A PRESERVING PROPERTY OF THE ALEXANDER OPERATOR by

Mugur Acu and Dorin Blezu

Abstract. The H(U) be the set of functions which are regular in the unit disc U and

$$A = \left\{ f \in H(U), \ f(0) = 0, \ f'(0) = 1 \right\}.$$

Let denote by I the Alexander operator $I: A \rightarrow H(U)$ as:

$$f(z) = IF(z) = \int_{0}^{z} \frac{F(t)}{t} dt$$
 (1)

The purpose of this note is to show that the n-uniform starlike functions of order γ and type α and the n-uniform close to convex functions of order γ and type α are preserved by the Alexander operator.

1. Preliminary results

Definition 2.1. Let D^n be the Sălăgean differential operator defined as:

$$D^{n}: A \to A, \quad n \in N \text{ and}$$
$$D^{0}f(z) = f(z)$$
$$D^{1}f(z) = Df(z) = zf'(z)$$
$$D^{n}f(z) = D(D^{n-1}f(z)).$$

Definition 2.2. [2] Let $f \in A$, we say that f is n-uniform starlike function of order γ and type α if

$$\operatorname{Re}\left(\frac{D^{n+1}f(z)}{D^{n}f(z)}\right) \ge \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^{n}f(z)} - 1\right| + \gamma, \quad z \in U$$

where $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in N$. We denote this class with $US_n(\alpha, \gamma)$.

Remark 2.1. Geometric interpretation: $f \in US_n(\alpha, \gamma)$ if and only if $\frac{D^{n+1}f(z)}{D^n f(z)}$ take all values in the convex domain included in right half plane $\Delta_{\alpha,\gamma}$, where $\Delta_{\alpha,\gamma}$ is a eliptic region for $\alpha > 1$, a parabolic region for $\alpha = 1$, a hyperbolic region for $0 < \alpha < 1$, the half plane $u > \gamma$ for $\alpha = 0$.

Definition 2.3. [1] Let $f \in A$, we say that f is n-uniform close to convex function of order γ and type α in respect to the functions n-uniform starlike of order γ and type α g(z), where $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, if

$$\operatorname{Re}\left(\frac{D^{n+1}f(z)}{D^{n}g(z)}\right) \ge \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^{n}g(z)} - 1\right| + \gamma , \quad z \in U$$

where $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in N$. We denote this class with $UCC_n(\alpha, \gamma)$.

Remark 2.2. Geometric interpretation: $f \in UCC_n(\alpha, \gamma)$ if and only if $\frac{D^{n+1}f(z)}{D^ng(z)}$ take all values in the convex domain included in right half plane $\Delta_{\alpha,\gamma}$, where $\Delta_{\alpha,\gamma}$ is a eliptic region for $\alpha > 1$, a parabolic region for $\alpha = 1$, a hiperbolic region for $0 < \alpha < 1$, the half plane $u > \gamma$ for $\alpha = 0$.

The next two theorems are results of the so called "admissible functions method" introduced by P. T. Mocanu and S. S. Miller (see [3], [4], [5]).

Theorem 2.1. Let h convex in U and $\operatorname{Re}[\beta h(z) + \gamma] > 0$, $z \in U$. If $p \in H(U)$ with p(0) = h(0) and p satisfied the Briot-Bouquet differential subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z)$$
, then $p(z) \prec h(z)$.

Theorem 2.2. Let q convex in U and $j: U \to C$ with $\operatorname{Re}[j(z)] > 0$. If $p \in H(U)$ and p satisfied $p(z) + j(z) \cdot zp'(z) \prec q(z)$, then $p(z) \prec q(z)$.

2. Main results

Theorem 3.1. If $F(z) \in US_n(\alpha, \gamma)$, with $\alpha \ge 0$ and $\gamma > 0$, then $f(z) = IF(z) \in US_n(\alpha, \gamma)$ with $\alpha \ge 0$ and $\gamma > 0$.

Proof. We know that $F(z) \in US_n(\alpha, \gamma)$ if and only if $\frac{D^{n+1}F(z)}{D^nF(z)}$ take all values in the convex domain included in right half plane $\Delta_{\alpha,\gamma}$.

By differentiating
$$f(z) = IF(z) = \int_{0}^{z} \frac{F(t)}{t} dt$$
 we obtain: $F(z) = zf'(z)$.

By means of the application of the linear operator D^{n+1} we obtain:

$$D^{n+1}F(z) = D^{n+1}(zf'(z))$$
 or $D^{n+1}F(z) = D^{n+2}f(z)$

Similarly, by means of the application of the linear operator D^n we obtain:

 $D^n F(z) = D^{n+1} f(z) \,.$

Thus

$$\frac{D^{n+1}F(z)}{D^nF(z)} = \frac{D^{n+2}f(z)}{D^{n+1}f(z)} \quad (2) \,.$$

With notation $\frac{D^{n+1}f(z)}{D^n f(z)} = p(z)$, where $p(z) = 1 + p_1 z + ...$ we have

$$zp'(z) = \frac{D^{n+2}f(z) \cdot D^n f(z) - (D^{n+1}f(z))^2}{(D^n f(z))^2}$$

$$\frac{1}{p(z)} \cdot zp'(z) = \frac{D^{n+2}f(z)}{D^{n+1}f(z)} - p(z).$$

From here we obtain:

$$\frac{D^{n+2}f(z)}{D^{n+1}f(z)} = p(z) + \frac{1}{p(z)} \cdot zp'(z).$$

Thus from (2) we obtain:

$$\frac{D^{n+1}F(z)}{D^nF(z)} = p(z) + \frac{1}{p(z)} \cdot zp'(z) \quad (3) .$$

If we consider $h \in H_u(U)$, with h(0) = 1, which maps the unit disc into the convex domain included in right half plane $\Delta_{\alpha,\gamma}$, then from $\frac{D^{n+1}F(z)}{D^nF(z)}$ take all values in $\Delta_{\alpha,\gamma}$, using (3) we obtain:

$$p(z) + \frac{1}{p(z)} \cdot zp'(z) \prec h(z)$$

where, from her construction, we have $\operatorname{Re} h(z) > 0$ and from theorem (2.1) we obtain $p(z) \prec h(z)$. From here follows that $\frac{D^{n+1}f(z)}{D^n f(z)}$ take all values in the convex domain included in right half plane $\Delta_{\alpha, \gamma}$, or $f(z) = IF(z) \in US_n(\alpha, \gamma)$, with $\alpha \ge 0$ and $\gamma > 0$.

Theorem 3.2. If $F(z) \in UCC_n(\alpha, \gamma)$, in respect to the function n-uniform starlike of order γ and type $\alpha G(z)$, with $\alpha \ge 0$ and $\gamma > 0$, then $f(z) = IF(z) \in UCC_n(\alpha, \gamma)$ in respect to the function n-uniform starlike of order γ and type α , see theorem (3.1), g(z) = IG(z) with $\alpha \ge 0$ and $\gamma > 0$.

Proof. We know that $F(z) \in UCC_n(\alpha, \gamma)$ if and only if $\frac{D^{n+1}F(z)}{D^n G(z)}$ take all

values in the convex domain included in right half plane $\Delta_{\alpha,\gamma}$.

By differentiating (1) we obtain:

$$F(z) = zf'(z)$$
 and $G(z) = zg'(z)$

By means of the application of the linear operator D^{n+1} we obtain:

$$D^{n+1}F(z) = D^{n+2}f(z)$$
 and $D^nG(z) = D^{n+1}g(z)$

With simple calculation we obtain:

$$\frac{D^{n+1}F(z)}{D^n G(z)} = \frac{D^{n+2}f(z)}{D^{n+1}g(z)}$$
(4)

With notation $\frac{D^{n+1}f(z)}{D^n g(z)} = p(z)$, and $\frac{D^{n+1}g(z)}{D^n g(z)} = h(z)$ it follows that: $\frac{D^{n+2}f(z)}{D^{n+1}g(z)} = p(z) + \frac{1}{h(z)} \cdot zp'(z).$

Thus from (4) we obtain:

$$\frac{D^{n+1}F(z)}{D^nG(z)} = p(z) + \frac{1}{h(z)} \cdot zp'(z)$$
 (5)

If we consider q convex in unit disc U, which maps the unit disc into the convex domain included in right half plane $\Delta_{\alpha,\gamma}$, then from $\frac{D^{n+1}F(z)}{D^nG(z)}$ take all values in $\Delta_{\alpha,\gamma}$, using (5) we obtain:

$$p(z) + \frac{1}{h(z)} \cdot zp'(z) \prec q(z)$$

where, from her construction, we have $\operatorname{Re} h(z) > 0$. From here follows that $\operatorname{Re} \frac{1}{h(z)} > 0$. In this conditions from theorem (2.2) we obtain $p(z) \prec q(z)$. From here follows that $\frac{D^{n+1}f(z)}{D^n g(z)}$ take all values in the convex domain included in right half

plane $\Delta_{\alpha,\gamma}$; or $f(z) = IF(z) \in UCC_n(\alpha, \gamma)$, in respect to $g(z) = IG(z) \in US_n(\alpha, \gamma)$ with $\alpha \ge 0$ and $\gamma > 0$.

3. Some particular cases

- 1. From theorem (3.1), for n=1, we obtain that the integral operator (1) preserved the class $US^{c}(\alpha, \gamma)$, with $\gamma > 0$, of uniform convex of type α and of order γ functions, introduced by I. Magdaş.
- 2. From theorem (3.1), for n=1, $\gamma = 0$ we obtain that the integral operator (1) preserved the class $US^{c}(\alpha)$, of uniform convex of type α functions, introduced by S. Kanas and A. Visniowska.
- 3. From theorem (3.1), for n=1, $\gamma = 0$, $\alpha = 1$, we obtain that the integral operator (1) preserved the class US^c , of uniform convex function, introduced by A. W. Goodman, and studied by W. Ma and D. Minda.
- 4. From theorem (3.1), for n=1, $\alpha = 1$, we obtain that the integral operator (1) preserved the class $US^{c}[\gamma]$, with $\gamma > 0$, of uniform convex of order γ functions, introduced by F. Ronning.
- 5. From theorem (3.1), for n=0, $\alpha = 1$, we obtain that the integral operator (1) preserved the class $SP\left(\frac{1-\gamma}{2}, \frac{1+\gamma}{2}\right)$, introduced by F. Ronning.
- 6. From theorem (3.2), for $\gamma = 0$, we obtain that the integral operator (1) preserved the class $UCC_n(\alpha)$, of n-uniform close to convex of type α in respect to a n-uniform starlike of type α function, introduced by D. Blezu.

REFERENCES

[1] D. Blezu "On the n-uniform close to convex function with respect to a convex domain", Demontratio Mathematica (to appear).

[2] I. Magdaş, Doctoral thesis, University "Babeş-Bolyai" Cluj-Napoca 1999.

[3] S. S. Miller and P. T. Mocanu "Diferential subordination and univalent functions", Mich. Math. 28 (1981), 157-171.

[4] S. S. Miller and P. T. Mocanu "Univalent solution of Briot-Buoquet differential equations", J. Differential Equations 56 (1985), 297-308.

[5] S. S. Miller and P. T. Mocanu "On some classes of first-order differential subordinations", Mich. Math. 32 (1985), 185-195.

[6] Gr. Sălăgean "On some classes of univalent functions" Seminar of geometric function theory Cluj-Napoca 1983.

Authors:

Mugur Acu, Dorin Blezu, "Lucian Blaga" University of Sibiu