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ABSTRACT. We associate with a stochastic cocycle © = (¢, ®), on Y =
) x H, a stochastic variational integral equation and we characterize the expo-
nential instability in mean square of stochastic equations in therms of solvabil-
ity of the associated equation. Thus we obtain a generalization of stochastic
case for results obtained by O. Perron [8], in deterministic case.
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1. INTRODUCTION

Let (Q, F, {Ft}tzo , P) be a standard filtered probability space and let ¢ :
R, x Q — Q a stochastic semiflow on (2. We consider a stochastic variational
equations

P — A, 120 )
and the nonhomogeneous equation
du(t) = A(p(t,w))u(t)dt + B(t)dW(t), t>0 (2)

where A is given by linear operators A(w) € L(H) on Hilbert space H, such
that w — A(w) is strongly measurable. In addition A(w) are infinitesimal
generators of an analytic Cy-semigroup on H denoted by e *4“) t > 0 and
he function ¢ — A(p(t,w)) is Holder continuous with values in L(H) (see
Carrabalo in [3]). B is a continuous and bounded in mean square stochastic
process on H, and W (t),t > 0 is a real Wiener process.
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If there exists a stochastic cocycle © = (p, @), on Y = Q x H associated
with the stochastic equation (1) then for every w € €2 the mild solution of (2)
is given by the stochastic integral variational equation:

u(t) = Ot — s, o(s,w))u(s) —I—/ Ot —7,p(1,w))B(T)dW (1), Vt>s2>0.
(3)

The existence of the stochastic cocycle associated with the stochastic varia-
tional equation (1) is conditioned by specific conditions for the family of linear
operators {A(w) }weq and was studied in [3, 6, 11] and L. Arnold in [1].

In the stochastic variational case we may associate with a stochastic cocycle
O = (p, ) at avery w € Q) the stochastic integral equation

£(t) = B(t—s. o(5,0)) f(5) + / (17, o(r.w))Br)dW(r), ¥t>s5>0 (4)

where B € I(R,, H)- the input space and f € O(R,, H) - the output space,
and thus the uniform exponential instability in mean square can be expressed
in therms of the admissibility of the pair (I(R,, H),O(R,, H)) for stochastic
variational equation, i.e for every (w, B) € Qx I(Ry, H) the stochastic integral
equation (4) has a unique solution f € O(R,, H).

The main results is a new characterizations for uniform exponential insta-
bility in mean square of stochastic variational equations, and thus extends the
results from deterministic case, obtained in [5, 10].

2. PRELIMINARIES

Let H be a separable Hilbert space, L(H )- the set of all bounded linear oper-
ators on H and (Q, FAFi} 5 P) be a standard filtered probability space.

Definition 1 A stochastic semiflow on ) is a measurable random field o :
(Ry X Q,B(Ry)® F) — (Q, F) satisfying the following properties:

* p(0w) =w,

o pt+s,w) =p(t ps,w))
for all (t,s,w) € B2 x Q.
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Definition 2 A pair © = (¢, ®) is called stochastic cocycle on' Y = Q x H if
@ 1s a stochastic semiflow on 2 and the mapping ® : Ry x Q — L(H) satisfies
the following properties

e O(0,w) =1 (the identity operator on H),
o Dt +5,w) = Dlt, p(s5,0))D(5,w),
for all (t,s,w) € R% x Q.

Example 1 Let H be a real separable Hilbert space and let €2 be the space
of all continuous paths w : Ry — X, such that w(0) = 0 with the com-
pact open topology. Let Fy for t > 0, be the o-algebra generated by the set
{w — w(u) € X with u <t} and let F be the associated Borrel o-algebra to Q.
If P is a Wiener measure on €) then (Q, FAF} 0, P) is a filtered probability
space with the Wiener motion W (t,w) = w(t) for all (t,w) € Ry x Q.

Then ¢ : Ry xQ — Q defined by o(t,w)(7) = w(t+7) —w(t) is a stochastic
semiflow on Q) generated by Wiener shift.

For every w € Q we consider the stochastic parabolic system

dy(&t) _ Py
yr wit >a2g(t €), t>0,£e(0,1) (5)

y(0,t) =y(1,t) =0
where H = L*(0,1), Az = %x with D(A) = HYNH?(0,1). If for every w € Q
we denote A(w) = w(0)A. The operator A is the infinitesimal generator of an
analytic semigroup T(t) on H [7], and the eigenvalues of A are \, = —n’m>
with the corresponding eigenvectors o, = \/5008(7”16),71 € N*. Thus the

analytic semigroup on H is

t)x = Z 2¢7" ™ cos 7m§)/0 z(7)cos(mnT)dr, = € H. (6)

Then the stochastic parabolic equation (5) is rewritten of stochastic variational
equation
dx(t) = A(p(t,w))z(t), t>0, (7)

which generates the stochastic cocycle ©(p, ®) on H x §, where ® : R, x Q) —

L(H), is defined by
B(t,w)r = T (/Otw<7)dw<7>> .
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and ¢ : Ry x Q) — € is the stochastic semiflow generated by Wiener shift.

Definition 3 A stochastic cocycle © = (o, ®) on Y is with uniform exponen-
tial growth in mean square if there exists a constant M > 1 and X > 0 such
that:

E||®(t,w)z||* < MeME||z|?, for all t >0, and w € .

Definition 4 The stochastic equation (1) is said to be uniformly exponentially
instable in mean square if for every (w,t) € Q x R, the operator ®(t,w) is
wnvertible and there are two constants N > 1, v > 0, such that:

E||®(s,w)z|]* < Ne "9 B||®(t, w)x|?, (8)
forallt>s >0, and (w,z) €Y.
3. EXPONENTIAL INSTABILITY IN MEAN SQUARE AND ADMISSIBILITY

In the next we denote by C,( Ry, H) the Banach space of all bounded stochastic
process u : Ry — H with the norm

1/2
lullz = (supEHu<t)|\2) .
t>0

In the all of the paper we have the hypothesis that the stochastic cocycle
© = (¢, ®) is with uniform exponential growth in mean square.

Definition 5 The pair (Cy(Ry, H),Cy(Ry, H)) is said to be admissible for
stochastic equation (2), and denoted by (Cy, Cy), if for every w € Q and B €
Cy(Ry, H) there exists a unique function fp € Cy(Ry, H) such that the pair
(fB, B) satisfies the stochastic integral equation

fa(t) = ®(t—s, gp(s,w))fB(s)—i—/t O(t—7,0(r,w))B(T)dW(T), Vt>s>0.
(9)

Lemma 1 If the pair (Cy, Cy) is admissible for stochastic equation (2) then
O (t,w) is invertible, for all (t,w) € Ry X Q.
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Proof. We prove that ®(¢,w), for all (t,w) € R, x £, is a bijective mapping.
Let x € Ker®(ty,w),ty > 0 if we consider that the stochastic process B = 0
and fp(t) = ®(¢t,w)x then fp € C, and the pair (fg, B) satisfies the relation
(9), and from the hypothesys we obtain that fz = 0 and since 2 = f5(0) =0
it follows that the stochastic process ®(t,w) is injective.

Let x € H and let 3 be a continuous stochastic process with fol B(T)dW (1) =
1. If denote by

B(t) = =p(t — to)®(t — to, p(to,w))x, for all t > tg

fB(t) = (I)(t — t(), go(to,w))x /too B(T — to)dW(T)

we have that B, fg € C, and the pair (fg, B) satisfies the relation (9) for all
t >ty > 0. If define the mapping

g(t) = fe(t+to) — (L, p(to,w)) t: B(T)dW (1)x

we obtain that g € C}, and we deduce that the pair (g, 0) satisfies the equation
(9) and thus from hypothesis it follows that ¢ = 0 and so from relation (9) we
have z = fp(ty) = P(to,w)f(0) € ImP(ty,w). Thus the mapping ®(r,w) is
surjective and so is an invertible mapping. [

Remark 1 If the pair (Cy, Cy) is admissible for stochastic equation (2) then
for every w € Q we can consider the subspace D(Q) of all stochastic process
from Cy(Ry, H) which are solutions of stochastic integral equation (9).

Lemma 2 If the pair (Cy, Cy) is admissible for stochastic equation (2) then
there exist a positive constant K such that

Bl fsl|* < K E||B|]?, (10)
for every fg € D(Q), where K is independent of B.

Proof. From hypothesis we have that the operator @ : D(Q) — Cy(R, H) is
a bijective mapping. In the next we consider the norm

AT = 1112 + [1QFl2- (11)
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and we prove D(Q) is a complete space. Let {f} be a sequence, and so from
(11) this is a fundamental sequence and is in C,(R,, H), and so exists a limit
fB € Cy(Ry, H) such that for all £ > 0 we have

El‘fg_fBHz_)(L n — Q.

From

1Q(f5 — fE)l2 < [1QIINfE — f51I
result that the sequence Qfj = B, is fundamental in Cy(R, H) and so here
exist a limit B(t) such that

sup BB, (t) — B(1)|[* — 0,

>0

for n — oo, and B € Cy(R4, H). We prove that fg(t) satisfies the equation
(9). Thus, since the stochastic process B(t) is continuous and bounded it
follows that fp is Fi-measurable and so exist the integral from equation (9).
For all ¢t > 0 we have

< 2B f5(t) — f5(0)I*+
fB(t) = @t —s,9(s,w)) f(s) = / O(t — 7, (7, w)) B()dW(7)

For n — o0, the first therm of sum tends to 0, so in the next we estime the
second therm. Since fE(t) € D(Q), for all n — oo, we have that

2
<

E\|f8(t) = (t = s, ¢(s,w)) fB(s) = / O(t —7,(7,w)) B()dW(7)

2
+2F

Fi() = Bt — s, (s, ) f5(s) + / Bt — 7, p(7,0)) Ba(r)dW (r), V=520
5 (12)
and so

< 2B[|®(t — 5, ¢(s, )| *Ellf5(s) — f(s)I]*+

2
<

E\|f5(t) = (t = s, ¢(s,w)) fB(s) — / O(t —7,(7,w)) B(7)dW(7)
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2

12F / Bt — 7, p(r,0)) (Bu(7) = B(r)dW (7)| <

< 2B[[®(t — s, ¢(s, W) *Ellf5(s) — f(s)I]*+

+2/ E||@(t — 7, (1, w))|*E||Ba(7) — B(7)|[*dr

From hypothesis obtained that the both therms of sum tends to 0 for n — oc.
So we have that fp(t) satisfies the equation (9) with probability 1, for all £ > 0.
Thus the space D(Q) is complet and from closed graph theorem result that
Q™! is a continuous stochastic process and from (11) we have

1fall2 < /5l < IQHIIBll2 < K[|B]l2,

and so we obtain the relation (10).00

The main result is a theorem of Perron type [8], and represent a character-
ization of exponential instability in mean square in therms of admissibility for
stochastic variational equation.

Theorem 1 Let © = (¢, P) be a stochastic cocycle on Y with exponential
growth in mean square. Then the stochastic variational equation (1) is uni-
form exponentially instable in mean square if and only if the pair (Cy, Cy) is
admissible for stochastic integral equation (2).

Proof. Necessity Let B € C,(R,, H) and we consider the stochastic process

fo: Ry — H, falt) = — /too Bt — 7, (. w)) " B(r)dW (7).

We have that fg € Cy(R,, H) and that the pair (fg, B) satisfies the equation
(9). Let fz € Cy(R,, H) be such that (fp, B) satisfies the equation (9). If
we denote g = fz — fz we obtained that g(t) = ®(t — s, p(s,w))g(s) for all
t>s>0. Let s > 0 and from hypothesis we have

Ellg(s)|[* < Ne7" 2 Bllg(®)|* < Ne™")]|g]|,

and so ¢ = 0. This shows that the stochastic process f is uniquely deter-
mined and we obtain that the pair (Cj, Cy) is admissible for stochastic integral
equation (2).
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Sufficiency For every tq > 0, let « : R, — [0, 1] be a stochastic process,
with compact support in (tg,00), defined by «a(t) = 1, for t € [0,to], and
alt) =0, fort>ty+1.

If we consider the stochastic processes B, fg : Ry — H defined by

O(t,w)x
PO =20 g o
[T alr)®(t,w)z .
1) = | Bage, ™

then fp, B € Cy(R,, H) and the pair (fp, B) satisfies the relation (9) for every
to > 0. Thus, from Lemma 10 it follows that

a(7)

EH@“W[ R cor e

for all (t,w) € Ry x Q. So we obtain

> 1 K
1 e — 13
Z E®(r,0)2|P" = El[®(t, w)z| (13)

If we consider the function

then it follows that

Integrating this inequality on [0, ¢] result
5(t) < e w'§(0). (14)

Since the stochastic cocycle ® have uniform exponential growth in mean square,
there exists the positive constants M, A such that

E||®(s,w)z|* < MVE||(t, w)zl?, (15)

for all (w,z) € 2 x X and s > t. Thus we obtain

> 1
(OBl el = Elle(t )l [ P2
t

E||®(1,w)
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1
> [T Leaeng, —
_[ e r=1L,

where L is a positive constant. From the relations (13) and (14) results

L L . L .
E||®(t 2> > x> —extE||z|%
0wyl 2 505 > skt > ek Bl
If denote N = %, V= %, we have
E|lz|]? < Ne "' EB||®(t,w)z|)*, YVt >0, V (z,w) € H x Q. (16)

Thus, from Lemma 1 and relation (16), we obtain that the stochastic variation
equation (1) is uniformly exponentially instable in mean square. [J
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