interval I C [0, 1]. As a consequence, similar results are obtained for intervals
of moments of Farey fractions from §, (I).

6.2. Billiards and Farey fractions. Any effective physical or mathematical model of
a system containing a huge number of particles (for example, the order of magnitude
of the number of atoms in a liter of gas is about 10%4) will not attempt to predict what
each particle is doing individually, but will rather find statistics and averages over states
of the particles. Different mathematical models were proposed to describe the brownian
motion of the particles of gas in a container, most of them involving measure theory and
statistics.

Sinai billiards offer some important problems where number theory, and in particular
properties of Farey sequences, can prove to be very valuable tools. Extensive numerical
experiments on Sinai billiards (unit cells of a periodic Lorentz gas) were made especially
in the last two decades. Artuso, Casati and Guarneri [ACG1996] provide a general
discussion, review of previous work and search properties of correlation functions of
periodic Sinaf billiards.

Techniques employed in the study of h-spacings between Farey fractions, in which es-
timates for Kloosterman sums play an essential role, are used to get results in some
billiard problems. Boca, Gologan and Zaharescu [BGZ2001a], [BGZ2001b] and Golo-
gan [Gol2000] considered the billiard problem in a “rectangle with pockets” whose
lengths are proportional to the sides and tend to zero. The particle is assumed to move
with constant speed equal to 1. Let D, = be the rectangular board of width L; and
height L, with horizontal segments of length eL; and vertical segments of length €L,
removed from each corner, that is, D, = (0, L1) x (0, Ly) U{0, L1} X [eLqo, (1 —€) Lo U
[eL1,(1 —€)L1] x {0, Lo}. The trajectory of the billiard is supposed to begin at one of
the corners, changes direction when it reaches side cushions such that the angles of inci-
dence and reflection are equal, and ends when it meets one of the removed segments. For
any 0 € (0,7/2), let [.(@) denote the length of the trajectory of a particle which starts
to move from (0, 0) under angle €. This coincides with the length of the trajectory in a
right isosceles triangle associated to a system of two equal mass points that move in the
interval [0, 1], starting each from an endpoint with different velocities and rebounding
elastically when they collide and at the endpoints (cf. Sinai [Sin1976, pp. 84-85]). For
a more general triangular board shape see Artuso [Art1996], Artuso et al. [ACG1997].
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Boca, Gologan and Zaharescu provide asymptotic formulae for the moments of the
length of the trajectory and the number of reflections in the side cushions when the
lengths of pockets tend to zero. They have shown that for any [, 8] C [0, arctan f—f],
any d > 0andanyr >0

L3(1 + 2log2)(tan 8 — tan ) LyLy
/l d0 = 71_262 + 05 m and

C L (aaﬂ) 1
/16(0)"d0 = 2 4 O,y Ly or—1/643 )

6”‘

(67

12D, L} B
w2 cos” T
o

p,-lozAlm2 1-g 1-gm ¢ CDTE) (1)
" r(r+1) 2 (r +1)2 r  r+1)°

where C,. 1, (o, B) = and

In particular, one obtains that the average length of the trajectory of the billiard in the unit
6In2In(2+v2)

square is about . ~ 0'7462792. Denoting by R¢(6) the number of reflections

at the side cushions, the average of R.(#) along the interval [«, ] is:

B
6(8 — o+ L log €82)1og 2 1
/Re(e) d9 = Lo COS/H + 06;L11L2 (—> .

e 5/6+6

For the unit interval board, this gives in particular that the average number of reflections

(37r+6 ln 2) In2  0.953987
is about -

Getting more insight into the phenomenon, in [BGZ2001b] it is shown that the existence
of the principal term in the formula for the the moment of /() is due to the convergence
of the “level probability measures” /14 5. on [0, c0), defined by

B
L 0 € [a,f]: ele(8) <A
e pe((—00, A]) == ﬂ——a/x[()”\] (ele(0)) db = el T }|

a

When € N, 0 the sequence (pq,8,)e converges weakly to a probability measure f4 g,
which is explicitly computable.



C. Cobeli, A. Zaharescu — The Haros-Farey Sequence at Two Hundred Years

7. Some open problems

In spite of the amount of work done in the last decades many finer properties of the Farey
series are yet to be understood. A problem that can not be reached by any techniques
known today is to find the relations between the size of the oscillatory error terms of the
moments

Mo(r)=> 7",

vel

when r > 0 increases. (The summation is over the Farey fractions in an interval I C
[0, 1].) In this way, any nontrivial result on the relations equivalent to RH may prove to
be an important breakthrough.

An interesting problem which might be more tractable is to understand the properties
of the rationals A(h) in the main term of the twisted sums of indexes formula from
Section 5.2.

A large category of problems would require to generalize any of the known results for
S 0 FQ,c,a or more generally, to sets of Farey fractions with numerators and denom-
inators belonging to given arithmetic progressions. Such results have applications to
billiard problems where the trajectory starts from a fixed point with rational coordinates.
Numerical computations suggest that in this case the distribution of the length of the
trajectory and the number of reflections at the side cushions are different than in the case
when the trajectory starts from the origin.
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