THE FULL RANK CASE FOR A LINEARISABLE MODEL

by
 Nicoleta Breaz, Daniel Breaz

Abstract

We consider a model which can be reduced to a linear one by substitution. For this model, we obtain a full rank case theorem for uniquely fitting written in terms of initial matrix of sample data.

Definition 1

Let be Y a variable which depends on influence of some factors expressed by other p variables $X_{1}, X_{2}, \ldots, X_{p}$. The regression is a search method for dependence of variable Y on variables $X_{1}, X_{2}, \ldots, X_{p}$ and consist in determination of a functional connection f such that

$$
\begin{equation*}
Y=f\left(X_{1}, X_{2}, \ldots, X_{p}\right)+\varepsilon \tag{1}
\end{equation*}
$$

where ε is a random term (error) which include all factors that can not be quantificated by f and which satisfies the conditions:
a) $E(\varepsilon)=0$
b) $\operatorname{Var}(\varepsilon)$ has a small value

Formula (1) with conditions a) and b) is called regressional model, variable Y is called the endogene variable and variables $X_{1}, X_{2}, \ldots, X_{p}$ are called the exogene variables.

Definition 2

The next regression is called a parametric regression

$$
f\left(X_{1}, X_{2}, \ldots, X_{p}\right)=f\left(X_{1}, X_{2}, \ldots, X_{p} ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)
$$

Otherwise the regression is called a nonparametric regression.
The regression bellow is called a linear regression

$$
f\left(X_{1}, X_{2}, \ldots, X_{p} ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)=\sum_{k=1}^{p} \alpha_{k} X_{k}
$$

Remark 3If function f from regressional models is linear with respect to the parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$, that is

$$
f\left(X_{1}, X_{2}, \ldots, X_{p} ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)=\sum_{k=1}^{p} \alpha_{k} \varphi_{k}\left(X_{1}, X_{2}, \ldots, X_{p}\right)
$$

than regression can be reduced to linear one.

Definition 4

It is called the linear regressional model between variable Y and variables $X_{1}, X_{2}, \ldots, X_{p}$, the model

$$
\begin{equation*}
Y=\sum_{k=1}^{p} \alpha_{k} X_{k}+\varepsilon \tag{2}
\end{equation*}
$$

Remark 5.

The liniar regression problem consists in study of variable Y behavior whit respect to the factors $X_{1}, X_{2}, \ldots, X_{p}$ the study made by " evaluation" of regressional parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ and random term ε.
Let be considered a sample of n data

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) x=\left(x_{1}, \ldots, x_{p}\right)=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 p} \\
x_{21} & x_{22} & \ldots & x_{2 p} \\
\ldots & \ldots & \ldots & \ldots \\
x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right), n \gg p
$$

Than one can make the problem of evaluations for regressional parameters $\alpha^{T}=\left.\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right) \in\right|^{\mathrm{p}}$ and for error term $\varepsilon^{T}=\left.\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in\right|^{\mathrm{n}}$, from these data.
From this point of views the fitting of theoretic model can offering solutions. Matriceal the model (2) can be written in form

$$
\begin{equation*}
y=x \alpha+\varepsilon \tag{2’}
\end{equation*}
$$

and represent the linear regressional theoretical model.
By fitting this models using a condition of minim results the fitted model

$$
y=x a+e \quad\left(2^{\prime \prime}\right)
$$

where $\left.a^{T} \in\right|^{\mathrm{p}},\left.e^{T} \in\right|^{\mathrm{n}}$.
It is desirable that residues $e_{1}, e_{2}, \ldots, e_{n}$ to be minimal. Then can be realised using the least squares criteria.

Definition 6.

It is called the least squares fitting, the fitting which corresponds to the solutions (a,e) of the system $y=x a+e$, which minimise the expression

$$
e^{T} e=\sum_{k=1}^{n} e_{k}^{2}
$$

Theorem 7.(full rank case)

If $\operatorname{rang}(x)=p$ then the fitting solution by least squares criteria is uniquely given by

$$
a=\left(x^{T} x\right)^{-1} x^{T} y
$$

Remark 8.

In this paper we consider the next model

$$
\begin{equation*}
y=\alpha_{1} x_{1} x_{2}+\alpha_{2} x_{2} x_{3}+\ldots+\alpha_{p-1} x_{p-1} x_{p}+\varepsilon \tag{3}
\end{equation*}
$$

where $y^{T}=\left.\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in\right|^{\mathrm{n}}, \quad \alpha^{T}=\left.\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p-1}\right) \in\right|^{\mathrm{p}-1}$,
$\varepsilon^{T}=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in I^{\mathrm{n}}$ and x is the sample data/sample variables matrix
$x \in M_{n \cdot p}, x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left(\begin{array}{ccccc}x_{11} & x_{12} & \ldots & x_{1 p-1} & x_{1 p} \\ x_{21} & x_{22} & \ldots & x_{2 p-1} & x_{2 p} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ x_{n 1} & x_{n 2} & \ldots & x_{n p-1} & x_{n p}\end{array}\right)$
With substitutions $x_{i} x_{i+1}=z_{i}, \forall i=\overline{1, p-1}$, we obtain the new matrix,
$z \in M_{n, p-1}, \quad z=\left(z_{1}, z_{2}, \ldots, z_{p-1}\right)=\left(\begin{array}{cccc}x_{11} \cdot x_{12} & x_{12} \cdot x_{13} & \ldots & x_{1 p-1} \cdot x_{1 p} \\ x_{21} \cdot x_{22} & x_{22} \cdot x_{23} & \ldots & x_{2 p-1} \cdot x_{2 p} \\ \ldots & \ldots & \ldots & \ldots \\ x_{n 1} \cdot x_{n 2} & x_{n 2} \cdot x_{n 3} & \ldots & x_{n p-1} \cdot x_{n p}\end{array}\right)$
and the linear model $y=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\ldots+\alpha_{p-1} z_{p-1}+\varepsilon$, which after the least squares fitting becomes $y=a_{1} z_{1}+a_{2} z_{2}+\ldots+a_{p-1} z_{p-1}+e$, where $a^{T}=\left(a_{1}, a_{2}, \ldots, a_{p-1}\right) \in \operatorname{l}^{p-1}$, $e^{T}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in I^{\mathrm{n}}$. The fitting uniquely solutions results from $\operatorname{rang}(z)=p-1$ (see theorem 7).
The purpose of our paper is to give an analogouse theorem based on initial sample variables.

Theorem 9.

If $\operatorname{rang}(\mathrm{x})=p, p \in\{2,3\}$, and if the sample data are not nulls than uniquely exist the least squares fitting solution $a=\left(x_{*}^{T} x_{*}\right)^{-1} x_{*}^{T} y$ where $x_{*}=\left(x_{1} * x_{2}, \ldots, x_{p-1} * x_{p}\right)$ and $x_{i} * x_{j}$ is the natural product between the vectors x_{i} and x_{j} that is the vector which can be obtained by multiplications one components of the two vectors.
Proof
Case $p=2$:
The sample matrix is $x \in M_{n, 2}, \quad x=\left(x_{1}, x_{2}\right), \quad x=\left(\begin{array}{cc}x_{11} & x_{12} \\ x_{21} & x_{22} \\ \ldots & \ldots \\ x_{n 1} & x_{n 2}\end{array}\right)$ and the model $y=\alpha_{1} x_{1} x_{2}+\varepsilon$.
We make the substitution $x_{1} x_{2}=z$, which results $y=\alpha_{1} z+\varepsilon$.

Because the sample data are not nulls it results $\operatorname{rang}(z)=1$, where $z=\left(\begin{array}{c}x_{11} \cdot x_{12} \\ x_{21} \cdot x_{22} \\ \ldots \\ x_{n 1} \cdot x_{n 2}\end{array}\right)$.
One can observe that is sufficient that for a single unit of sample, data must be differed from zero. According to theorem 7 if $\operatorname{rang}(z)=1$ then uniquely exist $a_{1}=a=\left(z^{T} z\right)^{-1} z^{T} y=\left(x_{*}^{T} x_{*}\right)^{-1} x_{*}^{T} y$ where $x_{*}=\left(x_{1} * x_{2}\right) \in M_{n, 1}$.
Case $p=3$:
The sample matrix is $x \in M_{n, 3}, x=\left(x_{1}, x_{2}, x_{3}\right), x=\left(\begin{array}{ccc}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ \ldots & \ldots & \ldots \\ x_{n 1} & x_{n 2} & x_{n 3}\end{array}\right)$
and the model $y=\alpha_{1} x_{1} x_{2}+\alpha_{2} x_{2} x_{3}+\varepsilon$. We use the substitutions $x_{1} x_{2}=z_{1}, x_{2} x_{3}=z_{2}$ and we obtain $y=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\varepsilon$. If $\operatorname{rang}(\mathrm{x})=3$ then results that at least one minor of three order is differed from zero and let be this one (without restrict the generality) $d=\left|\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right|$.
If $d_{3} \neq 0$, developing by the second column results that at least one of the three minor from the development is not null and let be, by example, this one $d_{2}=\left|\begin{array}{ll}x_{11} & x_{13} \\ x_{21} & x_{23}\end{array}\right| \neq 0$. On the other way we calculate a minor of two order from z, by example
$d_{2 z}=\left|\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right|=z_{11} z_{22}-z_{12} z_{21}=x_{11} x_{12} x_{22} x_{23}-x_{12} x_{13} x_{21} x_{22}=x_{12} x_{22}\left(x_{11} x_{23}-x_{13} x_{21}\right)=$ $=x_{12} x_{22} \cdot d_{2}$
Because from the hypothesis, the sample data are not nulls and $\operatorname{rang}(x)=3$, $d_{2} \neq 0$ then results that $d_{2 z} \neq 0$, so $\operatorname{rang}(\mathrm{z})=2$. According to theorem 7 it results that uniquely exists the solution $a=\left(z^{T} z\right)^{-1} z^{T} y=\left(x_{*}^{T} x_{*}\right)^{-1} x_{*}^{T} y$ where $x_{*}=\left(x_{1} * x_{2}, x_{2} * x_{3}\right)$.
Remark 10.

A weak condition, namely $\operatorname{rang}(x)=p-1, p \in\{2,3\}$ is not sufficient because this is not implied that $\operatorname{rang}(z)=p-1$. However, it can be given an intermediary condition between rang $(x)=p-1$ and rang $(x)=p$.

Theorem 11.

If in sample data matrix there exists a minor of second order differed from zero, at least, which not contains elements from second column, then $a=\left(x_{*}^{T} x_{*}\right)^{-1} x_{*}^{T} y$ with $x_{*}=\left(x_{1} * x_{2}, x_{2} * x_{3}\right)$.

Proof

By example $d_{2}=\left|\begin{array}{ll}x_{11} & x_{13} \\ x_{21} & x_{23}\end{array}\right|=x_{11} x_{23}-x_{13} x_{21} \neq 0$ and
$d_{2 z}=\left|\begin{array}{ll}x_{11} x_{12} & x_{12} x_{13} \\ x_{21} x_{22} & x_{22} x_{23}\end{array}\right|=x_{12} x_{22}\left(x_{11} x_{23}-x_{13} x_{21}\right) \neq 0$

Remark 12.

These theorems can not be generalised for any p. A similar theorem with 11 can be given in genarall case if we define the pseudominor in follow sense.

Definition 13.

Let be $x \in M_{n, p}$. We call the pseudo-minor of $p-1$ order from matrix x, formed by the first $p-1$ rows of x, the expression

$$
\begin{aligned}
& d^{f}=\sum_{\sigma \in S_{p-1}}(-1)^{s i g n \sigma}\left(x_{1 \sigma(1)} \cdot x_{2 \sigma(2)} \cdot \ldots \cdot x_{p-1 \sigma(p-1)}\right)\left(x_{1 \sigma(1)+1} \cdot x_{2 \sigma(2)+1} \cdot \ldots \cdot x_{p-1 \sigma(p-1)+1}\right)= \\
& =\sum_{\sigma \in S_{p-1}}\left[(-1)^{s i g n \sigma} \cdot \prod_{i=1}^{p-1} x_{i \sigma(i)} \cdot \prod_{i=1}^{p-1} x_{i \sigma(i)+1}\right]
\end{aligned}
$$

Remark 14.

In calculus of d we apply the ordinary formulla for a determinant of $p-1$ order only that the elements from products appearing in determinant are product of elements which are from minor of $p-1$ obtained by elimination of the first column and from minor of $p-1$ order obtained by elimination of last column.

$$
\begin{aligned}
& d_{3}^{f}=\left\|\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34}
\end{array}\right\|=\left(x_{11} x_{22} x_{33}\right)\left(x_{12} x_{23} x_{34}\right)+\left(x_{13} x_{21} x_{32}\right)\left(x_{14} x_{22} x_{33}\right)+ \\
& +\left(x_{31} x_{12} x_{23}\right)\left(x_{32} x_{13} x_{24}\right)-\left(x_{13} x_{22} x_{31}\right)\left(x_{14} x_{23} x_{32}\right)-\left(x_{11} x_{23} x_{32}\right)\left(x_{12} x_{24} x_{33}\right)- \\
& -\left(x_{33} x_{12} x_{21}\right)\left(x_{34} x_{13} x_{22}\right)
\end{aligned}
$$

By example, d_{3}^{f} is the pseudo-minor of $p-1$ order from matrix $\quad x \in M_{n, p}(p=4)$, formed with the first three rows of this matrix.

Theorem 15.

If in sample data matrix there exist at least one pseudo-minor of $p-1$ order different from zero then exists uniquely fitting solution $a=\left(x_{*}^{T} x_{*}\right)^{-1} x_{*}^{T} y$ with $x_{*}=\left(x_{1} * x_{2}, x_{2} * x_{3}, \ldots, x_{p-1} * x_{p}\right)$.

Proof

Let be the pseudo-minor of $p-1$ order, different from zero, formed with the first $p-1$ rows, without restrict the generality $\left(d_{p-1}^{f} \neq 0\right)$.
With substitutions $x_{j} x_{j+1}=z_{j}, \forall j=\overline{1, p-1}$, we obtain matrix $z=\left(z_{i j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p-1}}, z_{i j}=x_{i j} \cdot x_{i j+1}$
We calculate the minor of $p-1$ from z formed with the first $p-1$ rows:
$d_{z}=\sum_{\sigma \in S_{p-1}}(-1)^{\operatorname{sign} \sigma}\left(z_{1 \sigma(1)} \cdot z_{2 \sigma(2)} \cdot \ldots \cdot z_{p-1 \sigma(p-1)}\right)=$
$=\sum_{\sigma \in S_{p-1}}(-1)^{\operatorname{sign} \sigma}\left(x_{1 \sigma(1)} \cdot x_{1 \sigma(1)+1}\right)\left(x_{2 \sigma(2)} \cdot x_{2 \sigma(2)+1}\right) \cdot \ldots \cdot\left(x_{p-1 \sigma(p-1)} \cdot x_{p-1 \sigma(p-1)+1}\right)=d_{p-1}^{f} \neq 0$
So rang $z=p-1$ and $a=\left(z^{T} z\right)^{-1} z^{T} y=\left(x_{*}^{T} x_{*}\right)^{-1} x_{*}^{T} y$.

REFERENCES

[1] Stapleton J.H.-Linear Statistical Models, A Willey-Interscience Publication, Series in Probability and Statistics, New York, 1995.
[2] Saporta G.-Probabilités, analyse des données et statistique, Editions Technip, Paris, 1990.

Authors:

Nicoleta Breaz- „1 Decembrie 1918" University of Alba Iulia, str. N. Iorga, No. 13, Departament of Mathematics and Computer Science, email: nbreaz@lmm.uab.ro

Daniel Breaz- „1 Decembrie 1918" University of Alba Iulia, str. N. Iorga, No. 13, Departament of Mathematics and Computer Science, email: dbreaz@lmm.uab.ro

