CERTAIN PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY DZIOK-SRIVASTAVA OPERATOR

M. K. Aouf, A. O. Mostafa, A. Shamandy, E. A. Adwan

Abstract

In this paper, we introduce a new class $U T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ of analytic functions in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$ defined by Dziok-Srivastava operator. The object of the present paper is to determine coefficient estimates, extreme points, distortion theorems, the radii of close-to-convexity, starlikeness and convexity and a family of integral operators for functions belonging to the class $U T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$. We also obtian several results for the modified Hadamard products of functions belonging to this class.

2000 Mathematics Subject Classification: 30C45.
Keywords: Analytic functions, starlike functions, convex functions, Hadamard products, Dziok- Srivastava operator.

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. Let $K(\alpha)$ and $S^{*}(\alpha)$ denote the subclasses of A which are, respectively, convex and starlike functions of order $\alpha, 0 \leq \alpha<1$. For convenience, we write $K(0)=K$ and $S^{*}(0)=S^{*}$ (see [16]).

The Hadamard product (or convolution) $(f * g)(z)$ of the functions $f(z)$ and $g(z)$, that is, if $f(z)$ is given by (1.1) and $g(z)$ is given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, is defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z)
$$

For positive real parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}\left(\beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \mathbb{Z}_{0}^{-}=0,-1\right.$, $-2, \ldots ; j=1,2, \ldots, s)$, the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ;\right.$ $z)$ is defined by

$$
\begin{gathered}
{ }_{q} F_{s}\left(\alpha_{1}, \ldots . ., \alpha_{q} ; \beta_{1}, \ldots \ldots, \beta_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{s}\right)_{n} n!} z^{n} \\
\left(q \leq s+1 ; s, q \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots \ldots \ldots\} ; z \in U\right),
\end{gathered}
$$

where $(\theta)_{n}$, is the Pochhammer symbol defined in terms of the Gamma function Γ, by

$$
(\theta)_{n}=\frac{\Gamma(\theta+n)}{\Gamma(\theta)}= \begin{cases}1 & (n=0) \\ \theta(\theta+1) \ldots(\theta+n-1) & (n \in \mathbb{N})\end{cases}
$$

For the function $h\left(\alpha_{1}, \ldots ., \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right)=z_{q} F_{s}\left(\alpha_{1}, \ldots . ., \alpha_{q} ; \beta_{1}, \ldots . ., \beta_{s} ; z\right)$, the Dziok-Srivastava linear operator (see [5] and [6]) $H_{q, s}\left(\alpha_{1}, \ldots . ., \alpha_{q} ; \beta_{1}, \ldots\right.$ $\left.\ldots, \beta_{s}\right): A \longrightarrow A$, is defined by the Hadamard product as follows:

$$
\begin{align*}
H_{q, s}\left(\alpha_{1}, \ldots ., \alpha_{q} ; \beta_{1}, \ldots . ., \beta_{s}\right) f(z) & =h\left(\alpha_{1}, \ldots ., \alpha_{q} ; \beta_{1}, \ldots \beta_{s} ; z\right) * f(z) \\
& =z+\sum_{n=2}^{\infty} \Psi_{n}\left(\alpha_{1}\right) a_{n} z^{n} \quad(z \in U) \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
\Psi_{n}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{n-1} \ldots \ldots .\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{s}\right)_{n-1}(n-1)!} \tag{1.3}
\end{equation*}
$$

For brevity, we write

$$
\begin{equation*}
H_{q, s}\left(\alpha_{1}, \ldots . ., \alpha_{q} ; \beta_{1}, \ldots . ., \beta_{s} ; z\right) f(z)=H_{q, s}\left(\alpha_{1}\right) f(z) . \tag{1.4}
\end{equation*}
$$

For $0 \leq \alpha<1, \beta \geq 0$ and for all $z \in U$, let $U S_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ denote the subclass of A consisting of functions $f(z)$ of the form (1.1) and satisfying the analytic criterion

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-1\right| . \tag{1.5}
\end{equation*}
$$

Denote by T the subclass of A consisting of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0\right) \tag{1.6}
\end{equation*}
$$

which are analytic in U. We define the class $U T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ by:

$$
\begin{equation*}
U T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)=U S_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right) \cap T . \tag{1.7}
\end{equation*}
$$

We note that for suitable choices of q, s, α and β, we obtain the following subclasses studied by various authors.
(1) For $q=2, s=1$ and $\alpha_{1}=\alpha_{2}=\beta_{1}=1$ in (1.5), the class $U T_{2,1}([1] ; \alpha, \beta)$ reduces to the class $S T(\alpha, \beta)$

$$
=\left\{f \in T: \operatorname{Re}\left\{\frac{f(z)}{z f^{\prime}(z)}-\alpha\right\}>\beta\left|\frac{f(z)}{z f^{\prime}(z)}-1\right|, 0 \leq \alpha<1, \beta \geq 0, z \in U\right\}
$$

and the class $S T(\alpha, 0)=S T(\alpha)$ is the class of functions $f(z) \in T$ which satisfy the following condition (see [7] and [17])

$$
S T(\alpha)=\operatorname{Re}\left\{\frac{f(z)}{z f^{\prime}(z)}\right\}>\alpha \quad(0 \leq \alpha<1)
$$

(2) For $q=2, s=1, \alpha_{1}=a(a>0), \alpha_{2}=1$ and $\beta_{1}=c(c>0)$ in (1.5), the class $U T_{2,1}([a, 1 ; c] ; \alpha, \beta)$ reduces to the class $\mathcal{L} T(a, c ; \alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in T: \operatorname{Re}\left\{\frac{L(a, c) f(z)}{z(L(a, c) f(z))^{\prime}}-\alpha\right\}>\beta\left|\frac{L(a, c) f(z)}{z(L(a, c) f(z))^{\prime}}-1\right|, 0 \leq \alpha<\right. \\
& 1, \beta \geq 0, a>0, c>0, z \in U\},
\end{aligned}
$$

where $L(a, c)$ is the Carlson - Shaffer operator (see [2]);
(3) For $q=2, s=1, \alpha_{1}=\lambda+1(\lambda>-1)$ and $\alpha_{2}=\beta_{1}=1$ in (1.5), the class $U T_{2,1}([\lambda+1] ; \alpha, \beta)$ reduces to the class $W_{\lambda}(\alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in T: \operatorname{Re}\left\{\frac{D^{\lambda} f(z)}{z\left(D^{\lambda} f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{D^{\lambda} f(z)}{z\left(D^{\lambda} f(z)\right)^{\prime}}-1\right|, 0 \leq \alpha<\right. \\
& 1, \beta \geq 0, \lambda>-1, z \in U\}(\text { see }[10])
\end{aligned}
$$

where $D^{\lambda}(\lambda>-1)$ is the Ruscheweyh derivative operator (see [14]);
(4) For $q=2, s=1, \alpha_{1}=v+1(v>-1), \alpha_{2}=1$ and $\beta_{1}=v+2$ in (1.5), the class $U T_{2,1}([v+1,1 ; v+2] ; \alpha, \beta)$ reduces to the class $\zeta T(v ; \alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in T: \operatorname{Re}\left\{\frac{J_{v} f(z)}{z\left(J_{v} f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{J_{v} f(z)}{z\left(J_{v} f(z)\right)^{\prime}}-1\right|, 0 \leq \alpha<1, \beta \geq\right. \\
& 0, v>-1, z \in U\},
\end{aligned}
$$

where $J_{v} f(z)$ is the generalized Bernardi - Libera - Livingston operator (see [1], [8] and [9]);
(5) For $q=2, s=1, \alpha_{1}=2, \alpha_{2}=1$ and $\beta_{1}=2-\mu(\mu \neq 2,3, \ldots$.$) in (1.5), the$ class $U T_{2,1}([2,1 ; 2-\mu] ; \alpha, \beta)$ reduces to the class $\mathcal{F} T(\mu ; \alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in T: \operatorname{Re}\left\{\frac{\Omega_{z}^{\mu} f(z)}{z\left(\Omega_{z}^{\mu} f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{\Omega_{z}^{\mu} f(z)}{z\left(\Omega_{z}^{\mu} f(z)\right)^{\prime}}-1\right|, 0 \leq \alpha<1, \beta\right. \\
& \geq 0, \mu \neq 2,3, \ldots ., z \in U\}
\end{aligned}
$$

where $\Omega_{z}^{\mu} f(z)$ is the Srivastava - Owa fractional derivative operator (see [12] and [13]);
(6) For $q=2, s=1, \alpha_{1}=\mu(\mu>0), \alpha_{2}=1$ and $\beta_{1}=\lambda+1(\lambda>-1)$ in (1.5), the class $U T_{2,1}([\mu, 1 ; \lambda+1] ; \alpha, \beta)$ reduces to the class $£ T(\mu, \lambda ; \alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in T: \operatorname{Re}\left\{\frac{I_{\lambda, \mu} f(z)}{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{I_{\lambda, \mu} f(z)}{z\left(I_{\lambda, \mu} f(z)\right)^{\prime}}-1\right|, 0 \leq \alpha<1,\right. \\
& \beta \geq 0, \mu>0, \lambda>-1, z \in U\}
\end{aligned}
$$

where $I_{\lambda, \mu} f(z)$ is the Choi-Saigo-Srivastava operator (see [4]);
(7) For $q=2, s=1, \alpha_{1}=2, \alpha_{2}=1$ and $\beta_{1}=k+1(k>-1)$ in (1.5), the class $U T_{2,1}([2,1 ; k+1] ; \alpha, \beta)$ reduces to the class $A T(k ; \alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in T: \operatorname{Re}\left\{\frac{I_{k} f(z)}{z\left(I_{k} f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{I_{k} f(z)}{z\left(I_{k} f(z)\right)^{\prime}}-1\right|, 0 \leq \alpha<1,\right. \\
& \beta \geq 0, k>-1, z \in U\}
\end{aligned}
$$

where $I_{k} f(z)$ is the Noor integral operator (see [11]);
(8) For $q=2, s=1, \alpha_{1}=c(c>0), \alpha_{2}=\lambda+1(\lambda>-1)$ and $\beta_{1}=a(a>0)$ in (1.5), the class $U T_{2,1}([c, \lambda+1 ; a] ; \alpha, \beta)$ reduces to the class $\digamma T(c$, $a, \lambda ; \alpha, \beta)$

$$
\begin{aligned}
= & \left\{f \in T: \operatorname{Re}\left\{\frac{I^{\lambda}(a, c) f(z)}{z\left(I^{\lambda}(a, c) f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{I^{\lambda}(a, c) f(z)}{z\left(I^{\lambda}(a, c) f(z)\right)^{\prime}}-1\right|, 0 \leq\right. \\
& \alpha<1, \beta \geq 0, c>0, \lambda>-1, a>0, z \in U\},
\end{aligned}
$$

where $I^{\lambda}(a, c) f(z)$ is the Cho-Kwon-Srivastava operator (see [3]).

2. Coefficient estimates

Unless otherwise mentioned, we shall assume in the reminder of this paper that, the parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}$ are positive real numbers, $0 \leq \alpha<1, \beta \geq$ $0, n \geq 2, z \in U$ and $\Psi_{n}\left(\alpha_{1}\right)$ is defined by (1.3).

Theorem 1. A function $f(z)$ of the form (1.6) is in the class $U T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right) a_{n} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

Proof. Suppose that (2.1) is true. Since

$$
\frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{1-\alpha}-n \Psi_{n}\left(\alpha_{1}\right)=\frac{(n-1)(1+\beta) \Psi_{n}\left(\alpha_{1}\right)}{1-\alpha}>0
$$

we deduce

$$
\sum_{n=2}^{\infty} n \Psi_{n}\left(\alpha_{1}\right) a_{n}<\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{1-\alpha} a_{n} \leq 1
$$

It suffices to show that

$$
\beta\left|\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-1\right|-\operatorname{Re}\left(\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-1\right) \leq 1-\alpha
$$

we have

$$
\begin{gathered}
\beta\left|\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-1\right|-\operatorname{Re}\left(\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-1\right) \\
\leq(1+\beta)\left|\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-1\right| \\
\leq \frac{(1+\beta) \sum_{n=2}^{\infty}(n-1) \Psi_{n}\left(\alpha_{1}\right) a_{n}}{1-\sum_{n=2}^{\infty} n \Psi_{n}\left(\alpha_{1}\right) a_{n}}
\end{gathered}
$$

which yields

$$
\begin{align*}
& (1-\alpha)-(1+\beta)\left|\frac{H_{q, s}\left(\alpha_{1}\right) f(z)}{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-1\right| \\
> & \frac{(1-\alpha)-\sum_{n=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right) a_{n}}{1-\sum_{n=2}^{\infty} n \Psi_{n}\left(\alpha_{1}\right) a_{n}} \geq 0 . \tag{2.2}
\end{align*}
$$

This completes the proof of Theorem 1.
Unfortunately, the converse of the above Theorem 1 is not true. So we define the subclass $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ of $U T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ consisting of functions $f(z)$ which satisfy (2.1).
Remark 1. Putting $q=2, s=1, \beta=0$ and $\alpha_{1}=\alpha_{2}=\beta_{1}=1$, in Theorem 1 reduces to the result obtained by Yamakawa [17, Lemma 2.1, with $n=p=1$].
Corollary 1. Let the function $f(z)$ defined by (1.6) be in the class $T_{q, s}\left(\left[\alpha_{1}\right]\right.$; $\alpha, \beta)$, then

$$
\begin{equation*}
a_{n} \leq \frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}(n \geq 2) \tag{2.3}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)} z^{n}(n \geq 2) . \tag{2.4}
\end{equation*}
$$

Putting $q=2, s=1, \alpha_{1}=\lambda+1(\lambda>-1)$ and $\alpha_{2}=\beta_{1}=1$ in Theorem 1, we obtain the following corollary.

Corollary 2. A function $f(z)$ of the form (1.6) is in the class $W_{\lambda}(\alpha, \beta)$ if

$$
\sum_{n=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \frac{(\lambda+1)_{n-1}}{(n-1)!} a_{n} \leq 1-\alpha
$$

Remark 2. The result in Corollary 2 correct the result obtained by Najafzadeh and Kulkarni [10, Lemma 1.1].

3. Distortion theorems

Theorem 2. Let the function $f(z)$ defined by (1.6) belong to the class $T_{q, s}\left(\left[\alpha_{1}\right]\right.$; $\alpha, \beta)$. Then for $|z|=r<1$, we have

$$
\begin{equation*}
r-\frac{(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} r^{2} \leq|f(z)| \leq r+\frac{(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} r^{2} \tag{3.1}
\end{equation*}
$$

provided $\Psi_{n}\left(\alpha_{1}\right) \geq \Psi_{2}\left(\alpha_{1}\right)(n \geq 2)$. The result is sharp with equlaity for the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} z^{2} \tag{3.2}
\end{equation*}
$$

at $z=r$ and $z=r e^{i(2 n+1) \pi}(n \in \mathbb{N})$.
Proof. We have

$$
\begin{equation*}
|f(z)| \leq r+\sum_{n=2}^{\infty} a_{n} r^{n} \leq r+r^{2} \sum_{n=2}^{\infty} a_{n} \tag{3.3}
\end{equation*}
$$

Since for $n \geq 2$, we have

$$
(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right) \leq[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)
$$

then (2.1) yields

$$
\begin{equation*}
(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right) \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right) a_{n} \leq(1-\alpha) \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} \tag{3.5}
\end{equation*}
$$

From (3.5) and (3.3) we have

$$
|f(z)| \leq r+\frac{(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} r^{2}
$$

and similarly, we have

$$
|f(z)| \geq r-\frac{(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} r^{2}
$$

This completes the proof of Theorem 2.

Theorem 3. Let the function $f(z)$ defined by (1.6) belong to the class $T_{q, s}\left(\left[\alpha_{1}\right]\right.$; $\alpha, \beta)$. Then for $|z|=r<1$, we have

$$
\begin{equation*}
1-\frac{2(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} r, \tag{3.6}
\end{equation*}
$$

provided $\Psi_{n}\left(\alpha_{1}\right) \geq \Psi_{2}\left(\alpha_{1}\right)(n \geq 2)$. The result is sharp for the function $f(z)$ given by (3.2) at $z=r$ and $z=r e^{i(2 n+1) \pi}(n \in \mathbb{N})$.
Proof. For a function $f(z) \in U T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$, it follows from (2.2) and (3.5) that

$$
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} .
$$

4. Extreme points

Theorem 4. The class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ is closed under convex linear combinations.
Proof. Let $f_{j}(z) \in T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)(j=1,2)$, where

$$
\begin{equation*}
f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n} \quad\left(a_{n, j} \geq 0 ; j=1,2\right) \tag{4.1}
\end{equation*}
$$

Then it is sufficient to prove that the function $h(z)$ given by

$$
h(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z) \quad(0 \leq \mu \leq 1)
$$

is also in the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$. For $0 \leq \mu \leq 1$

$$
h(z)=z-\sum_{n=2}^{\infty}\left[\mu a_{n, 1}+(1-\mu) a_{n, 2}\right] z^{n}
$$

and with the aid of Theorem 1, we have

$$
\begin{gathered}
\sum_{n=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right) \cdot\left[\mu a_{n, 1}+(1-\mu) a_{n, 2}\right] \\
\leq \mu(1-\alpha)+(1-\mu)(1-\alpha)=1-\alpha
\end{gathered}
$$

which implies that $h(z) \in T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$. This completes the proof of Theorem 4. As a consequence of Theorem 4, there exist extreme points of the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$, which are given by:

Theorem 5. Let $f_{1}(z)=z$ and

$$
f_{n}(z)=z-\frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)} z^{n} \quad(n \geq 2) .
$$

Then $f(z)$ is in the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) \tag{4.2}
\end{equation*}
$$

where $\mu_{n} \geq 0(n \geq 1)$ and $\sum_{n=1}^{\infty} \mu_{n}=1$.
Proof. Assume that

$$
\begin{aligned}
f(z) & =\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) \\
& =z-\sum_{n=2}^{\infty} \frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)} \mu_{n} z^{n} .
\end{aligned}
$$

Then it follows that

$$
\begin{gather*}
\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} \frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)} \mu_{n} \\
=\sum_{n=2}^{\infty} \mu_{n}=\left(1-\mu_{1}\right) \leq 1 \tag{4.3}
\end{gather*}
$$

So, by Theorem 1, we have $f(z) \in T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$.
Conversely, assume that the function $f(z)$ defined by (1.6) belongs to the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$. Then a_{n} are given by (2.3). Setting

$$
\begin{equation*}
\mu_{n}=\frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} a_{n} \tag{4.4}
\end{equation*}
$$

and

$$
\mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n},
$$

we can see that $f(z)$ can be expressed in the form (4.2). This completes the proof of Theorem 5 .

Corollary 3. The extreme points of the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ are the functions $f_{1}(z)=z$ and

$$
f_{n}(z)=z-\frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)} z^{n}(n \geq 2) .
$$

5. Radil of close-to-convexity, starlikeness and convexity

Theorem 6. Let the function $f(z)$ defined by (1.6) be in the class $T_{q, s}\left(\left[\alpha_{1}\right]\right.$; $\alpha, \beta)$. Then $f(z)$ is close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{n \geq 2}\left\{\frac{(1-\rho)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{n(1-\alpha)}\right\}^{\frac{1}{n-1}} \tag{5.1}
\end{equation*}
$$

The result is sharp, the extremal function being given by (2.4).
Proof. We must show that

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho \quad \text { for }|z|<r_{1}
$$

where r_{1} is given by (5.1). Indeed we find from the definition (1.6) that

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1}
$$

Thus

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho,
$$

if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n}{1-\rho}\right) a_{n}|z|^{n-1} \leq 1 . \tag{5.2}
\end{equation*}
$$

But, by Theorem 1, (5.2) will be true if

$$
\left(\frac{n}{1-\rho}\right)|z|^{n-1} \leq \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\rho)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{n(1-\alpha)}\right\}^{\frac{1}{n-1}}(n \geq 2) \tag{5.3}
\end{equation*}
$$

Theorem 6 follows easily from (5.3).

Theorem 7. Let the function $f(z)$ defined by (1.6) be in the class $T_{q, s}\left(\left[\alpha_{1}\right]\right.$; $\alpha, \beta)$. Then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{n \geq 2}\left\{\frac{(1-\rho)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(n-\rho)(1-\alpha)}\right\}^{\frac{1}{n-1}} \tag{5.4}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.4).
Proof. It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho \quad\left(|z|<r_{2}\right)
$$

where r_{2} is given by (5.4). Indeed we find, again from the definition (1.6) that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

Thus

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho
$$

if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n-\rho}{1-\rho}\right) a_{n}|z|^{n-1} \leq 1 \tag{5.5}
\end{equation*}
$$

But, by Theorem 1, (5.5) will be true if

$$
\left(\frac{n-\rho}{1-\rho}\right)|z|^{n-1} \leq \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\rho)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(n-\rho)(1-\alpha)}\right\}^{\frac{1}{n-1}}(n \geq 2) \tag{5.6}
\end{equation*}
$$

Theorem 7 follows easily from (5.6).

Similarly, we can prove the following theorem.

Theorem 8. Let the functions $f(z)$ defined by (1.6) be in the class $T_{q, s}\left(\left[\alpha_{1}\right]\right.$; $\alpha, \beta)$. Then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=\inf _{n \geq 2}\left\{\frac{(1-\rho)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{n(n-\rho)(1-\alpha)}\right\}^{\frac{1}{n-1}} \tag{5.7}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.4).

6. A FAMILY OF INTEGRAL OPERATORS

Theorem 9. Let the function $f(z)$ defined by (1.6) be in the class $T_{q, s}\left(\left[\alpha_{1}\right]\right.$; $\alpha, \beta)$ and let c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c>-1) \tag{6.1}
\end{equation*}
$$

also belongs to the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$.

Proof. Let the function $f(z)$ be defined by (1.6). Then from the representation (6.1) of $F(z)$, it follows that

$$
F(z)=z-\sum_{n=2}^{\infty} d_{n} z^{n}
$$

where

$$
d_{n}=\left(\frac{c+1}{c+n}\right) a_{n}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{n=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right) d_{n} \\
= & \sum_{k=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)\left(\frac{c+1}{c+n}\right) a_{n} \\
\leq & \sum_{n=2}^{\infty}[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right) a_{n} \leq(1-\alpha)
\end{aligned}
$$

since $f(z) \in T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$. Hence, by Theorem 1, F $(z) \in T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$. This completes the proof of Theorem 9.

Theorem 10. Let the function $F(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0\right)$ be in the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ and let c be a real number such that $c>-1$. Then the function $f(z)$ given by (6.1) is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{*}=\inf _{n \geq 2}\left\{\frac{(c+1)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{n(c+n)(1-\alpha)}\right\}^{\frac{1}{n-1}} \tag{6.2}
\end{equation*}
$$

The result is sharp.
Proof. From (6.1) we have

$$
\begin{aligned}
f(z) & =\frac{z^{1-c}}{c+1}\left(z^{c} F(z)\right)^{\prime} \\
& =z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} .
\end{aligned}
$$

To prove the assertion of the theorem, it suffices to show that

$$
\left|f^{\prime}(z)-1\right|<1 \text { for }|z|<R^{*}
$$

where R^{*} is defined by (6.2). Now

$$
\begin{aligned}
\left|f^{\prime}(z)-1\right| & =\left|-\sum_{n=2}^{\infty} n\left(\frac{c+n}{c+1}\right) a_{n} z^{n-1}\right| \\
& \leq \sum_{n=2}^{\infty} n\left(\frac{c+n}{c+1}\right) a_{n}|z|^{n-1}
\end{aligned}
$$

Thus

$$
\left|f^{\prime}(z)-1\right|<1 \text { if } \sum_{n=2}^{\infty} n\left(\frac{c+n}{c+1}\right) a_{n}|z|^{n-1}<1
$$

But Theorem 1 confirms that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} a_{n} \leq 1 \tag{6.3}
\end{equation*}
$$

Thus (6.3) will be satisfied if

$$
n\left(\frac{c+n}{c+1}\right)|z|^{n-1} \leq \sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)}(n \geq 2)
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(c+1)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{n(c+n)(1-\alpha)}\right\}^{\frac{1}{n-1}}(n \geq 2) \tag{6.4}
\end{equation*}
$$

The required result follows now from (6.4).
Finally, the result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{(c+1)(1-\alpha)}{(c+n)[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)} z^{n}(n \geq 2 ; c>-1) . \tag{6.5}
\end{equation*}
$$

7. Modified Hadamard products

Let the functions $f_{j}(z)(j=1,2)$ be defined by (4.1). The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z-\sum_{n=2}^{\infty} a_{n, 1} a_{n, 2} z^{n}=\left(f_{2} * f_{1}\right)(z) \tag{7.1}
\end{equation*}
$$

Theorem 11. Let each of the functions $f_{j}(z)(j=1,2)$ defined by (4.1) be in the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$. If the sequence $\left\{\delta_{n}(\alpha, \beta)\right\}(n \geq 2)$, where

$$
\begin{equation*}
\delta_{n}(\alpha, \beta)=\left\{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)\right\} \tag{7.2}
\end{equation*}
$$

is non-decreasing, then $\left(f_{1} * f_{2}\right)(z) \in T_{q, s}\left(\left[\alpha_{1}\right] ; \eta\left(q, s, \Psi_{2}\left(\alpha_{1}\right), \alpha, \beta\right), \beta\right)$ where η is given by

$$
\begin{equation*}
\eta\left(q, s, \Psi_{2}\left(\alpha_{1}\right), \alpha, \beta\right)=1-\frac{(1+\beta)(1-\alpha)^{2}}{(3-2 \alpha+\beta)^{2} \Psi_{2}\left(\alpha_{1}\right)-2(1-\alpha)^{2}} . \tag{7.3}
\end{equation*}
$$

The result is sharp.
Proof. Employing the technique used earlier by Schild and Sliverman [15], we need to fined the largest $\eta=\eta\left(q, s, \Psi_{2}\left(\alpha_{1}\right), \alpha, \beta\right)$ such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{[2 n-n(\eta-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\eta)} a_{n, 1} a_{n, 2} \leq 1 \tag{7.4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} a_{n, 1} \leq 1 \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} a_{n, 2} \leq 1, \tag{7.6}
\end{equation*}
$$

by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} \sqrt{a_{n, 1} a_{n, 2}} \leq 1 . \tag{7.7}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{[2 n-n(\eta-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\eta)} a_{n, 1} a_{n, 2} \\
\leq & \sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} \sqrt{a_{n, 1} a_{n, 2}},
\end{aligned}
$$

that is, that

$$
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{(1-\eta)[2 n-n(\alpha-\beta)-(\beta+1)]}{(1-\alpha)[2 n-n(\eta-\beta)-(\beta+1)]} .
$$

Note that

$$
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}
$$

Consequently, we need only to prove that

$$
\frac{(1-\alpha)}{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)} \leq \frac{(1-\eta)[2 n-n(\alpha-\beta)-(\beta+1)]}{(1-\alpha)[2 n-n(\eta-\beta)-(\beta+1)]},
$$

or, equivalently, that

$$
\eta \leq 1-\frac{(n-1)(1+\beta)(1-\alpha)^{2}}{[2 n-n(\alpha-\beta)-(\beta+1)]^{2} \Psi_{n}\left(\alpha_{1}\right)-n(1-\alpha)^{2}} .
$$

Since

$$
\begin{equation*}
\varphi(n)=1-\frac{(n-1)(1+\beta)(1-\alpha)^{2}}{[2 n-n(\alpha-\beta)-(\beta+1)]^{2} \Psi_{n}\left(\alpha_{1}\right)-n(1-\alpha)^{2}} \tag{7.8}
\end{equation*}
$$

is an increasing function of $n(n \geq 2)$, letting $n=2$ in (7.8), we obtain

$$
\begin{equation*}
\eta \leq \varphi(2)=1-\frac{(1+\beta)(1-\alpha)^{2}}{(3-2 \alpha+\beta)^{2} \Psi_{2}\left(\alpha_{1}\right)-2(1-\alpha)^{2}}, \tag{7.9}
\end{equation*}
$$

which proves the main assertion of Theorem 11.
Finally, by taking the functions $f_{j}(z)(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=z-\frac{(1-\alpha)}{(3-2 \alpha+\beta) \Psi_{2}\left(\alpha_{1}\right)} z^{2} \quad(j=1,2) \tag{7.10}
\end{equation*}
$$

we can see that the result is sharp.
Remark 3. Putting $q=2, s=1, \beta=0$ and $\alpha_{1}=\alpha_{2}=\beta_{1}=1$, in Theorem 11, we will obtain the result obtained by Kang et al. [7, Corollary 1, with $n=p=1$ and $m=2$].

Theorem 12. Let the functions $f_{j}(z)(j=1,2)$ defined by (4.1) be in the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \alpha, \beta\right)$ if the sequence $\left\{\delta_{n}(\alpha, \beta)\right\}(n \geq 2)$ defined by (7.2) is non-decreasing, then the function

$$
\begin{equation*}
g(z)=z-\sum_{n=2}^{\infty}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) z^{n} \tag{7.11}
\end{equation*}
$$

belongs to the class $T_{q, s}\left(\left[\alpha_{1}\right] ; \xi\left(q, s, \Psi_{2}\left(\alpha_{1}\right), \alpha, \beta\right), \beta\right)$, where

$$
\begin{equation*}
\xi\left(q, s, \Psi_{2}\left(\alpha_{1}\right), \alpha, \beta\right)=1-\frac{2(1+\beta)(1-\alpha)^{2}}{(3-2 \alpha+\beta)^{2} \Psi_{2}\left(\alpha_{1}\right)-4(1-\alpha)^{2}} . \tag{7.12}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(z)$ given by (7.10).
Proof. By virture of Theorem 1, we obtain

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left\{\frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)}\right\}^{2} a_{n, 1}^{2} \\
\leq & \left\{\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} a_{n, 1}\right\}^{2} \leq 1, \tag{7.13}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left\{\frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)}\right\}^{2} a_{n, 2}^{2} \\
\leq & \left\{\sum_{n=2}^{\infty} \frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)} a_{n, 2}\right\}^{2} \leq 1, \tag{7.14}
\end{align*}
$$

it follows from (7.13) and (7.14) that

$$
\sum_{n=2}^{\infty} \frac{1}{2}\left\{\frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)}\right\}^{2}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1 .
$$

Therefore, we need to find the largest $\xi\left(q, s, \Psi_{2}\left(\alpha_{1}\right), \alpha, \beta\right)$ such that
$\frac{[2 n-n(\zeta-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\zeta)} \leq \frac{1}{2}\left\{\frac{[2 n-n(\alpha-\beta)-(\beta+1)] \Psi_{n}\left(\alpha_{1}\right)}{(1-\alpha)}\right\}^{2}(n \geq 2)$,
M. K. Aouf, A. O. Mostafa, A. Shamandy, E. A. Adwan - Certain properties ...
that is,

$$
\zeta \leq 1-\frac{2(n-1)(1+\beta)(1-\alpha)^{2}}{[2 n-n(\alpha-\beta)-(\beta+1)]^{2} \Psi_{n}\left(\alpha_{1}\right)-2 n(1-\alpha)^{2}}(n \geq 2)
$$

Since

$$
B(n)=1-\frac{2(1-n)(1+\beta)(1-\alpha)^{2}}{[(1+\beta)-n(\alpha-\beta)]^{2} \Psi_{n}\left(\alpha_{1}\right)-2 n(1-\alpha)^{2}}
$$

is an increasing function of $n(n \geq 2)$, we readily have

$$
\zeta \leq B(2)=1-\frac{2(1+\beta)(1-\alpha)^{2}}{(3-2 \alpha+\beta)^{2} \Psi_{2}\left(\alpha_{1}\right)-4(1-\alpha)^{2}} .
$$

This completes the proof of Theorem 12.
Remark 4. Specializing the parameters $q, s, \alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}$, in the above results, we obtain the corresponding results for the corresponding classes defined in the introduction.

References

[1] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-449.
[2] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, J. Math. Anal. Appl., 15 (1984), 737-745.
[3] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483.
[4] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276(2002), 432-445.
[5] J. Dziok and H.M. Srivastava, Classes of analytic functions with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[6] J. Dziok and H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14 (2003), 7-18.
[7] J. S. Kang, S. Owa and H. M. Srivastava, Quasi-convolution properties of certain subclasses of analytic functions, Bull. Belg. Math. Soc., 3 (1996), 603-608.
[8] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1969), 755-758.
[9] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.
[10] S. Najafzadeh and S. R. Kulkarni, Study of certain properties of univalent functions based on Ruscheweyh derivative, South. Asian Bull. Math., 32 (2008), 475-488.
[11] K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16(1999), 71-80.
[12] S. Owa, On the distortion theorems. I, Kyungpook Math. J., 18 (1978), 53-59.
[13] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
[14] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[15] A. Schild and H. Silverman, Convolution univalent functions with negative coefficients, Ann. Univ. Maria Curie-Sklodowska Sect. A, 29 (1975), 99-107.
[16] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
[17] R. Yamakawa, Certain subclasses of p-valently starlike functions with negative coefficients, 393-402, in: Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
M. K. Aouf, A. O. Mostafa, A. Shamandy and E. A. Adwan

Department of Mathematics, Faculty of Science,
Mansoura University,Mansoura 35516, Egypt
emails: mkaouf127@yahoo.com, adelaeg254@yahoo.com, shamandy16@hotmail.com, eman.a2009@yahoo.com

