ON IMBALANCE SEQUENCES OF ORIENTED GRAPHS

M. Sharma, Merajuddin, S. A. K. Kirmani

Abstract. A necessary and sufficient condition for a sequence of integers to be an irreducible imbalance sequence is obtained. We found bounds for imbalance b_{i} of a vertex v_{i} of oriented graphs. Some properties of imbalance sequence of oriented graphs, arranged in lexicographic order, are investigated. In the last we report a result on an imbalance sequence for a self-converse tournament and conjecture that it is true for oriented graphs.

2000 Mathematics Subject Classification: 05C20.
Keywords: Imbalance, imbalance sequence, oriented graph.

1. Introduction

An oriented graph is a digraph with no symmetric pair of directed arcs with no loops. The imbalance $b\left(v_{i}\right)$ (or simply b_{i}) of a vertex v_{i} in a digraph is defined as $d_{i}^{+}-d_{i}^{-}$, where d_{i}^{+}and d_{i}^{-}are out-degree and in-degree of vertex v_{i} respectively.

An oriented graph D is reducible if it is possible to partition its vertices into two nonempty sets V_{1} and V_{2} in such a way that every vertex of V_{2} is adjacent to all vertices of V_{1}. Let D_{1} and D_{2} be induced digraphs having vertex sets V_{1} and V_{2} respectively. Then D consists of all the arcs of D_{1}, D_{2} and every vertex of D_{2} is adjacent to all vertices of D_{1}. We write $D=\left[D_{1}, D_{2}\right]$. If this is not possible, then the oriented graph D is irreducible. Let $D_{1}, D_{2}, \ldots, D_{k}$ be irreducible oriented graphs with disjoint vertex sets. $D=\left[D_{1}, D_{2}, \ldots, D_{k}\right]$ denotes the oriented graph having all arcs of $D_{m}, 1 \leq m \leq k$, and every vertex of D_{j} is adjacent to all vertices of D_{i} with $1 \leq i<j \leq k . D_{1}, D_{2}, \ldots, D_{k}$ are called irreducible components of D. Such decomposition is known as irreducible component decomposition of D and is unique.

An imbalance sequence $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is said to be irreducible if all the oriented graphs with the imbalance sequence B are irreducible.

2. Necessary and sufficient condition

A sequence of integers $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{1} \geq a_{2} \geq \ldots a_{n}$ is feasible if it has sum zero and satisfies

$$
\sum_{i=1}^{k} a_{i} \leq k(n-k) \text { for } 1 \leq k<n
$$

The following result gives a condition for a sequence of integers to be the imbalance sequence of a simple directed graph.

Theorem 1. [10] A sequence is realizable as an imbalance sequence if and only if it is feasible.

The above result is equivalent to saying that a sequence of integers $B=\left(b_{1}, b_{2}\right.$, $\left.\ldots, b_{n}\right)$ with $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$ imbalance sequence of a simple directed graph if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} b_{i} \leq k(n-k) \text { for } 1 \leq k<n \tag{1}
\end{equation*}
$$

with equality when $k=n$.
On arranging the imbalance sequence in nondecreasing order, we obtain the following Corollary 2.

Corollary 2. A sequence of integers $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is an imbalance sequence of a simple directed graph (without repeated arcs) if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} b_{i} \geq k(k-n), \text { for } 1 \leq k<n \tag{2}
\end{equation*}
$$

with equality when $k=n$.
Proof. Let $\bar{b}_{i}=b_{n-i+1}$. Then the sequence $\bar{B}=\left(\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}\right)$ satisfies condition
(1). We have

$$
\begin{aligned}
\sum_{i=1}^{k} b_{i} & =\sum_{i=1}^{k} \bar{b}_{n-i+1} \\
& =\sum_{i=1}^{n} \bar{b}_{n-i+1}-\sum_{i=k+1}^{n} \bar{b}_{n-i+1} \\
& =0-\left(\bar{b}_{n-k}+\bar{b}_{n-k+1}+\cdots+\bar{b}_{1}\right) \\
& =-\sum_{j=1}^{n-k} \bar{b}_{j} \\
& \geq-(n-k)\{n-(n-k)\} \text { (from Condition } 1) \\
& =k(k-n),
\end{aligned}
$$

where $1 \leq k \leq n-1$ and equality holds when $k=n$.

3. Construction of an oriented graph with a given imbalance SEQUENCE

A sequence of integers is graphic if it is a degree sequence of a simple undirected graph. For characterization of graphic sequences we refer to [2, 3, 6]. Klietman and Wang [7] observed that Havel and Hakimi [3, 6] argument works with the deletion of the any element d_{k} of the degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$, subtracting 1 from the d_{k} largest other elements.

The analogous statement about imbalance sequence is false. Dhruv et al. [10] considered the imbalance sequence $(3,1,-1,-3)$ of a transitive tournament. Deleting the element 1 and adding 1 to the smallest imbalance gives $(3,-1,-2)$, which has no realization by a simple digraph.

Theorem 1 provides us an algorithm to construct an oriented graph from a given imbalance sequence. At each stage we form $\hat{B}=\left(\hat{b}_{2}, \ldots, \hat{b}_{n}\right)$ from $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ by deleting the largest imbalance b_{1} and adding 1 to b_{1} smallest elements of B. Arcs of an oriented graph are defined by $v_{1} \rightarrow v$ if and only if $\hat{b}_{v} \neq b_{v}$. If this procedure applied recursively, then
(i) it tests whether B is an imbalance sequence and if B is an imbalance sequence, then
(ii) an oriented graph D_{B} with imbalance sequence B is constructed.

Example of algorithm, $n=5, B=(2,0,0,0,-2)$.

Stage	B	Arcs of D_{B}
1.	$(2,0,0,0,-2)$	
2.	$(-, 1,0,0,-1)$	$v_{1} \rightarrow v_{2}, v_{5}$
3.	$(-,-, 0,0,0)$	$v_{2} \rightarrow v_{5}$

4. Irreducible imbalance sequences of oriented graphs

In case of tournaments, the score sequence $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with $s_{1} \leq s_{2} \leq \ldots \leq$ s_{n} used to decide whether a tournament T having the score sequence S is strong or not [4]. This is not true in case of oriented graphs. For example oriented graphs D_{1} and D_{2} both have imbalance sequence $(0,0,0)$, but D_{1} is strong and D_{2} is not.

The following Theorem characterizes irreducible imbalance sequences.
Theorem 3. Let $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ be an imbalance sequence of oriented graph. Then B is irreducible if and only if

$$
\begin{align*}
& \sum_{i=1}^{k} b_{i}>k(k-n), \text { for } 1 \leq k \leq n-1 \tag{3}\\
\text { and } \quad \sum_{i=1}^{n} b_{i} & =0 . \tag{4}
\end{align*}
$$

Proof. Suppose D is an oriented graph with vertex set V, having imbalance sequence $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$. Equality condition (4) is obvious. To prove inequalities (3.4), let U be the set of k vertices with the smallest imbalances, the arcs within U contribute nothing to $\sum_{i=1}^{k} b_{i}$, and the ordered pairs $(V \backslash U) \times U$ contributes atmost -1 to each $v \in U$, so

$$
\begin{align*}
\sum_{i=1}^{k} b_{i} & \geq-k(n-k) \\
& =k(k-n), \text { for } 1 \leq k \leq n-1 \tag{5}
\end{align*}
$$

Since D is irreducible, there must exist at least one arc from a vertex of U to a vertex of $V \backslash U$.

So condition (5) becomes,

$$
\begin{aligned}
\sum_{i=1}^{k} b_{i} & =k(k-n)+2 \\
& =k(k-n), \text { for } 1 \leq k \leq n-1
\end{aligned}
$$

For the converse, suppose that conditions (3) and (4) hold. Hence from Corollary 2 there exist an oriented graph D having imbalance sequence $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$.

Suppose that such an oriented graph is reducible. Then there exist a vertex set W with k vertices $(k<n)$, such that every vertex of $V \backslash W$ is adjacent to all the vertices of W. Hence

$$
\sum_{i=1}^{k} b_{i}=k(k-n)
$$

a contradiction, proving the converse part.
Corollary 4. Let D be an oriented graph having imbalance sequence $B=\left(\tilde{b}_{1}, \tilde{b}_{2}, \ldots, \tilde{b}_{n}\right)$ with $\tilde{b}_{1} \geq \tilde{b}_{2} \geq \ldots \geq \tilde{b}_{n}$. Then D is irreducible if and only if

$$
\begin{array}{rlrl}
& & \sum_{i=1}^{k} \tilde{b}_{i} & <k(n-k) \text { for } 1 \leq k \leq n \\
\text { and } \quad & \sum_{i=1}^{n} \tilde{b}_{i} & =0
\end{array}
$$

The next result is an extension of Theorem 3.
Theorem 5. Let D be an oriented graph having imbalance sequence $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$. Suppose that

$$
\begin{aligned}
\sum_{i=1}^{p} b_{i} & =p(p-n) \\
\sum_{i=1}^{q} b_{i} & =q(q-n) \\
\sum_{i=1}^{k} b_{i} & >k(k-n), \text { for } p+1 \leq k \leq q-1, \text { where } 0 \leq p<q \leq n
\end{aligned}
$$

and

Then subdigraph induced by the vertices $\left\{v_{p+1}, v_{p+2}, \ldots, v_{q}\right\}$ is an irreducible component of D with imbalance sequence

$$
\left(b_{p+1}+n-p-q, b_{p+2}+n-p-q, \ldots, b_{q}+n-p-q\right) .
$$

Proof. Suppose imbalance of vertex v_{i} in oriented graph D is $b_{i}, 1 \leq i \leq n$. Since $\sum_{i=1}^{q} b_{i}=q(q-n)$, so clearly each vertex of $W=\left\{v_{q+1}, v_{q+2}, \ldots, v_{n}\right\}$ dominates all vertices of $\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$. Thus the vertices within W contributes $-(n-q)$ to imbalance of every vertex of $\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$. Also $\sum_{i=1}^{p} b_{i}=p(p-n)$, so each vertex of $V=\left\{v_{p+1}, v_{p+2}, \ldots, v_{q}\right\}$ dominates all vertices of $U=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. So vertices within U contribute p to imbalance of every vertex of V. Hence the imbalance sequence of subdigraph induced by vertices $\left\{v_{p+1}, v_{p+2}, \ldots, v_{q}\right\}$ is

$$
\begin{array}{ll}
& \left(b_{p+1}+n-p-q, b_{p+2}+n-p-q, \ldots, b_{q}+n-p-q\right) \\
\text { i.e., } & \left(b_{p+1}+n-p-q, b_{p+2}+n-p-q, \ldots, b_{q}+n-p-q\right) .
\end{array}
$$

Now we have to show that above imbalance sequence is irreducible. We have

$$
\begin{aligned}
& \sum_{i=1}^{k} b_{i}>k(k-n) \\
& \Rightarrow \sum_{i=1}^{p} b_{i}+\sum_{i=p+1}^{k} b_{i}>k(k-n) \\
& \Rightarrow p(p-n)+\sum_{i=p+1}^{k} b_{i}+(k-p)(n-p-q)>k(k-n)+(k-p)(n-p-q) \\
& \Rightarrow \sum_{i=p+1}^{k}\left(b_{i}+n-p-q\right)>k(k-n)+(k-p)(n-p-q)-p(p-n) \\
&=k^{2}-k p-k q+p q \\
&=(k-p)(k-q)
\end{aligned}
$$

Thus $\sum_{i=p+1}^{k}\left(b_{i}+n-p-q\right)>(k-p)[(k-p)-(q-p)]$, and

$$
\begin{aligned}
\sum_{i=p+1}^{q}\left(b_{i}+n-p-q\right) & =\sum_{i=p+1}^{q} b_{i}+(q-p)(n-p-q) \\
& =\sum_{i=1}^{q} b_{i}-\sum_{i=p+1}^{k} b_{i}+(q-p)(n-p-q) \\
& =q(q-n)-p(p-n)+(q-p)(n-p-q) \\
& =0 .
\end{aligned}
$$

Hence by Theorem 3 the imbalance sequence is irreducible.
Theorem 5 shows that the irreducible components of B are determined by the successive values of k for which

$$
\begin{equation*}
\sum_{i=1}^{k} b_{i}=k(k-n) \text { for } 1 \leq k \leq n \tag{6}
\end{equation*}
$$

Taking $B=(-6,-5,-4,1,1,1,6,6)$, equation (6) is satisfied for $k=3,6$ and 8. So the irreducible components of B are $(-1,0,1),(0,0,0)$ and $(0,0)$

5. The bounds of imbalances

The converse of an oriented graph D is an oriented graph D^{\prime}, obtained by reversing orientation of all arcs of D. Let $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ be imbalance sequence of an oriented graph D. Then

$$
B^{\prime}=\left(-b_{n},-b_{n-1}, \ldots, b_{1}\right)
$$

Next result gives lower and upper bounds for the imbalance b_{i} of a vertex v_{i} of an oriented graph D.

Theorem 6. If $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is an imbalance sequence of an oriented graph D, then for each i,

$$
i-n \leq b_{i} \leq i-1
$$

Proof. First, we prove that

$$
b_{i} \geq i-n
$$

Suppose that $b_{i}<i-n$ then, for every $k<i$

$$
b_{k} \leq b_{i}<i-n .
$$

So that,

$$
\begin{aligned}
& \sum_{k=1}^{i} b_{k}
\end{aligned}<\sum_{k=1}^{i}(i-n)
$$

As $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is an imbalance sequence so, by Corollary 2 ,

$$
\sum_{k=1}^{i} b_{k} \geq i(i-n)
$$

This is a contradiction. Hence

$$
\begin{equation*}
(i-n) \leq b_{i} \tag{7}
\end{equation*}
$$

The second inequality is dual to the first. In the converse oriented graph D^{\prime} with imbalance sequence $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right)$. We have

$$
b_{n-i+1}^{\prime} \geq(n-i+1)-n=1-i(\text { using condition } 7)
$$

but $b_{i}=-b_{n-i+1}^{\prime}$ so,

$$
b_{i} \leq-(1-i)=i-1
$$

Proving the result.

6. LEXICOGRAPHIC ENUMERATION OF IMBALANCE SEQUENCES

Let $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ and $C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ with $c_{1} \leq c_{2} \leq \ldots \leq c_{n}$ be sequences of integers of order n. Then B precedes C if there exist a positive integer $k \leq n$ such that $b_{i}=c_{i}$ for each $1 \leq i \leq k-1$ and $b_{k}<c_{k}$ ($B=C$ if $b_{i}=c_{i}$ for $\left.1 \leq i \leq n\right)$.

We write $B \preceq C$ if B precedes C, and we say that C is a successor of B. If $B \preceq C$ and $C \preceq D$, then $B \preceq D$, where $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$. We say that C is an immediate successor of B if there is no D such that $B \preceq D \preceq C$. An enumeration of all sequences of a given order with the property that the immediate successor of any sequence follows it in the list is called a lexicographic enumeration.

Let $B=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{m}$ and $C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ with $c_{1} \leq c_{2} \leq \ldots \leq c_{n}$ are two imbalance sequences of order m and n respectively. Then we define

$$
B+C=\left(b_{1}-n, b_{2}-n, \ldots, b_{m}-n, c_{1}+m, c_{2}+m, \ldots, c_{n}+m\right)
$$

The plus operation defined above is not commutative but it is associative.
Now we establish some results dealing with imbalance sequences that are tournament analogue to Merajuddin [9].

Theorem 7. Let $B_{1}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ and $B_{2}=\left(-n, b_{1}+\right.$ $\left.1, b_{2}+1, \ldots, b_{n}+1\right)$. Then B_{1} is $m^{\text {th }}$ imbalance sequence of order n if and only if B_{2} is the $m^{\text {th }}$ imbalance sequence of order $(n+1)$.

Proof. Suppose D_{1} be a realization of B_{1}. Then $D_{2}=\left[K, D_{1}\right]$, where K is an oriented graph of order 1, is a realization of B_{2}. This shows that B_{2} is an imbalance sequence when B_{1} is an imbalance sequence. For converse, suppose D be a realization of B_{2}. We can write $D=[U, W]$, where U is an oriented graph of order 1, Clearly W is a realization of B_{1}. This shows that B_{1} is an imbalance sequence when B_{2} is an imbalance sequence. The unique correspondence shows that both are occupying the same position.

Let $b_{k}(n)$ denotes the number of imbalance sequences of order n, in nondecreasing order, having imbalance k atleast once, for $1-n \leq k \leq n-1$. Then we have the following results.

Theorem 8.

$$
\begin{aligned}
(i) & b_{k}(n)=b_{-k}(n) \\
(i i) & b_{1-n}(n)=b(n-1) \\
(i i i) & b_{n-1}=b(n-1) .
\end{aligned}
$$

Proof. (i) This is equivalent to proving that whenever $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is an imbalance sequence, then $B^{\prime}=\left(-b_{n},-b_{n-1}, \ldots, b_{1}\right)$ is also an imbalance sequence. This always happens, since B is an imbalance sequence of an oriented graph D if and only if B^{\prime} is an imbalance sequence of oriented graph D^{\prime}, the converse of D.
(ii) Let $B_{1}=\left(b_{1}, b_{2}, \ldots, b_{n-1}\right)$ be the last imbalance, i.e., $b(n-1)^{t h}$ imbalance sequence of order $n-1$. By Theorem $7 B_{2}=\left(-(n-1), b_{1}+1, b_{2}+1, \ldots, b_{n-1}+1\right)$ is the $b(n-1)^{\text {th }}$ imbalance sequence of order n. Now we show that there does not exist any imbalance sequence $B_{3}=\left(t_{1}, t_{2}, \ldots, t_{n}\right), B_{3} \neq B_{2}$ such that $t_{1}=-(n-1)$ and $B_{2} \preceq B_{3}$.

Suppose that there exists one such B_{3}. Then by Theorem 7, $B_{4}=\left(t_{2}-1, \ldots, t_{n}-\right.$ 1) is an imbalance sequence of order $n-1$ and $B_{1} \preceq B_{4}$, a contradiction as B_{1} is the last imbalance sequence of order $(n-1)$. Thus B_{2} is the last imbalance sequence of order n in which the first entry is $-(n-1)$.

Hence $b_{1-n}(n)=b(n-1)$.
(iii) Putting $k=n-1$ in Theorem $8(i)$, we get
$b_{n-1}=b_{1-n}$
and from Theorem 8(ii),
$b_{1-n}=b(n-1)$
Hence $b_{n-1}=b(n-1)$.

7. Self-converse imbalance Sequences

A score sequence $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is said to be self-converse if all the tournaments T, having the score sequence S are self-converse, i.e., $T \cong T^{\prime}$. If $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a score sequence of a tournament T, then S^{\prime} score sequence of T^{\prime}, is given by

$$
S^{\prime}=\left(n-1-s_{1}, n-1-s_{2}, \ldots, n-1-s_{n}\right) .
$$

In 1979, Eplett[1] characterized the self-converse score sequences.
Theorem 9. [1] A score sequence $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is self-converse if and only if

$$
\begin{equation*}
s_{i}+s_{n+1-i}=n-1, \text { for } 1 \leq i \leq n \tag{8}
\end{equation*}
$$

Let $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ be an imbalance sequence of an oriented graph D. Then the imbalance sequence B^{\prime} of the oriented graph D^{\prime}, the converse of D, is given by $\left(-b_{n},-b_{n-1}, \ldots,-b_{1}\right)$. An oriented graph D is said to be self converse if $D \cong D^{\prime}$. An imbalance sequence $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is self-converse if all the oriented graph having imbalance sequence B are self-converse.

Next result characterizes self-converse imbalance sequences of tournaments.
Theorem 10. A sequence of integers $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is self-converse if and only if

$$
b_{i}+b_{n-i+1}=0, \text { for } 1 \leq i \leq n .
$$

Proof. Consider a tournament T having $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$ as its imbalance and score sequences. As tournament T is self-converse so by Theorem 9[1], we have

$$
\begin{array}{ll}
& s_{i}+s_{n-i+1}=n-1 \\
\Rightarrow & d_{i}^{+}+d_{n-i+1}^{+}=n-1 \\
\Rightarrow & 2 d_{i}^{+}+2 d_{n-i+1}^{+}=2(n-1) \\
\Rightarrow & d_{i}^{+}-\left(n-1-d_{i}^{+}\right)+d_{n-i+1}^{+}-\left(n-1-d_{n-i+1}^{+}\right)=0 \\
\Rightarrow & \left(d_{i}^{+}-d_{i}^{-}\right)+\left(d_{n-i+1}^{+}-d_{n-i+1}^{-}\right)=0 \\
\Rightarrow & b_{i}+b_{n-i+1}=0 .
\end{array}
$$

This proves the necessity of Theorem. Converse also follows from Theorem 9.

Now we state a conjecture:
Conjecture. The above result is also true for oriented graphs.
Below we obtain following results on self-converse imbalance sequences of tournaments.

Theorem 11. If $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is an imbalance sequence of a tournament, then $B+B^{\prime}$ is a self-converse imbalance sequence.

Proof. Here $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is an imbalance sequence. By the definition of converse of imbalance sequence,

$$
B^{\prime}=\left(-b_{n},-b_{n-1}, \ldots,-b_{1}\right)
$$

So, by the definition, we have

$$
\begin{aligned}
B+B^{\prime} & =\left(b_{1}-n, b_{2}-n, \ldots, b_{n}-n,-b_{n}+n, \ldots,-b_{1}+n\right) \\
& =\left(t_{1}, t_{2}, \ldots, t_{2 n}\right), \text { say }
\end{aligned}
$$

where

$$
t_{i}= \begin{cases}b_{i}-n, & \text { for } 1 \leq i \leq n \\ -b_{2 n-i+1}+n, & \text { for } n+1 \leq i \leq 2 n\end{cases}
$$

Clearly $t_{i}+t_{2 n-i+1}=0$, for $1 \leq i \leq 2 n$. Hence $B+B^{\prime}$ is self-converse.
Theorem 12. Let $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ be a self-converse imbalance sequence and C be any other imbalance sequence in nondecreasing order. Then $C+B+C^{\prime}$ is a self-converse imbalance sequence.

Proof. Suppose that $C=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ with $c_{1} \leq c_{2} \leq \ldots \leq c_{m}$ is an imbalance sequence of order m. Then by definition of converse

$$
C^{\prime}=\left(-c_{m},-c_{m-1}, \ldots,-c_{1}\right)
$$

and by definition

$$
\begin{aligned}
C+B+C^{\prime}= & \left(c_{1}-m-n, c_{2}-m-n, \ldots, c_{m}-m-n, b_{1}, b_{2}, \ldots\right. \\
& \left.b_{n},-c_{m}+m+n,-c_{m-1}+m+n, \ldots,-c_{1}+m+n\right) \\
= & \left(r_{1}, r_{2}, \ldots, r_{2 m+n}\right), \text { say }
\end{aligned}
$$

where

$$
r_{i}= \begin{cases}c_{i}-m-n, & 1 \leq i \leq m ; \\ b_{i}-m, & m+1 \leq i \leq m+n \\ -c_{2 m+m-i+1}+m+n, & m+n+1 \leq i \leq 2 m+n\end{cases}
$$

Case (i). For $1 \leq j \leq m$,

$$
r_{j}+r_{2 m+n-j+1}=c_{j}-m-n-c_{j}+m+n
$$

$\{$ when $1 \leq j \leq m$ then $m+n+1 \leq 2 m+n-j+1 \leq 2 m+1\}$
$\Rightarrow r_{j}+r_{2 m+n-j+1}=0$.
Case (ii). For $m+1 \leq j \leq m+n$,

$$
\begin{aligned}
r_{j}+r_{2 m+n-j+1} & =b_{j-m}+b_{m+n-j+1} \\
& =b_{k}+b_{n-k+1} \text { for } k=j-m \text { and } 1 \leq k \leq n \\
& =0
\end{aligned}
$$

As $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a self-converse imbalance sequence, so $b_{i}+b_{n-i+1}=0$, for $1 \leq i \leq n$. From above we have, $r_{j}+r_{2 m+n-j+1}=0$, for $1 \leq j \leq 2 m+n$. Hence $C+B+C^{\prime}$ is a self-converse imbalance sequence.

References

[1] W.J.R. Eplett, Self-converse tournaments, Canad. Math. Bull. 22 (1979) 23-27.
[2] P. Erdös and T. Gallai, Graphs with prescribed degrees of vertices (In Hungarian), Math. Lapok. 11 (1960) 264-274.
[3] S.L. Hakimi, On the realization of a set of integers as degree of the vertices of a graph, SIAM J. Appl. Math. 10 (1962) 496-506.
[4] F. Harary and L. Moser, The theory of round robin tournaments, Amer. Math. Monthly 73 (1966), 231-246.
[5] F. Harary, R.Z. Norman and D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, John Wiley and Sons, New York (1965).
[6] V. Havel, A remark on the existence of finite graphs, Casopis Pest. Mat. 80 (1995), 477-180.
[7] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valances and factors, Discrete Math. 6 (1973), 79-88.
[8] H.G. Landau, On dominance relations and the structure of animal societies: III. The condition for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
M. Sharma, Merajuddin, S. A. K. Kirmani - On imbalance of oriented graphs
[9] Merajuddin, On the scores and the isomorphism of the tournaments, Ph.D. thesis, I.I.T. Kanpur, (1983).
[10] Dhruv Mubayi, T.G. Will and Douglas B. West, Realizing degree imbalances in directed graphs, Discrete Math. 239(173) (2001) 147-153.

Madhukar Sharma
Department of Applied Sciences,
IIMT College of Engineering,
Plot No. A-20, Knowledge Park-III, Greater Noida(U.P.), India
email: madhukar13777@rediffmail.com

Merajuddin
Department of Applied Mathematics,
Z.H. College of Engineering and Technology,

Aligarh Muslim University,
Aligarh(U.P.), India
email: meraj1957@rediffmail.com
S.A.K. Kirmani

College of Engineering,Unaizah, Qassim University,Al-Qassim
Kingdom of Saudi Arabia
email: ajazkirmani@rediffmail.com

