HILBERT-SCHMIDT SEQUENCES AND DUAL OF G-FRAMES

E. Osgooei, M. H. Faroughi

ABSTRACT. In this paper, we characterize the dual g-frame of $\{\Lambda_i\}_{i=1}^{\infty}$ and show that each dual is precisely the sequence $\{\Theta_i\}_{i=1}^{\infty} = \{\phi_i^* V^*\}_{i=1}^{\infty}$, where the operator $V: l^2(\mathbb{N} \times \mathbb{N}) \to H$, is a bounded left inverse of the analysis operator of the frame induced by $\{\Lambda_i\}_{i=1}^{\infty}$ and for each $i \in \mathbb{N}$, ϕ_i is an isometric isomorphism of H_i onto a subspace of $l^2(\mathbb{N} \times \mathbb{N})$. Also, we prove that every Hilbert-Schmidt sequence is a g-Bessel sequence and the composition of synthesis operator with analysis operator of a Hilbert-Schmidt sequence is a trace class operator.

2000 Mathematics Subject Classification: 41A58, 42C15.

Keywords: g-frame, g-orthonormal basis, g-Riesz basis, Hilbert-Schmidt sequence.

1. INTRODUCTION AND PRELIMINARIES

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer in [5] to study some deep problems in nonharmonic Fourier series. After the fundamental paper by Daubechies, Grossman and Meyer [4], frame theory began to be widely used, particularly in the more specialized context of wavelet frames [7]. The concept of g-frames which was first presented by Sun in [13], includes many other generalizations of frames, e.g., outer frames [1] and oblique frames [3, 6]. For more details, we refer to [8, 11, 13].

Throughout this paper, H and K are complex separable Hilbert spaces and $\{H_i\}_{i \in I}$ is a sequence of closed subspaces of K. I and L are subsets of \mathbb{Z} , and for each $i \in I$, J_i is a subset of \mathbb{Z} . $L(H, H_i)$ is the collection of all bounded linear operators of H into H_i .

This paper is organized as follows: In section 2, we recall some definitions and properties about g-frames which will be used in this paper. In section 3, we characterize the dual g-frame of $\{\Lambda_i\}_{i=1}^{\infty}$ and show that every dual is precisely the sequence $\{\Theta_i\}_{i=1}^{\infty} = \{\phi_i^* V^*\}_{i=1}^{\infty}$, where $V : l^2(\mathbb{N} \times \mathbb{N}) \to H$, is a bounded left inverse of the analysis operator of the frame induced by $\{\Lambda_i\}_{i=1}^{\infty}$, and for each $i \in \mathbb{N}$, ϕ_i is an isometric isomorphism of H_i onto a subspace of $l^2(\mathbb{N} \times \mathbb{N})$. In section 4, we obtain some useful properties of g-Riesz bases and show that under some conditions every g-Riesz basis has a g-biorthogonal sequence and is a g-minimal frame. We define the concept of Hilbert-Schmidt sequences in section 5 and show that every Hilbert-Schmidt sequence is a g-Bessel sequence but the converse is not true, when H is an infinite dimensional Hilbert space. Also, we prove that the composition of synthesis operator with analysis operator of a Hilbert-Schmidt sequence is a trace class operator.

Definition 1. [13] We call a sequence $\{\Lambda_i \in L(H, H_i) : i \in I\}$ a generalized frame, or simply a g-frame, for H with respect to $\{H_i\}_{i \in I}$ if there exist constants A, B > 0such that

$$A\|f\|^{2} \leq \sum_{i \in I} \|\Lambda_{i}f\|^{2} \leq B\|f\|^{2}, \quad f \in H.$$
 (1)

A and B are called the lower and upper g-frame bounds, respectively. The sequence $\{\Lambda_i\}_{i\in I}$ is called a g-Bessel sequence with bound B, if the second inequality in (1), satisfies.

We call $\{\Lambda_i\}_{i \in I}$ an exact g-frame if it ceases to be a g-frame whenever any of its elements is removed.

We say that $\{\Lambda_i\}_{i\in I}$ is g-complete, if $\overline{span}\{\Lambda_i^*(H_i)\}_{i\in I} = H$.

We say that $\{\Lambda_i\}_{i \in I}$ is a g-orthonormal basis for H with respect to $\{H_i\}_{i \in I}$, if it satisfies the following assertions:

$$\langle \Lambda_{i_1}^* f_{i_1}, \Lambda_{i_2}^* g_{i_2} \rangle = \delta_{i_1, i_2} \langle f_{i_1}, g_{i_2} \rangle, \quad i_1, i_2 \in I, \quad f_{i_1} \in H_{i_1}, g_{i_2} \in H_{i_2},$$

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2, \quad f \in H.$$

$$(2)$$

Remark 1. We note that if $\{\Lambda_i\}_{i \in I}$ is a g-orthonormal basis, then by (2), for each $f \in H$,

$$\langle f, f \rangle = \sum_{i \in I} \langle \Lambda_i f, \Lambda_i f \rangle = \sum_{i \in I} \langle \Lambda_i^* \Lambda_i f, f \rangle = \langle \sum_{i \in I} \Lambda_i^* \Lambda_i f, f \rangle.$$

So, $f = \sum_{i \in I} \Lambda_i^* \Lambda_i f$.

For each sequence $\{H_i\}_{i \in I}$, we define the space

$$(\sum_{i\in I} \bigoplus H_i)_{l_2} = \{\{f_i\}_{i\in I} : f_i \in H_i, \ i \in I \ and \ \sum_{i\in I} \|f_i\|^2 < \infty\},\$$

with the inner product defined by

$$\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle.$$

It is clear that $(\sum_{i \in I} \bigoplus H_i)_{l_2}$ is a Hilbert space.

Remark 2. Suppose that for each $i \in I$, $\{e_{i,j}\}_{j \in J_i}$ is an orthonormal basis for H_i . For each $i \in I$ and $j \in J_i$, we define $E_{i,j} = \{\delta_{i,k}e_{i,j}\}_{k \in I}$, where $\delta_{i,k}$ is the Kronecker delta. Then $\{E_{i,j}\}_{i \in I, j \in J_i}$ is an orthonormal basis for $(\sum_{i \in I} \bigoplus H_i)_{l_2}$ and for each $\{f_k\}_{k \in I} \in (\sum_{i \in I} \bigoplus H_i)_{l_2}$, we have

$$\langle \{f_k\}_{k\in I}, E_{i,j} \rangle = \langle f_i, e_{i,j} \rangle.$$

We define the synthesis operator for a g-Bessel sequence $\Lambda = {\Lambda_i}_{i \in I}$ as follows:

$$T_{\Lambda}: (\sum_{i \in I} \bigoplus H_i)_{l_2} \to H, \quad T_{\Lambda}(\{f_i\}_{i \in I}) = \sum_{i \in I} \Lambda_i^* f_i,$$

the series converges unconditionally in the norm of H. It is easy to show that the adjoint operator of T_{Λ} is as follows:

$$T^*_{\Lambda}: H \to (\sum_{i \in I} \bigoplus H_i)_{l_2}, \ T^*_{\Lambda}(f) = \{\Lambda_i f\}_{i \in I},$$

 T^*_{Λ} is called the analysis operator for $\{\Lambda_i\}_{i\in I}$. In [13], the g-frame operator S_{Λ} for a g-Bessel sequence $\{\Lambda_i\}_{i\in I}$ is defined as follows:

$$S_{\Lambda}: H \to H, \ S_{\Lambda}f = \sum_{i \in I} \Lambda_i^* \Lambda_i f.$$

Hence we have $S_{\Lambda} = T_{\Lambda}T_{\Lambda}^*$. If $\Lambda = {\Lambda_i}_{i \in I}$ is a g-frame for H with respect to ${H_i}_{i \in I}$ with bounds A and B, then the g-frame operator $S_{\Lambda} : H \to H$ is a bounded, self adjoint and invertible operator. The canonical dual g-frame of ${\Lambda_i}_{i \in I}$ is defined by ${\{\tilde{\Lambda}_i\}_{i \in I}}$ where for each $i \in I$, $\tilde{\Lambda}_i = \Lambda_i S_{\Lambda}^{-1}$ which is also a g-frame for H with respect to ${H_i}_{i \in I}$ with frame bounds B^{-1} and A^{-1} . Also we have

$$f = \sum_{i \in I} \Lambda_i^* \tilde{\Lambda}_i f = \sum_{i \in I} \tilde{\Lambda}_i^* \Lambda_i f, \quad f \in H.$$

Let for each $i \in I$, $\Lambda_i \in L(H, H_i)$. Suppose that for each $i \in I$, $\{e_{i,j}\}_{j \in J_i}$ is an orthonormal basis for H_i . Then

$$f \mapsto \langle \Lambda_i f, e_{i,j} \rangle,$$

defines a bounded linear functional on H. Consequently, for each $i \in I$ and $j \in J_i$, we can find $u_{i,j} \in H$ such that for each $f \in H$, $\langle f, u_{i,j} \rangle = \langle \Lambda_i f, e_{i,j} \rangle$. Hence

$$\Lambda_i f = \sum_{j \in J_i} \langle f, u_{i,j} \rangle e_{i,j}, \quad f \in H,$$

and

$$\Lambda_i^* g = \sum_{j \in J_i} \langle g, e_{i,j} \rangle u_{i,j}, \quad i \in I, \quad g \in H_i.$$

In particular,

$$u_{i,j} = \Lambda_i^* e_{i,j}, \quad i \in I, \ j \in J_i.$$

$$\tag{3}$$

We call $\{u_{i,j}\}_{i \in I, j \in J_i}$ the sequence induced by $\{\Lambda_i\}_{i \in I}$ with respect to $\{e_{i,j}\}_{i \in I, j \in J_i}$.

2. CHARACTERIZATION OF DUAL OF G-FRAMES

Definition 2. [12] Let $\{\Lambda_i\}_{i \in I}$ and $\{\Theta_i\}_{i \in I}$ be g-Bessel sequences for H with respect to $\{H_i\}_{i \in I}$. $\{\Theta_i\}_{i \in I}$ is called a dual g-frame of $\{\Lambda_i\}_{i \in I}$, if

$$f = \sum_{i \in I} \Lambda_i^* \Theta_i f, \quad f \in H.$$

The space $l^2(\mathbb{N} \times \mathbb{N})$ defined by

$$l^{2}(\mathbb{N} \times \mathbb{N}) = \{\{a_{i,j}\}_{i,j=1}^{\infty} : a_{i,j} \in \mathbb{C}, \sum_{i,j=1}^{\infty} |a_{i,j}|^{2} < \infty\},\$$

with inner product given by

$$\langle \{a_{i,j}\}_{i,j=1}^{\infty}, \{b_{i,j}\}_{i,j=1}^{\infty} \rangle = \sum_{i,j=1}^{\infty} \langle a_{i,j}, b_{i,j} \rangle,$$

is a Hilbert space. For each $i, j \in \mathbb{N}$, we define $\alpha_{i,j} = \{b_{m,n}\}_{m,n=1}^{\infty}$, where $b_{m,n} = 1$, if m = i, n = j and otherwise $b_{m,n} = 0$. Then $\{\alpha_{i,j}\}_{i,j=1}^{\infty}$ is an orthonormal basis for $l^2(\mathbb{N} \times \mathbb{N})$; it is called the canonical orthonormal basis for $l^2(\mathbb{N} \times \mathbb{N})$.

Theorem 1. Let $\Lambda = {\Lambda_i}_{i=1}^{\infty}$ be a g-frame for H with respect to ${H_i}_{i=1}^{\infty}$ and for each $i \in \mathbb{N}$, ${e_{i,j}}_{j=1}^{\infty}$ be an orthonormal basis for H_i . The dual g-frame of ${\Lambda_i}_{i=1}^{\infty}$ is precisely the sequence $\Theta = {\Theta_i}_{i=1}^{\infty} = {\phi_i^* V^*}_{i=1}^{\infty}$, where $V : l^2(\mathbb{N} \times \mathbb{N}) \to H$, is a bounded left inverse of the analysis operator of the frame ${u_{i,j}}_{i,j=1}^{\infty}$, and for each $i \in \mathbb{N}$, ϕ_i is an isometric isomorphism of H_i onto a subspace of $l^2(\mathbb{N} \times \mathbb{N})$.

Proof. Assume that $\{\Theta_i\}_{i=1}^{\infty}$ is a dual g-frame of $\{\Lambda_i\}_{i=1}^{\infty}$. Then by Theorem 3.1 in [13], for each $i, j \in \mathbb{N}$, $v_{i,j} = \Theta_i^* e_{i,j}$ is a dual frame of $u_{i,j} = \Lambda_i^* e_{i,j}$, defined in (3). By Lemma 5.7.2 in [2],

$$\{v_{i,j}\}_{i,j=1}^{\infty} = \{V\alpha_{i,j}\}_{i,j=1}^{\infty},\tag{4}$$

where $V : l^2(\mathbb{N} \times \mathbb{N}) \to H$ is a bounded left inverse of T^* (the analysis operator of $\{u_{i,j}\}_{i,j=1}^{\infty}$), and $\{\alpha_{i,j}\}_{i,j=1}^{\infty}$ is the canonical orthonormal basis for $l^2(\mathbb{N} \times \mathbb{N})$. For each $i \in \mathbb{N}$, we define the mapping

$$\phi_i: H_i \to l^2(\mathbb{N} \times \mathbb{N}), \quad \phi_i(\sum_{j=1}^{\infty} c_{i,j} e_{i,j}) = \sum_{j=1}^{\infty} c_{i,j} \alpha_{i,j}.$$
(5)

Clearly, the mapping ϕ_i is well defined and is an isometric isomorphism of H_i onto a subspace of $l^2(\mathbb{N} \times \mathbb{N})$. Since for each $i \in \mathbb{N}$, $\{e_{i,j}\}_{j=1}^{\infty}$ is an orthonormal basis for H_i , by (4) and (5), we have

$$\begin{aligned} \Theta_i^*(h) &= \Theta_i^*(\sum_{j=1}^{\infty} \langle h, e_{i,j} \rangle e_{i,j}) = \sum_{j=1}^{\infty} \langle h, e_{i,j} \rangle v_{i,j} = \sum_{j=1}^{\infty} \langle h, e_{i,j} \rangle V(\alpha_{i,j}) \\ &= V(\sum_{j=1}^{\infty} \langle h, e_{i,j} \rangle \alpha_{i,j}) = V\phi_i(\sum_{j=1}^{\infty} \langle h, e_{i,j} \rangle e_{i,j}) = V\phi_i(h), \quad i \in \mathbb{N}, \ h \in H_i. \end{aligned}$$

So for each $i \in \mathbb{N}$, $\Theta_i = \phi_i^* V^*$. Now, we show that $\{\Theta_i\}_{i=1}^{\infty} = \{\phi_i^* V^*\}_{i=1}^{\infty}$ is a dual g-frame of $\{\Lambda_i\}_{i=1}^{\infty}$. We define

$$\widetilde{T}: (\sum_{i=1}^{\infty} \bigoplus H_i)_{l_2} \to H, \quad \widetilde{T}(\{g_i\}_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \Theta_i^* g_i.$$

Since for each $i \in \mathbb{N}$, $\Theta_i = \phi_i^* V^*$, by (5), we have

$$\widetilde{T}(\{g_i\}_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \Theta_i^* g_i = \sum_{i=1}^{\infty} V \phi_i g_i = V(\sum_{i=1}^{\infty} \phi_i g_i)$$
$$= V(\sum_{i=1}^{\infty} \phi_i(\sum_{j=1}^{\infty} \langle g_i, e_{i,j} \rangle e_{i,j})) = V(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle g_i, e_{i,j} \rangle \alpha_{i,j}).$$
(6)

We define the mapping

$$\psi: (\sum_{i=1}^{\infty} \bigoplus H_i)_{l_2} \to l^2(\mathbb{N} \times \mathbb{N}), \quad \psi(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{i,j} E_{i,j}) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{i,j} \alpha_{i,j}, \tag{7}$$

where $\{E_{i,j}\}_{i,j=1}^{\infty}$ is an orthonormal basis for $(\sum_{i=1}^{\infty} \bigoplus H_i)_{l_2}$. Clearly ψ is a well defined and isometric isomorphism operator. So by (6), (7) and Remark 2, we have

$$\widetilde{T}(\{g_i\}_{i=1}^{\infty}) = V\psi(\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\langle g_i, e_{i,j}\rangle E_{i,j}) = V\psi(\{g_i\}_{i=1}^{\infty}).$$

Therefore, $\tilde{T} = V\psi$. Since V is a bounded left inverse of T^* , V is surjective and hence \tilde{T} is a well defined, bounded and surjective operator of $(\sum_{i=1}^{\infty} \bigoplus H_i)_{l_2}$ onto H. So, $\Theta = \{\Theta_i\}_{i=1}^{\infty}$ is a g-frame for H with respect to $\{H_i\}_{i=1}^{\infty}$ and $\tilde{T} = T_{\Theta}$, where T_{Θ} is the synthesis operator of $\{\Theta_i\}_{i=1}^{\infty}$.

Now, we prove that $\{\Theta_i\}_{i=1}^{\infty}$ is a dual g-frame of $\{\Lambda_i\}_{i=1}^{\infty}$. Since V is a bounded left inverse of T^* , we have

$$f = VT^*f = V(\{\langle f, u_{i,j} \rangle\}_{i,j=1}^{\infty}) = V(\{\langle f, \Lambda_i^* e_{i,j} \rangle\}_{i,j=1}^{\infty})$$
$$= V(\{\langle \Lambda_i f, e_{i,j} \rangle\}_{i,j=1}^{\infty}), \quad f \in H.$$
(8)

Since $\{\alpha_{i,j}\}_{i,j=1}^{\infty}$ is the canonical orthonormal basis for $l^2(\mathbb{N} \times \mathbb{N})$ and $T_{\Theta} = V\psi$, by (7), (8) and Remark 2, we have

$$f = T_{\Theta}\psi^{-1}(\{\langle \Lambda_i f, e_{i,j} \rangle\}_{i,j=1}^{\infty}) = T_{\Theta}\psi^{-1}(\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\langle \Lambda_i f, e_{i,j} \rangle \alpha_{i,j})$$
$$= T_{\Theta}(\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\langle \Lambda_i f, e_{i,j} \rangle E_{i,j}) = T_{\Theta}(\{\Lambda_i f\}_{i=1}^{\infty}) = T_{\Theta}T_{\Lambda}^*f, \quad f \in H.$$

3. Properties of G-Riesz Bases

Definition 3. [13] We say that $\{\Lambda_i \in L(H, H_i) : i \in I\}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$ if it is g-complete and there exist constants A, B > 0, such that for each finite subset $J \subseteq I$ and $g_i \in H_i$, $i \in J$,

$$A\sum_{i\in J} \|g_i\|^2 \le \|\sum_{i\in J} \Lambda_i^* g_i\|^2 \le B\sum_{i\in J} \|g_i\|^2.$$

We call A and B the g-Riesz basis bounds.

Theorem 2. [13] A sequence $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$ if and only if there is a g-orthonormal basis $\{Q_i\}_{i \in I}$ for H and a bounded invertible operator T on H such that for each $i \in I$, $\Lambda_i = Q_i T$.

Corollary 3. If $\{\Lambda_i = Q_i T \in L(H, H_i) : i \in I\}$ is a g-Riesz basis for H with respect to $\{H_i\}$, then there exist constants A, B > 0 such that

$$A||f||^2 \le \sum_{i \in I} ||\Lambda_i f||^2 \le B||f||^2, \quad f \in H.$$

The largest possible value for the constant A is $\frac{1}{\|T^{-1}\|^2}$ and the smallest possible value for B is $\|T\|^2$.

Theorem 4. Suppose that for each $i \in I$, $\Lambda_i \in L(H, H_i)$ and $\{e_{i,j}\}_{j \in J_i}$ is an orthonormal basis for H_i . Assume that $\overline{span}\{\Lambda_i^*(H_i)\}_{i \in I} = H$ and for each finite subset $J \subseteq I$,

$$\|\sum_{i\in J} \Lambda_i^* g_i\|^2 = \sum_{i\in J} \|g_i\|^2, \quad i\in J, \quad g_i\in H_i.$$

Then

(i) $\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2$. (ii) If for each $i \in I$, $(\Lambda_i \Lambda_i^*)^2 = \Lambda_i \Lambda_i^*$, then for all $i \neq j$, $i, j \in I$, $\Lambda_i^*(H_i) \cap \Lambda_j^*(H_j) = \{0\}$.

Proof. (i) By assumption, $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$ and for each $\{g_i\}_{i \in I} \in (\sum_{i \in I} \bigoplus H_i)_{l_2}$,

$$\|\sum_{i\in I} \Lambda_i^* g_i\|^2 = \sum_{i\in I} \|g_i\|^2.$$
(9)

Since $\{\Lambda_i\}_{i\in I}$ is a g-Riesz basis, by Theorem 2, there exist a g-orthonormal basis $\{Q_i\}_{i\in I}$ and a bounded invertible operator T on H, such that for each $i \in I$, $\Lambda_i = Q_i T$. Since $\{Q_i\}_{i\in I}$ is a g-orthonormal basis, by Remark 1, we have

$$f = \sum_{i \in I} Q_i^* Q_i f, \ f \in H.$$

$$\tag{10}$$

Hence by (9) and (10),

$$\|T^*f\|^2 = \|T^*(\sum_{i\in I} Q_i^*Q_if)\|^2 = \|\sum_{i\in I} T^*Q_i^*Q_if\|^2$$

$$= \|\sum_{i\in I} \Lambda_i^*Q_if\|^2 = \sum_{i\in I} \|Q_if\|^2 = \|f\|^2, \quad f\in H.$$
(11)

Therefore, $||T^*|| = ||T|| = 1$. Since T^* is invertible, for each $g \in H$, there exists a unique $f \in H$, such that $T^*f = g$. So, by (11), we have

$$||(T^*)^{-1}g|| = ||f|| = ||T^*f|| = ||g||.$$

This implies that $||(T^*)^{-1}|| = 1$ and so $||T^{-1}|| = 1$. Now, by Corollary 3,

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2.$$
(12)

(ii) Let for $i \neq j$, $i, j \in I$, $f \in \Lambda_i^*(H_i) \cap \Lambda_j^*(H_j)$. Then there exist $g_i \in H_i$ and $g_j \in H_j$ such that

$$f = \Lambda_i^* g_i = \Lambda_j^* g_j. \tag{13}$$

By (12) and (13), we have

Since for each $i \in I$, $(\Lambda_i \Lambda_i^*)^2 = \Lambda_i \Lambda_i^*$, by (14),

$$\sum_{k \in I, k \neq i} \|\Lambda_k f\|^2 = 0, \quad i \in I.$$
(15)

Similarly, we conclude that

$$\sum_{k \in I, k \neq j} \|\Lambda_k f\|^2 = 0, \quad j \in I.$$
(16)

Therefore, by (15) and (16), for each $k \in I$, $||\Lambda_k f||^2 = 0$ and so by (12), f = 0.

Theorem 5. [9] Let for each $i \in I$, $\Lambda_i \in L(H, H_i)$. Then the following conditions are equivalent:

(i) $\{\Lambda_i\}_{i\in I}$ is an exact g-frame for H with respect to $\{H_i\}_{i\in I}$ and

$$\langle \Lambda_{i_1}^* g_{i_1}, \tilde{\Lambda}_{i_2}^* g_{i_2} \rangle = \delta_{i_1, i_2} \langle g_{i_1}, g_{i_2} \rangle, \quad i_1, i_2 \in I, \ g_{i_1} \in H_{i_1}, g_{i_2} \in H_{i_2}, \tag{17}$$

(ii) $\{\Lambda_i\}_{i\in I}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i\in I}$.

Theorem 6. Let for each $i \in I$, $\Lambda_i \in L(H, H_i)$. Then we have the followings. (i) If $\{\Lambda_i\}_{i \in I}$ is an exact g-frame for H with respect to $\{H_i\}_{i \in I}$, then for each $i \in I$, $\|\tilde{\Lambda}_i \Lambda_i^*\| \ge 1$.

(ii) If $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$, then for each $i \in I$, $\|\tilde{\Lambda}_i \Lambda_i^*\| = 1$.

Proof. (i) Suppose that $\{\Lambda_i\}_{i \in I}$ is an exact g-frame for H. Then By Theorem 3.5 in [13], for each $i \in I$, $I - \tilde{\Lambda}_i \Lambda_i^*$ is not invertible. Therefore, $1 \in \sigma(\tilde{\Lambda}_i \Lambda_i^*)$ and we have $r(\tilde{\Lambda}_i \Lambda_i^*) \geq 1$. Since $\tilde{\Lambda}_i \Lambda_i^*$ is a self adjoint operator on H_i , $r(\tilde{\Lambda}_i \Lambda_i^*) = \|\tilde{\Lambda}_i \Lambda_i^*\|$. So, for each $i \in I$, $\|\tilde{\Lambda}_i \Lambda_i^*\| \geq 1$.

(ii) Suppose that $\{\Lambda_i\}_{i\in I}$ is a g-Riesz basis for H. Then by (17),

$$\begin{split} \|\Lambda_i\Lambda_i^*\| &= \sup_{\substack{\|h\|=1\\h\in H_i}} |\langle\Lambda_i\Lambda_i^*h,h\rangle| \\ &= \sup_{\substack{\|h\|=1\\h\in H_i}} |\langle\Lambda_i^*h,\tilde{\Lambda}_i^*h\rangle| = 1, \ i\in I. \end{split}$$

Definition 4. [8] Let $\{\Lambda_i\}_{i \in I}$ be a g-frame for H with respect to $\{H_i\}_{i \in I}$. We say that $\{\Lambda_i\}_{i \in I}$ is a Riesz decomposition of H, if for each $f \in H$ there is a unique choice of $f_i \in H_i$ such that $f = \sum_{i \in I} \Lambda_i^* f_i$.

Definition 5. [8] A sequence of operators $\{\Lambda_i \in L(H, H_i) : i \in I\}$ is called *g*-minimal, if for each $j \in I$,

$$\Lambda_j^*(H_j) \cap \overline{span} \{\Lambda_i^*(H_i)\}_{i \in I, i \neq j} = \{0\}.$$

Definition 6. [13] The sequences $\{\Lambda_i \in L(H, H_i) : i \in I\}$ and $\{\Theta_i \in L(H, H_i) : i \in I\}$ are said g-biorthogonal if

$$\langle \Lambda_{i_1}^* f_{i_1}, \Theta_{i_2}^* g_{i_2} \rangle = \delta_{i_1, i_2} \langle f_{i_1}, g_{i_2} \rangle, \ i_1, i_2 \in I, \quad f_{i_1} \in H_{i_1}, \ g_{i_2} \in H_{i_2}.$$

Lemma 7. Let $\{\Lambda_i\}_{i \in I}$ be a g-frame for H with respect to $\{H_i\}_{i \in I}$. Then the following assertions are equivalent:

(i) $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$.

(ii) $\{\Lambda_i\}_{i\in I}$ is a Riesz decomposition of H.

(iii) If $\sum_{i \in I} \Lambda_i^* g_i = 0$ for some $\{g_i\}_{i \in I} \in (\sum_{i \in I} \bigoplus H_i)_{l_2}$, then for each $i \in I$, $g_i = 0$. Moreover if for each $i \in I$, Λ_i is surjective, then the above properties are equivalent to:

(iv) $\{\Lambda_i\}_{i\in I}$ and $\{\Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ are g-biorthogonal.

(v) $\{\Lambda_i\}_{i\in I}$ has a g-biorthogonal sequence.

(vi) $\{\Lambda_i\}_{i\in I}$ is g-minimal.

Proof. We conclude the equivalence of $(i) \leftrightarrow (ii) \leftrightarrow (iii)$ from Theorem 3.3 in [8]. $(i) \rightarrow (iv)$ Suppose that $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$. By Theorem 3.1 in [13], $\{u_{i,j}\}_{i \in I, j \in J_i}$ is a Riesz basis for H and S_{Λ} (the g-frame operator of $\{\Lambda_i\}_{i \in I}$), is also a frame operator of $\{u_{i,j}\}_{i \in I, j \in J_i}$. Since $\{u_{i,j}\}_{i \in I, j \in J_i}$ and $\{S_{\Lambda}^{-1}u_{i,j}\}_{i \in I, j \in j_i}$ are biorthogonal, the proof is evident. $(iv) \rightarrow (v)$ It is evident.

 $(v) \to (vi)$ Suppose that $\{\Theta_i\}_{i \in I}$ is a g-biorthogonal sequence of $\{\Lambda_i\}_{i \in I}$. Assume that there exist $j \in I$ and $g_j \in H_j$, such that $0 \neq \Lambda_j^*(g_j) \in \overline{span}\{\Lambda_i^*(H_i)\}_{i \in I, i \neq j}$. Then $\langle \Lambda_j^*g_j, \Theta_j^*g_j \rangle = 0$, which is a contradiction. $(vi) \to (ii)$ Suppose that $f \in H$ and

$$f = \sum_{i \in I} \Lambda_i^* f_i = \sum_{i \in I} \Lambda_i^* g_i,$$

where $f_i, g_i \in H_i$ and $f_j \neq g_j$ for some $j \in I$. Hence

$$\Lambda_j^*(f_j - g_j) = \sum_{i \in I, i \neq j} \Lambda_i^*(g_i - f_i).$$

Since Λ_j is surjective, Λ_j^* is one to one. Hence

$$0 \neq \Lambda_j^*(f_j - g_j) \in \Lambda_j^*(H_j) \cap \overline{span}\{\Lambda_i^*(H_i)\}_{i \in I, i \neq j}.$$

Therefore, $\{\Lambda_i\}_{i \in I}$ is not g-minimal.

Theorem 8. Suppose that $\{\Lambda_i \in L(H, H_i) : i \in I\}$ is a g-frame for H with respect to $\{H_i\}_{i \in I}$ and

$$\langle \Lambda_{i_1}^* f_{i_1}, \Lambda_{i_2}^* g_{i_2} \rangle = \delta_{i_1, i_2} \langle f_{i_1}, g_{i_2} \rangle, \quad i_1, i_2 \in I, \ f_{i_1} \in H_{i_1}, \ g_{i_2} \in H_{i_2}.$$
(18)

Then $\{\Lambda_i\}_{i\in I}$ is a g-Riesz basis for H.

Proof. Suppose that $f \in H$ and

$$f = \sum_{i \in I} \Lambda_i^* f_i = \sum_{i \in I} \Lambda_i^* g_i$$

where $f_i, g_i \in H_i$ and $f_j \neq g_j$ for some $j \in I$. Then

$$h = \Lambda_j^*(g_j - f_j) = \sum_{i \in I, i \neq j} \Lambda_i^*(f_i - g_i).$$
(19)

By (18) and (19), we have

$$||h||^2 = \langle h, h \rangle = \langle \Lambda_j^*(g_j - f_j), \Lambda_j^*(g_j - f_j) \rangle = ||g_j - f_j||^2,$$

since $f_j \neq g_j$, we conclude that $h \neq 0$. On the other hand by (18) and (19),

$$||h||^2 = \langle h, h \rangle = \langle \Lambda_j^*(g_j - f_j), \sum_{i \in I, i \neq j} \Lambda_i^*(f_i - g_i) \rangle = 0,$$

so, h = 0, which is a contradiction. Therefore, $\{\Lambda_i\}_{i \in I}$ is a Riesz decomposition of H and by Lemma 7, $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for H.

Corollary 9. Suppose that $\{\Lambda_i\}_{i \in I}$ is a g-orthonormal basis for H with respect to $\{H_i\}_{i \in I}$. Then $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$.

Theorem 10. Let $\{\Lambda_i\}_{i=1}^{\infty}$ be a g-frame for H with respect to $\{H_i\}_{i=1}^{\infty}$. Suppose that there exists M > 0, such that for each $i \in \mathbb{N}$ and $g_i \in H_i$, $M||g_i|| \leq ||\Lambda_i^*g_i||$. Assume that there exists a constant A such that for all $m, n \in \mathbb{N}$ with $m \leq n$,

$$\|\sum_{k=1}^{m} \Lambda_{k}^{*} g_{k}\| \le A \|\sum_{k=1}^{n} \Lambda_{k}^{*} g_{k}\|, \quad g_{k} \in H_{k}.$$
 (20)

Then $\{\Lambda_i\}_{i=1}^{\infty}$ is a g-Riesz Basis for H with respect to $\{H_i\}_{i=1}^{\infty}$.

Proof. For each $i \in \mathbb{N}$ and $m \ge i$, by (20), we have

$$M\|g_{i}\| \leq \|\Lambda_{i}^{*}g_{i}\| = \|\sum_{k=1}^{i}\Lambda_{k}^{*}g_{k} - \sum_{k=1}^{i-1}\Lambda_{k}^{*}g_{k}\| \leq \|\sum_{k=1}^{i}\Lambda_{k}^{*}g_{k}\| + \|\sum_{k=1}^{i-1}\Lambda_{k}^{*}g_{k}\|$$
$$\leq A\|\sum_{k=1}^{m}\Lambda_{k}^{*}g_{k}\| + A\|\sum_{k=1}^{m}\Lambda_{k}^{*}g_{k}\|$$
$$= 2A\|\sum_{k=1}^{m}\Lambda_{k}^{*}g_{k}\|.$$
(21)

So, for each $i \in \mathbb{N}$ and all $n \ge i$ by (21),

$$\|g_i\| \le \frac{2A}{M} \|\sum_{k=1}^n \Lambda_k^* g_k\|.$$
(22)

Now, if $\sum_{k=1}^{\infty} \Lambda_k^* g_k = 0$, then by (22), for each $i \in \mathbb{N}$, $g_i = 0$. Therefore, by Lemma 7, $\{\Lambda_i\}_{i=1}^{\infty}$ is a g-Riesz basis for H.

4. HILBERT-SCHMIDT SEQUENCES

Definition 7. [10] Let $u \in L(H, K)$ and suppose that E is an orthonormal basis for H. We define the Hilbert-Schmidt norm of u to be

$$||u||_2 = (\sum_{x \in E} ||u(x)||^2)^{\frac{1}{2}}.$$

This definition is independent of the choice of basis. If $||u||_2 < \infty$, we call u a Hilbert-Schmidt operator.

Definition 8. [10] Let u be an operator on a Hilbert space H. We define its traceclass norm to be $||u||_1 = |||u||^{\frac{1}{2}}||_2^2$, where $|u| = (u^*u)^{\frac{1}{2}}$. If E is an orthonormal basis for H, then

$$||u||_1 = \sum_{x \in E} \langle |u|x, x \rangle.$$

This definition is independent of the choice of basis. If $||u||_1 < \infty$, we call u a trace class operator.

Definition 9. We say that $\{\Lambda_i \in L(H, H_i) : i \in I\}$ is a Hilbert-Schmidt sequence for H with respect to $\{H_i\}_{i \in I}$, if $\{\|\Lambda_i\|_2\}_{i \in I} \in l^2(I)$. **Lemma 11.** If $\{\Lambda_i\}_{i \in I}$ is a Hilbert-Schmidt sequence for H with respect to $\{H_i\}_{i \in I}$, then $\{\Lambda_i\}_{i \in I}$ is a g-Bessel sequence for H with respect to $\{H_i\}_{i \in I}$.

Proof. Suppose that $\{e_k\}_{k=1}^{\infty}$ is an orthonormal basis for H. Then for each $f \in H$, we have

$$\begin{split} \sum_{i \in I} \|\Lambda_i f\|^2 &= \sum_{i \in I} \|\Lambda_i (\sum_{k=1}^{\infty} \langle f, e_k \rangle e_k)\|^2 = \sum_{i \in I} \|\sum_{k=1}^{\infty} \langle f, e_k \rangle \Lambda_i e_k\|^2 \\ &\leq \sum_{i \in I} \sum_{k=1}^{\infty} |\langle f, e_k \rangle|^2 \sum_{k=1}^{\infty} \|\Lambda_i e_k\|^2 \\ &= \|f\|^2 \sum_{i \in I} \sum_{k=1}^{\infty} \|\Lambda_i e_k\|^2 \\ &= \|f\|^2 \sum_{i \in I} \|\Lambda_i\|_2^2. \end{split}$$

Here is an example, which shows that the converse of the above lemma is not true when H is an infinite dimensional Hilbert space.

Example 1. Assume that $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis for H. A simple calculation shows that $\{\Lambda_i\}_{i=1}^{\infty} = \{e_i \otimes e_i\}_{i=1}^{\infty}$ is a parseval g-frame for H but it is not a Hilbert-Schmidt sequence.

Lemma 12. If dim $H < \infty$, then every g-Riesz basis for H with respect to $\{H_i\}_{i \in I}$ is a Hilbert-Schmidt sequence.

Proof. Let $\{e_k\}_{k=1}^n$ be an orthonormal basis for H. Suppose that $\{\Lambda_i\}_{i\in I}$ is a g-Riesz basis for H. Then there exist an orthonormal basis $\{Q_i\}_{i\in I}$ for H and an invertible operator T on H such that $\Lambda_i = Q_i T$. Therefore, by Theorem 2.4.10 in [10], we have

$$\sum_{i \in I} \|\Lambda_i\|_2^2 = \sum_{i \in I} \|Q_i T\|_2^2 \le \|T\|^2 \sum_{i \in I} \|Q_i\|_2^2 = \|T\|^2 \sum_{i \in I} \sum_{k=1}^n \|Q_i e_k\|^2$$
$$= \|T\|^2 \sum_{k=1}^n \|e_k\|^2 = \|T\|^2 \dim H.$$

The following example shows that the above lemma is not true when H is an infinite dimensional Hilbert space.

Example 2. Suppose that $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis for H. For each $i \in \mathbb{N}$, we define

$$\Lambda_i: H \to \mathbb{C}, \quad \Lambda_i f = \langle f, e_i \rangle.$$

A simple calculation shows that for each $\alpha \in \mathbb{C}$, $\Lambda_i^* \alpha = \alpha e_i$. By Lemma 7, $\{\Lambda_i\}_{i=1}^{\infty}$ is a g-Riesz basis for H with respect to \mathbb{C} but it is not a Hilbert-Schmidt sequence.

Theorem 13. Let $\{\Lambda_i\}_{i \in I}$ be a Hilbert-Schmidt sequence for H with respect to $\{H_i\}_{i \in I}$. Then $S_{\Lambda} = T_{\Lambda}T_{\Lambda}^{*}$ is a trace class operator.

Proof. Let $S_{\Lambda} = U|S_{\Lambda}|$ be the polar decomposition of S_{Λ} , where U is a unique partial isometry on H. So $|S_{\Lambda}| = U^*S_{\Lambda}$, and we can write

$$|S_{\Lambda}| = U^* S_{\Lambda} = U^* T_{\Lambda} T_{\Lambda}^* = T_{\Lambda U} T_{\Lambda}^*,$$

where $T_{\Lambda U}$ is the synthesis operator of $\{\Lambda_i U\}_{i \in I}$. Suppose that $\{e_k\}_{k=1}^{\infty}$ is an orthonormal basis for H. Then

$$\|S_{\Lambda}\|_{1} = \sum_{k=1}^{\infty} \langle |S_{\Lambda}|e_{k}, e_{k}\rangle = \sum_{k=1}^{\infty} \langle T_{\Lambda}^{*}e_{k}, T_{\Lambda U}^{*}e_{k}\rangle = \sum_{k=1}^{\infty} \langle \{\Lambda_{i}e_{k}\}_{i\in I}, \{\Lambda_{i}Ue_{k}\}_{i\in I}\rangle$$

$$= \sum_{k=1}^{\infty} \sum_{i\in I} \langle \Lambda_{i}e_{k}, \Lambda_{i}Ue_{k}\rangle \leq \sum_{k=1}^{\infty} \sum_{i\in I} \|\Lambda_{i}e_{k}\| \|\Lambda_{i}Ue_{k}\|$$

$$\leq \sum_{i\in I} (\sum_{k=1}^{\infty} \|\Lambda_{i}e_{k}\|^{2})^{\frac{1}{2}} (\sum_{k=1}^{\infty} \|\Lambda_{i}Ue_{k}\|^{2})^{\frac{1}{2}}$$

$$= \sum_{i\in I} \|\Lambda_{i}\|_{2} \|\Lambda_{i}U\|_{2}, \qquad (23)$$

hence by Theorem 2.4.10 in [10] and (23),

$$||S_{\Lambda}||_{1} \le ||U|| \sum_{i \in I} ||\Lambda_{i}||_{2}^{2}.$$

Theorem 14. Let for each $i \in I$, $H_i \subseteq H$ and $\Lambda = {\Lambda_i}_{i \in I}$ and $\Theta = {\Theta_i}_{i \in I}$ be Hilbert-Schmidt sequences for H with respect to ${H_i}_{i \in I}$. Then the following assertions are equivalent:

 $\begin{array}{ll} (i) \ f = \sum_{i \in I} \Lambda_i^* \Theta_i f, & f \in H. \\ (ii) \ f = \sum_{i \in I} \Theta_i^* \Lambda_i f, & f \in H. \\ (iii) \ \langle f, g \rangle = \sum_{i \in I} \langle \Lambda_i f, \Theta_i g \rangle, & f, g \in H. \end{array}$

 $\begin{array}{ll} (iv) \ \|f\|^2 = \sum_{i \in I} \langle \Lambda_i f, \Theta_i f \rangle, & f \in H. \\ (v) \ For \ all \ orthonormal \ bases \ \{e_n\}_{n=1}^{\infty} \ and \ \{\gamma_m\}_{m=1}^{\infty} \ for \ H, \end{array}$

$$\langle e_n, \gamma_m \rangle = \sum_{i \in I} \langle \Lambda_i e_n, \Theta_i \gamma_m \rangle$$

(vi) For all orthonormal basis $\{e_n\}_{n=1}^{\infty}$ for H,

$$\langle e_n, e_m \rangle = \sum_{i \in I} \langle \Lambda_i e_n, \Theta_i e_m \rangle$$

Proof. The equivalence of $(i) \leftrightarrow (ii) \leftrightarrow (iii) \leftrightarrow (iv)$ are evident. $(v) \rightarrow (iii)$ For all $f, g \in H$, we have

$$\sum_{i \in I} \langle \Lambda_i f, \Theta_i g \rangle = \sum_{i \in I} \langle \Lambda_i (\sum_{n=1}^{\infty} \langle f, e_n \rangle e_n), \Theta_i (\sum_{m=1}^{\infty} \langle g, \gamma_m \rangle \gamma_m) \rangle$$
$$= \sum_{i \in I} \langle \sum_{n=1}^{\infty} \langle f, e_n \rangle \Lambda_i e_n, \sum_{m=1}^{\infty} \langle g, \gamma_m \rangle \Theta_i \gamma_m \rangle$$
$$= \sum_{i \in I} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \langle f, e_n \rangle \langle \gamma_m, g \rangle \langle \Lambda_i e_n, \Theta_i \gamma_m \rangle.$$
(24)

Since $\Lambda = {\Lambda_i}_{i \in I}$ and $\Theta = {\Theta_i}_{i \in I}$ are Hilbert-Schmidt sequences for H with respect to ${H_i}_{i \in I}$, by (24), we have

$$\sum_{i \in I} \langle \Lambda_i f, \Theta_i g \rangle = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \langle f, e_n \rangle \langle \gamma_m, g \rangle \langle e_n, \gamma_m \rangle = \langle f, g \rangle.$$

 $(iii) \rightarrow (v)$ It is evident.

 $(vi) \leftrightarrow (iii)$ It is similar to the proof of $(v) \leftrightarrow (iii)$.

Acknowledgements. The authors would like to thank the referee for the useful comments.

References

[1] A. Aldroubi, C. Cabrelli, U. Molter, Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for $L^2(\mathbb{R})$, Appl. Comput. Harmon. Anal. 17, 2 (2004), 119-140.

[2] O. Christensen, An introduction to frames and Riesz bases, Birkhauser, Boston, 2002.

[3] O. Christensen, Y. C. Eldar, *Oblique dual frames and shift-invariant spaces*, Appl. Comput. Harmon. Anal. 17 (2004), 48-68.

[4] I. Daubechies, A. Grossmann, Y. Meyer, *Painless nonorthogonal expansions*, J. Math. Phys. 27 (1986), 1271-1283.

[5] R. G. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72, 2 (1952), 341-366.

[6] Y. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl. 9, 1 (2003), 77-96.

[7] C. E. Heil, D. F. Walnut, *Continuous and discrete wavelet transforms*, SIAM Rev. 31 (1989), 628-666.

[8] A. Khosravi, K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342, 2 (2008), 1068-1083.

[9] J. -Z. Li, Y. -C. Zhu, *Exact g-frames in Hilbert spaces*, J. Math. Anal. Appl. 374 (2011), 201-209.

[10] G. J. Murphy, C^* -algebras and operator theory, Academic press, New York, 1990.

[11] A. Najati, M. H. Faroughi, A. Rahimi, *G-frames and stability of g-frames in Hilbert spaces*, Methods Funct. Anal. Topology 14, 3 (2008), 271-286.

[12] A. Najati, A. Rahimi, *Generalized frames in Hilbert spaces*, Bull. Iranian Math. Soc. 35, 1 (2009), 97-109.

[13] W. Sun, *G*-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.

[14] Y. C. Zhu, Characterization of g-frames and g-Riesz Bases in Hilbert spaces, Acta Math. Sin. 24, 10 (2008), 1727-1736.

Elnaz Osgooei Department of Sciences, Urmia University of Technology, Urmia, Iran email: e.osgooei@uut.ac.ir, osgooei@yahoo.com

Mohammad Hasan Faroughi Department of Mathematics, Islamic Azad University-Shabestar Branch, Shabestar, Iran email: *mhfaroughi@yahoo.com*