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AN ALGORlTHM FOR FINDING DISTINGUISHED 
CHAINS OF POLYNOMIALS 

 
by  

Alexandru Zaharescu 
 
 
Abstract. Saturated distinguished chains of polynomials over a local field K have been 
introduced in [9] in order to study the structure of irreducible polynomials in one variable over 
K. We provide an algorithm for finding a saturated distinguished chain of polynomials 
associated to a given irreducible polynomial f(X) 0 K[X]. 
 
 
1. INTRODUCTION 
 
The problem of describing the structure of irredncible polynomials in one variable 
over a local field K has been studied in [9]. In the process, the notion of a saturated 
distinguished chain of polynomials over K was defined in [9], and Iater studied also in 
[2], [7] and [8]. Knowing a saturated distinguished chain for a given element a0k, 
where k denotes a fixed algebraic closure of K , can be helpful in various problems. 
One reason is that we can use such a chain to construct an integral basis of K(a) over 
K, following the procedure explained in [9], Remark 4.7. The shape of such a basis 
may be useful in practice, for instance it has been used in [61 in order to show that the 
Ax-Sen constant vanishes for deeply ramified extensions (in the seuse of Coates-
Greenberg [4]). 
A constructive way to produce all the irreducible polynomials in one variable over K 
is described in [9], via an operation of lifting. Starting with a linear polynomial go(X), 
by applying repeatedly such an operation of lifting one can construct chains 
ofirreducible polynomials (go(X), gl(X), . . , gr(X)) such that 1 = deggo < degg1 < . . . < 
deggr. It is shown in [9] that for any irreducible polynomial g(X) over K, there exists a 
chain of lifting polynomials as above such that gr(X) = (X). Conversely, starting with 
an irreducible polynomial f(X) over K, one associates to f(X) so-called saturated 
distinguished chains of polynomials. These are certain chains of irreducible 
polynomials over K, (fo(X), f1(X),..., fs(X)), with fo(X) = f(X) and deg fo > deg f1 > . . . > 
deg fs = 1. As described in [9], there is an intimate connection between chains of 
lifting polynomials and saturated distinguished chains of polynomials over K. As 
mentioned above, one has a constructive way of producing chains of lifting 
polynomials, assuming that one knows the structure of irreducible polynomials over 
the residue field of K and its finite field extensions. Saturated distinguished chains of 
polynomials associated to a given irreducible polynomial f(X) over K are usually 
provided in a less canonical way. 
In this paper we present an algorithm for finding a saturated distinguished chain of 
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polynomials for a given irreducible polynomial f(X) over K. We will restrict to the 
case when K coincides with the field Qp of p-adic numbers for some prime number p 
(although the method works in more generality). Thus, given any polynomial f(X) 
Qp[X], the algorithm described below verifies first if f(X) is irreducible over Qp or not, 
and in case f(X) is irreducible, it enables one to find, after finitely many steps, a 
saturated distinguished chain of polynomials associated to f(X) over Qp. 
 
2. NOTATIONS, DEFINITIONS AND GENERAL RESULTS 
 
In this section we present some general definitions and results concerned with residual 
transcendental extensions of a valuation, lifting polynomials, and distinguished pairs 
and distinguished chains of polynomials over a local field. The reader interested only 
in the actual algorithm for finding saturated distinguished chains of polynomials may 
skip most of this section, read the definition of a distinguished pair, respectively a 
distinguished chain of polynomials, and then go directly to the next section. For a 
reader who is interested in the general theory of saturated distinguished chains of 
polynomials, and their relationship with residual transcendental extensions of 
valuations and with lifting polynomials, this section presents an abstract of  some of 
the basic notions, definitions and results. 
We consider a field K of characteristic zero, which is complete with respect to a rank 

one and discrete valuation v (see [3], [5], [10]). Let 
−

K be a fixed algebraic closure of 

K and denote also by v the unique extension of v to 
−

K . If KφLφ
−

K  is an intermediate 
field, we denote G(L) = {v(x) : x0L}. As usual, G(K) will be identified with the 
ordered group Z of rational integers, and for every intermediate field L, G(L) will be 
viewed as a subgroup of the additive group Q. 
Denote A(L) = {x 0 L : v(x) ≥  0}, the ring of integers of L. Let M(L) = {x 0 L : v(x) > 
0}, and denote by π L  a uniformizing element of L. Let R(L) = A(L)/M(L), the residue 
field of L. If x0A(L), denote by x* the canonical image of x in R(L). As usual, R(L) will 

be viewed canonically as a subfield of R(
−

K ). Moreover, R(
−

K ) is an algebraic closure 
of R(K). We will assume that R(K) is a perfect field. 

Let K φ Ll φ L2 φ
−

K  be intermediate fields such that L2 is a finite extension of K. Then 
R(L2)/ R(L1) is a finite extension, and the number f(L2/L1= [R(L2) : R(L1)] is called the 
inertial degree of L2 relative to Ll. The quotient group G(L2)/G(L1) is finite. Its index, 
denoted by e(L2/Ll),is called the ramification index of L2 relative to Ll. It is well known 
(see [3], Ch. IV) that f(L2/Ll)e(L2/Ll) = [L2 : L1]. 

If K φ L φ 
−

K  and a 0 
−

K , then the degree [L(a) : L] of a relative to L will be denoted 
by degLa, or simply by deg a when L = K. 
If f 0A(K)[X],  f = aoXn + alX n-l + . . . + an, we denote 
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f = a *oXn ++...+ 0 R(K)[X], 
the canonical image of f in R(K)[X]. 

If a 0 
−

K  and ∗ 0  Q, we define, for any F(X) = co + cl (X - a) + . . . + cn,(X - a)n 0 
−

K [X], 
w(F) := 

ni≤≤0
inf  {v(ci) +i∗}. 

In this way one obtains a valuation w on 
−

K [X], which extends canonically to a 

valuation on 
−

K (X), and which is a residual transcendental (r.t. for short) extension of 

(
−

K ,v), in the sense that the residual field of w is transcendental over R(
−

K ). This 

valuation w is called the r.t. extension of (
−

K ,v) defined by inf, a and ∗. 

An element ( a, ∗) 0 
−

K  x Q is said to be minimal with respect to K if for every b 0 
−

K  
the condition v(a-b)≥∗ implies [K(a):K] ≤ [K(b):K]. The word minimal was suggested 
by the fact that this definition is equivalent to the following: (a, ∗) is a minimal pair if 
there is no pair (a', ∗) with deg a' < deg a such that both pairs define the same residual 

transcendental extension w on 
−

K [X]. 

If a 0 
−

K  \ K, we denote ω(a) = sup{v(a - a')} where a' runs over the set of all the 
conjugates of a over K, with a' ≠ a. By Krasners Lemma (see [3], p. 66) it follows that 

for any a 0 
−

K  \ K and for any ∗ > ω(a), the pair (a,∗) is a minimal pair. 
Let (a, ∗) be a minimal pair, and let f  be the monic polynomial of a over K . Let a1 = 
a, a2, . . . , an be all the roots of f , and let us put 

( ){ }∑
=

−=
n

i
iaav

1

,min δγ  

If F 0 K[X], we write F in the form 
 

F=F0+F1f+...+Ft ft, degFi < deg f, i=0,l,...,t. 
Then we define 
(2.1) ( )( )γiaFvfw i

ti
+=

≤≤
)(inf)(

0
 

In [1] it is proved the following result. 
Theorem 1. Let (a,∗) be a minimal pair with respect to K. Then the assignment (2.1) 
defines a valuation w on K[X], and canonically on K(X), which coincides with the 

restriction of the valuation on 
−

K  (X) defined by inf, a and ∗. 
Moreover one has: 
(i) The value group of w is canonically isomorphic to G(K(a))+Zγ,  
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(ii) Let e be the smallest non-zero positive integer such that eγ0G(K(a)).  
Let h0K[X], degh < degf such that w(h(X)) = v(h(a)) = eγ. Then r = fe /h is an element 
of K(X) for which w(r) = 0, the image r* of r in the residue field kw of w is 
transcendental over R(K) and kw is isomorphic to R(K(a))(r'). This isomorphism is 
canonic: for any F 0 K[X] with degF < deg a we have w(F(X)) = w(F(a)), (F(X)/F(a)* 
= 1 and the above isomorphism becomes an equality in the residue field of w. 
Moreover, if w' is an r. t. extension of v to K[X], then there exists a pair (a, ∗) which is 
minimal with respect to K and such that w' coincides with the r. t. extension defined by 
the minimal pair (a, ∗). 

Let now (a,∗) 0  
−

K x Q be a minimal pair, and denote by w the corresponding r. t. 
extension of v to K(X). We identify the residue field kw = R(K(a))(r*) of w with the 
field of rational functions R(K(a))(Y) in one variable Y over the field R(K(a)), i.e. we 
shall write r* = Y 
Let G0R(K(a))[Y] be monic and let m = deg G. A monic polynomial g0K[X] is said to 
be a lifting of G with respect to w (or with respect to a, ∗  and h) provided one has 

deg g = em deg  f, 
w(g(X)) = mw(h(X)) = m e γ 

and 

G
h
g
m =






 *
 

One says that the lifting g of G is trivial if degg = degf . This situation appears exactly 
when degG = 1 and γ = w(f) 0 G(K(a)). 
Theorem 2. ([9], Theorem 2.1) Let G 0 R(K(a))[Y], G ≠ Y, G monic and irreducible. 
Then any lifting g of G in K[X] is irreducible over K. 
The connection between lifting polynomials and the so-called distinguished pairs of 
polynomials has also been investigated in [9]. 

A pair (a, b) of elements from 
−

K  is said to be a distinguished pair, provided one has 
deg a > deg b, 
v(a-c) ≤ v(a-b) 

for any c 0 
−

K  with deg c < deg a, and 
v(a - c) < v(a - b) 

for any c 0 
−

K  with deg c < deg b. 
Given two irreducible polynomials f, g 0 K[X], one says that (g, f) is a distinguished 
pair if there exist a root a of g and a root b of f such that (a, b) is a distinguished pair. 
It is easy to see that if (g, f) is a distinguished pair of polynomials, then for any root a 
of g there exists a root b of f such that (a, b) is a distinguished pair, and for any root b 
of f there exists a root a of g such that (a, b) is a distinguished pair. 
The following two results establish the connection between lifting polynomials and 



ACTA UNIVERSITATIS APULENSIS 

 119

distinguished pairs. 
Theorem 3. ([9], Theorem 3.1) Notations and hypotheses are as in Theorem 1 above 
Let G 0 R(K(a))[Y], G ≠ Y , G monic and irreducible. If g is a nontrivial lifting of G in 
K[X] then (g, f) is a distinguished pair. 
Theorem 4. ([9], Theorem 3.2) Let (g, f) be a distinguished pair of polynomials and 
let a be a root of  f . Then there exist γ, h as in Theorem 1 , and there exists G 0 
R(K(a))[Y], G ≠ Y, G monic and irreducible such that g is a nontrivial lifting of G. 

Let a 0 
−

K . If a0, . . . , as 0 R, one says that (a0, . . . , as) is a distinguished chain for a if 
a0 = a and (ai-1,ai) is a distinguished pair for any i 0{1,...,s}. The integer s is called the 
length of the chain (a0, . . . , as). A distinguished chain (a0, . . . , as) for a is said to be 
saturated if there is no distinguished chain (b0, . . . , br ) for a, with r > s, such that {a0, 
. . , as} φ{b0, . . . , br}. One shows that (a0, . . . , as) is saturated if and only if as 0 K .Let 
f0 = f, f1, . . . , fs be monic, irreducible polynomials over K. One says that (f0, . . . , fs) is 
a (saturated) distinguished chain for f if there exist roots ao = a, a1 , . . . , as of  f0, f1 , . 
, fs respectively such that (a0, . . . , as) is a (saturated) distinguished chain for a. The 
following three results capture some of the basic properties of saturated distinguished 
chains. 
Theorem 5. ([9], Proposition 4.1). If (a0, . . . , as) is a distinguished chain, then 

G(K(as)) φ G(K(as-1)) φ ... φ G(K(ao)), 
and 

R(K(as)) φ R(K(as-1)) φ ... φ R(K(ao)), 
Theorem6. ([9], Proposition 4.2). Let (a0, . . . , as) and (b0, . . . , br ) be twosaturated 
distinguished chains for a. Then s = r. 
Moreover if ci  0 {ai, bi}, 1 ≤ i ≤ s, then (c0, . . . , cs) is also a saturated distinguished 
chain for a. 

Theorem7. ([9], Proposition 4.3). Let a 0 
−

K , let (a0, . . . , as) and (b0, . . . , bs) be two 
saturated distinguished chains for a, and let fi, gj be the minimalpolynomials of ai and 
bj respectively. Then for any i 0{1 , . . . , s} one has 

v(ai-1- ai) = v(bi-1 - bi), 
v(fi(ai-1)) = v(gi(bi-1)), 
G(K(ai)) = G(K(bi)), 

and 
R(K(ai)) = R(K(bi)). 

Moreover if we replace the condition b0 = a in the hypothesis by the condition b0 = 

σ(a) where σ 0 Gal(
−

K /K) then all the above relations remain valid,with the only 
exception that in the last relation instead of equality we have a canonical R(K) - 
isomorphism. 
 
3. FINDING SATURATED DISTINGUISHED CHAINS 
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In what follows we fix a prime number p and let K = Qp. Choose a monic polynomial 
f(X) 0 Qp[X], f(X) = Xd + c1Xd-1 + . . . + cd. 
 
Our aim is to describe an algorithm which enables one to verify if f(X) is irreducible 
over Qp, and, in case it is, to provide an irreducible polynomial g(X) 0 Qp[X] such that 
(f, g) is a distinguished pair. Then, by repeatedly applying the same algorithm, after 
finitely many steps one finds a saturated distinguished chain (fo = f, f1 = g, f2, … ,fs) 
for f. 
We remark that if a, b 0 pQ and ( a, b ) is a distinguished pair, then (pka, pkb) is also a 

distinguished pair, for any k 0 Z. Thus, by performing if necessary such a 
transformation to the roots of f , which is achieved by applying an appropriate 
transformation to the coefficients of f , we may assume in what follows that cl, . . . , cd 
belong to the ring Zp of p-adic integers. Then, in case f is irreducible over Qp, any 
monic, irreducible polynomial g over K for which (f, g ) is a distinguished pair , will 
also have all its coefficients in Zp. Thus in the following it is enouph to work with 
monic polynomials from Zp[X], and in this set to find one polynomial, call it g(X), for 
which (f, g) is a distinguished pair. The algorithm explained below is based on the 
computation of resultants R(h, f) for various monic polynomials h(X) 0 Zp[X] with  
deg h < deg f. 
If a1, . . . ,ad are the roots of f and η1, . . . , ηr are the roots of h, where r = deg h ≤ d -1, 
then we have 

∑ ∑
≤≤ ≤≤

−=

ri dj
ji avfhRv

1 1

)()),(( η  

where v denotes the p-adic valuation, normalized such that v(p) = 1 The point here is 
that the resultant R(h, f) can be written as a determinant involving the coefficients of f 
and h, and so we do not need to know the roots of f and h, but only the coefficients of 
these polynomials, in order to be able to compute R(h, f). Thus here and in what 
follows, when we say that we "know" a polynomial, we mean that we know its 
coefficients, and we do not mean that its roots are known. In particular, by choosing at 
the beginning the polynomial f we understand that the coefficients c1 , . . . , cd are 
given, without implying any knowledge of its roots a1, . . . , ad. 
Now the first step of our algorithm is to compute the discriminant of f , call it ∆. This 
is done by taking the resultant of f(X) with f'(X) If it turns out that ∆ = 0, then f  has 
multiple roots and so it can not be irreducible. Assume in what follows that ∆ ≠ 0. 
Note that since v(∆) is a sum of non-negative terms of the form v(ai - aj), it follows 
that each individual term is bounded by v(∆), that is, 
 

v(ai - aj) ≤ v(∆), 
 
for any 1 ≤ i ≠ j ≤ d. As a consequence, for any i 0 {1, . . . , d} for which ai  ⌠ Qp, we 
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have 
 

w(ai) := sup{v(ai – σ (aj) : σ 0  Gal( pQ /Qp), σ(ai) ≠ ai} ≤ v(∆). 
We distinguish two cases, according as to whether f  is irreducible or not. Assume first 
that f is irreducible over Qp. Then, for any monic polynomial h(X) 0 Zp[X] with deg h 
≤ d-1 we have 
 
(3.1) v(R(h, f)) ≤ d(deg h) v(∆). 
 
Indeed, if for some such h we have v(R(h, f)) > d(degh)v(∆), then there will be roots ηi 
and aj of h and f  respectively, such that v(ηi - aj) > v(∆). This further implies that v(ηi 
- aj) > w(aj), and by Krasner’s Lemma it follows that Qp(aj) φ Qp(ηj), which is not the 
case, since deg h < deg f and  f was assumed to be irreducible. This proves (3.1). 
Let us assume now that f is not irreducible over Qp. Then (3.1) fails. In fact, if f = f1f2, 
with f1, f2 0  Zp[X], f1, f2 monic, deg f1, deg f2 ≥ 1, and if we choose h = f1, then we will 
have R(h, f) = 0, 
 

v(R(h, f)) = 4. 
 
Putting both cases together, we see that f is irreducible if and only if 
 
(3.2) sup{v(R(h, f)) : h 0 Zp[X], h monic, deg h ≤ d-1} ≤ d(d-1)v(∆) 
 
Let us remark that, although the supremum on the left hand side of (3.2) is taken over 
an infinite set of polynomials, one can check whether (3.2) holds, in finitely many 
steps. Indeed, if h1, h2 0 Zp[X] are both monic, of same degree r ≤  d - 1, say 

h1 = Xr + b1Xr-1 + . . . + br, 
and 

h2 = Xr + '
1b Xr-1 + . . . + '

rb , 
and if 
(3.3) v(bi - '

1b  ) ≥ 1 + d(d - 1)v(∆), 1 ≤ i ≤ r, 
then we have 
(3.4) v(R(h1, f)) ≤ d(d - 1)v(∆) 
if and only if 
(3.5) v(R(h2, f)) ≤ d(d - 1)v(∆). 
This follows immeruately from the expression of R(h1, f) and R(h2, f) as determinants. 
The inequalities v(bi - '

ib ) ≥ 1 + d(d - l)v(∆) imply that the corresponding entries in 
these two determinants are congruent modulo p1+d(d-1)v(∆) . Then, since all the entries in 
these two determinants are p-adic integers, R(h1, f) and R(h2, f) will also be cougruent 
modulo p1+d(d-1)v(∆), and hence one of them is divisible by p1+d(d-1)v(∆) if and only if the 
other is divisible by p1+d(d-1)v(∆). So under the assumptions from (3.3), the inequalities 
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(3.4) and (3.5) are equivalent. 
Now any p-adic integer is congruent modulo p1+d(d-1)v(∆) to one of the natural 
numbers 1, 2, 3, . . . , p1+d(d-1)v(∆). Therefore, if we consider for any 1 ≤ r ≤  d - 1 
the finite set of polynomials Mr defined by 
 
Mr = {h = Xr +b1Xr-1 +. . .+ br : bj 0{1, 2, . . . , p1+d(d-1)v(∆)}, 1 ≤ j ≤ r }, 
 
then any monic polynomial in Zp[X] of degree r will be congruent modulo p1+d(d-1)v(∆) 
to a polynomial h(X) from Mr, in the sense that the corresponding coefficients of these 
two polynomials are congruent modulo p1+d(d-1)v(∆) . We derive that (3.2) is 
equivalent to the inequality 
 
(3.6) )()1()),((maxmax

11
∆−≤

∈−≤≤
vddfhRv

rMhdr
 

 
In conclusion, f  is irreducible if and only if (3.6) holds, and this can be checked in a 
finite number of steps. 
Assume in what follows that f is irreducible. Let us define the quantity 
 
(3.7) 

h
fhRvp

rMhdr deg
)),((maxmax:

11 ∈−≤≤
=  

 
We denote by M the subset of U1≤ r ≤ d-1 Mr for which the maximum on the right hand 
side of (3.7) is attained Thus 
 
(3.8) 









=∪∈= −≤≤ p
h
fhRvMhM rdr deg

)),((:11  

 
Next, we denote by M* the subset of M consisting of the polyuomials from M of 
smallest degree, and denote this degree by r*. So 
 
(3.9) r* = min { deg h : h 0 M}, 
 
and 
 
(3.10) M* = {h 0 M : deg h = r*} 
 
Note that p, M, r* and M* can all be found after a finite amount of computation. We 
claim that any polynomial g(X) 0 M* is irreducible, and (f,g) is a distinguished pair. 
In order to prove the claim, fix a polynomial g(X)0 M*, and let H(X)0 Zp[X] be a 
monic, irreducible polynomial such that (f, H) is a distinguised pair. Say 

H(X) = Xr + B1Xr-1 + . . . + Br 
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Let h(X) 0 Mr, 

h(X) = Xr + b1Xr-1 + . . . + br 
such that 
 v(Bi-bi) ≥ 1+d(d-1)v(∆), 
 
for any i 0 {1, ... , r}. Then we know that 
 

v(R(H, f)) = v(R(h, f)) ≤ d(d-1)v(∆) 
Combining this relation with the definition of M and with the assumption that g(X) 0 
M* φ M, we find that 
(3.11) ( )( ) ( )( ) ( )( )

*
,,,

r
fgRv

r
fhRv

r
fHRv

=≤= ρ  

Let η1, …, ηr and θ1, …, θr*  denote the roots of H and g respectively Then from (3.11) 
we obtain 
(3.12) ( ) ( )∑ ∑

≤≤ ≤≤

≤

ri rk
ki fv

r
fv

r
1 1

*
*

(1)(1 θη  

Since H(X) is irreducible, the elements f(ηi), 1≤ i ≤ r are conjugate over Qp, and hence 
they all have the same valuation. In other words, the sum on the left hand side of 
(3.12) consists of r equal terms. We do not know yet that g(X) is irreducible, so we do 
not know that the sum on the right hand side of (3.12) consists of r* equal terms. In 
any case, from (3.12) it follows that there exists a root θk  of g for which v(f(θk) is 
larger than or equal to each of the (equal) terrns from the sum on the left side of 
(3.12). Let us take an arbitrary root θk of g for which 
 ( ) ( ) rifvfv ik ≤≤≥ 1,)(( ηθ  
Let now aj be one of the roots of f which is closest to θk, so 
 
(3.14) ( ) ( ) dsavav skjk ≤≤−≥− 1,θθ  
 
Since we work in an ultrametric space, from (3.14) it follows that 
 
(3.15) ( ) ( ) ( ){ }sjksk aajvavav −−=− ,min θθ  
 
for 1≤s≤d. Next, let ηi be one of the roots of H which is closest to aj . 
Then aj will be one of the roots of f which is closest to ηi, 
 
(3.16) ( ) ( ) dsavav siji ≤≤−≥− 1,ηη , 
 
and we have as above 
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(3.17) ( ) ( ) ( ){ }sjisi aajvavav −−=− ,min ηη  
 
for 1≤ s ≤ d. Combining (3.13) with (3.15) and (3.17) we find that 
 

 
( ) ( ){ } ( ) ( ) ( )

( ) ( ) ( ){ }∑∑
∑∑

≤≤≤≤

≤≤≤≤

−−=−=

=≤=−=−−

ds
sjjk

ds
sk

ki
ds

ji
ds

sjji

aavavav

fvfvavaavav

11

11

,min

)()(,min

θθ

θηηη

 

 
This further implies that 
 
(3.18) ( ) ( )jkji avav −≤− θη  
 
By (3.16) and the ful:t that (f,H) is a distinguished pair, it follows that (aj, ηi) is a 
distinguished pair. Then, by the definition of a distinguished pair and the fact that deg 
θk ≤ deg g < d we see that in (3.18) the right side can not be strictly greater than the 
left side. Therefore 
 
(3.19) ( ) ( )jkji avav −=− θη  
 
By combining (3.19) with (315) and (3.17) we obtain 
 

( ) ( )sksi avav −=− θη  
for 1 ≤ s ≤ d, and therefore we have equality in (3.13), 
 
(3.20) ( ) ( ) rifvfv ik ≤≤= 1,)()( ηθ  
Thus we showed that any root θk of g which satisfies (313) will also satisfy (3.20). It 
follows that any root of g satisfies (3.20). Indeed, if there exists a root θk, of g for 
which 
  
 ( ) ( ),)()(

1 ik fvfv ηθ <  
 
then, from (3.12) we see that there must be another root θk2, of g for which 
 
 ( ) ( ) rifvfv ik ≤≤> 1,)()(

2
ηθ  

 
In that case θk2, will satisfy (3.13) without satisfying (3.20), which is impossible. So 
any root of g satisfies (3.20). It follows that the inequalities (3.12) and (3.11) are in 
fact equalities. As a consequence, we have h 0 M. Then, by the definition of r* and the 
fact that g 0 M*, we find that 
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rr ≤*  

 
We now return to (3.19), for a fixed root θk of g, with aj and ηi chosen as above. Recall 
that (aj, ηi) is a distinguished pair. Then, from the definition of a distinguished pair we 
know that (3.19) can not hold if deg θk < deg ηi. Using this in combination with the 
inequalities deg θk ≤ deg g = r* ≤ r = deg ηi, we deduce that 
 
(3.21) deg θk = deg g = r* = r = deg ηi 
 
As a consequence, the polynomial g(X) is irreducible. Also, from (3.19) and (3.21) it 
follows that (aj, θk)  is a distinguished pair. In conclusion (f, g) is a distinguished pair, 
as claimed. 
We summarize the above results in the following algorithm. 
 
Algorithm for finding saturated distinguished chains of polynomials 
 
Given a monic polynomial f(X) 0 Zp[X], 
 

f(X) = Xd + c1X d-1 + . . . +cd, 
 
(i) Compute the discriminant ∆ of f . If ∆ = 0, stop here: f is not irreducible. 
(ii) If ∆ ≠ 0, check the inequality (3.6). If (3.6) fails, stop here: f is not irreducible. 
(iii) If (3.6) holds, then f is irreducible. Then proceed to find p, M, r* and M*. Select 
any g 0 M*. Then g is irreducible, and (f, g) is a distinguished pair. 
(iv) Apply repeatedly step (iii), in order to find a distinguished chain (fo = f, f1 = g, f2, 
... , fs). When the last polynomial in the chain has degree 1, stop here: the chain (fo = f, 
f1 = g, f2, ... , fs) is a saturated distinguished chain for f. 
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