
Àrpàd Incze - The basics of text encryption & decryption

 69

THE BASICS OF TEXT ENCRYPTION & DECRYPTION

by
Àrpàd Incze

Abstract: People mean different things when they talk about cryptography. Children play with
toy ciphers and secret languages. However, these have little to do with real security and strong
encryption. Strong encryption is the kind of encryption that can be used to protect information
of real value against organized criminals, multinational corporations, and major governments.
Strong encryption used to be only military business; however, in the information society it has
become one of the central tools for maintaining privacy and confidentiality. [1]

THE BEGINNING. CAESAR CIPHERS
Julius Caesar is supposed to have used secret codes known today as Caesar

ciphers that consist in replacing a letter from another letter at a certain distance in the
alphabet. In the simplest, A is replaced with B, B is replaced with C, and so on, up to
Z, which is replaced with A. This is called a rotate-one Caesar cipher because it
rotates the alphabet one place. A rotate-two cipher replaces A with C, B with D, and
so on up to Z, which is replaced by B. [1]

The following line is this line encrypted with a rotate one cipher.
Uif gpmmpxjoh mjof jt uijt mjof fodszqufe xjui b spubuf pof dzqifs[1].

Note that in this “real life” example, the letters in the above have been changed,

but spaces and punctuation marks have not. Also, capitalization has been preserved.
Considering the fact that in the computational world the letters are numbered (

ASCII character code or HEX code) it is very simply to write a program which uses
the Caesar ciphers. Let’s see the basic form of it:

CLS
INPUT "Enter the text to encrypt "; s$ * Entering the text ant he rotation step
INPUT “Enter the rotation step value <10”; pas
FOR t = 1 TO LEN(s$) * the encryption cycle
 c$ = c$ + CHR$(ASC(MID$(s$, t, 1)) + pas)
NEXT t

Àrpàd Incze - The basics of text encryption & decryption

 70

PRINT "The encrypted text is: " :PRINT c$
FOR t = 1 TO LEN(c$) * decryption cycle of the text
 dec$ = dec$ + CHR$(ASC(MID$(c$, t, 1)) - pas)
NEXT t
PRINT "The decrypted text is ": PRINT dec$
END

A little better way to encrypt texts is to use a table of correspondences where
for each letter in the alphabet we have a randomly chosen but unique correspondent
letter like in the following table:

ENCRYPTION DECRYPTION

Letter Exchanged with Letter Exchanged with
A
B
C
D
E
F
G
…

Z
X
C
V
B
N
M

Z
X
C
V
B
N
M

A
B
C
D
E
F
G
…

In this case the word DECADE will transform in VBCZVB
This kind of Caesar ciphers and table of correspondences , can be easily broken

by taking advantage of the known letter frequencies of the language of the encrypted
text, because a certain letter will be always replaced with the same correspondent
letter. E.g. in the English language the most frequent letter is e.

Here is the next step in encryption which consist in improving the encryption
by using ciphers were the same letters are replaced with different letters each time we
use them(well almost each time). The following example shows how to do this in a
weary simply way:

CLS
 INPUT "Enter the text to encrypt"; s$
 FOR t = 1 TO LEN(s$)
 tt = t * this variable will give us the step
 IF tt > 13 THEN tt = INT(t / 13)
 c$ = c$ + CHR$(ASC(MID$(s$, t, 1)) + tt)
 NEXT t PRINT "The encrypted text is: " :PRINT c$
 FOR t = 1 TO LEN(c$)
 tt = t
 IF tt > 13 THEN tt = INT(t / 13)

Àrpàd Incze - The basics of text encryption & decryption

 71

 dec$ = dec$ + CHR$(ASC(MID$(c$, t, 1)) - tt)
 NEXT t

PRINT "The decrypted text is "; dec$
END

The program above works this way: reads the letters one by one, replaces the
current letter with a symbol at a “distance” in ASCII code corresponding to the
position of the letter in the text(e.g. the first letter is replaced with the first letter
ASCII code+1, the second letter is replaced with its ASCII code+2, the 3rd with its
ASCII code + 3 and so one..)

Here is an output example: Text to encode => Ug{x%zv(nxdpef . You can see
the fact that for the same letters e,t we have got different letters each time in the
encode text.

This method eliminates the possibility of being broken with code breaking
methods using letter frequency methods.

A much better approach, and we still talk about derivations from Caesar ciphers,
is to use random steps for the rotation of each letter. We can do these using constants
in the random generator engines for random seed. This way, each time we generate a
series of numbers with the same random seed we will get the same numbers, so by
using the same seed in the random function for booth the encryption ant the decryption
the problem is solved. Because the random number generator once started, we can not
reinitialize the random engine ,for implementing this method ,we wrote two different
programmes one for encoding the text and putting it in a file and a second program
which reads the encoded text from the file and after decoding it prints the result on the
screen. Attention !! The two programs must be started separately, from different
sessions. Here are the source codes for this method:
CLS
OPEN "code.txt" FOR OUTPUT AS #1 open the file code.txt to write in the coded
text
codat$ = "" initialization of the string variable
INPUT "Enter the text to encrypt"; text$
RANDOMIZE(3) starting the random number generator with a certain
seed
FOR t = 1 TO LEN(text$) starting encoding the text
 pas = INT(1 + 10 * RND) the randomly generated step
 codat$ = codat$ + CHR$(ASC(MID$(text$, t, 1)) + pas) exchanging the letters
NEXT t
PRINT #1, codat$ printing the encoded text in to the code.txt file on the
disk
CLOSE closing the file
END
 And next the decoding program :
CLS

Àrpàd Incze - The basics of text encryption & decryption

 72

OPEN "code.txt" FOR INPUT AS #1 Opens the file that contains the encoded
 INPUT #1, codat$ read the text from the file in a string variable

decodat$ = "" initialization of the output string variable
RANDOMIZE(3) !!! The same random seed to initialize de number generator
FOR t = 1 TO LEN(codat$) Starting decoding the text
 pas = INT(1 + 10 * RND) the randomly generated step
 decodat$ = decodat$ + CHR$(ASC(MID$(codat$, t, 1)) - pas) exchanging the
letters
NEXT t
PRINT decodat$ outputting the result to the screen
CLOSE closing the file
END

This version of encoding program will give the following result in an output
example: Input text Text to encode output text: Vn�y){u’hpmsgh

This is a pretty good method considering that we can use more than 60000
different seed numbers, so even if someone knows our method they will have to try a
relatively big number of possibilities. Also there is a possibility to use different seed
number for encoding different text by writing only 1 new line in our program and
modifying another one, in both programmes (encoding and decoding) :
INPUT “Enter the random number initialization seed “;ssd read the seed
number
RANDOMIZE(ssd)

Here I described just a few examples of encryption methods . The military and
commercial encoding, encrypting methods and programmes are much more
sophisticated and use the advantage of strong mathematical fundaments and theories.

But no matter how good is an encryption method as long as it use a certain
method to encrypt, just knowing how the encryption is done its enough for a
codbraker to decrypt a message. So even a method as shown above can be useful as
long as the “enemies” doesn’t know how we encrypt our text.

Bibliography

[1] Douglas W. Jones Data Compression and Encryption Algorithms . University of
Iowa

Author

Arpad Incze “1 Decembrie 1918” University of Alba Iulia. Romania, Department of
Mathematics and Computer Science, glider@personal.ro

