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ESTIMATION OF REINSURANCE PHT PREMIUM FOR AR(1)
PROCESS WITH INFINITE VARIANCE

H. Ouadjed, A. Yousfate

Abstract. The estimation of the price of an insurance risk is a very important
actuarial problem. This price has to reflect the property of the distribution of the
random variable describing the corresponding loss. If the loss variable has a heavy-
tailed distribution (i.e. distribution with an infinite variance) then, the risk measure
(as a measure of the risk premium) should be higher. In this paper, we extend
estimate of PHT premium developed by Necir et al [14] to autoregressive processes
with infinite variance.

2000 Mathematics Subject Classification: 60G52, 62G32, 91B30.

Keywords: Statistics of extreme values, Infinite variance processes, Wang’s pre-
mium principle.

1. Introduction

Quantifying the risk associated with a random financial outcome is an important
actuarial problem. Based on various systems of axioms, a number of risk measures
have been proposed in the literature, and their properties have been investigated.
On the subject, we refer to, for example, Wang [21, 23, 24] and Wirch and Hardy
[26]. Artzner et al. [1] proposed a set of four axioms for a coherent risk measure.
For loss variables X and Y a coherent measure µ is a real functional defined on a
space of random variables, satisfying the following axioms:

• Bounded above by the maximum loss: µ(X) ≤ max(X).

• Bounded below by the mean loss: µ(X) ≥ E(X).

• Scaler additive and multiplicative: µ(cX + d) = cµ(X) + d, for c ≥ 0, d ∈ R.

• Subadditivity : µ(X + Y ) ≤ µ(X) + µ(Y ).
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The first use of risk measures in actuarial science was the development of pre-
mium principles. These were applied to a loss distribution to determine an appro-
priate premium to charge for the risk. Some traditional premium principle examples
include: expected value, variance, standard deviation, modified variance, value at
risk, etc. (see for instance Rolski et al. [18]).

The class of the distortion risk measures are closely related to coherent measures.
They were introduced by Denneberg [6] and Wang [22] and have been applied to
a wide variety of insurance problems, most particularly to the determination of
insurance premiums. For example, if X ≥ 0 represents an insurance loss with
distribution function F , the distortion risk premium is defined by

µg(X) =

∫ ∞
0

g(1− FX(x))dx. (1)

Here g, the distortion function, is an increasing function defined on [0, 1] with
g(0) = 0 and g(1) = 1. If g is concave the distortion risk measure further satis-
fies the subadditivity and becomes coherent; see, e.g., Wirch and Hardy [26] and
Dhaene et al. [7].

Families of distortion risk measures

• Conditional tail expectation (CTE) (Hürlimann [9]): For 0 ≤ ν < 1, the
distortion function is

g(s) =

{
s/(1− ν) , 0 ≤ s < 1− ν,
1 , 1− ν < s ≤ 1,

and the risque measure becomes

CTEν(X) =
1

ν

∫ 1

1−ν
F−1X (t)dt.

• Wang Transform (WT) (Wang [23]): For the WT measure the distortion
function g(s) = φ(φ−1(s) + %), 0 ≤ % <∞, the measure can be defined by

WT%(X) =

∫ ∞
0

(φ(φ−1(1− FX(u)) + %))du

where φ(.) and φ−1(.), respectively, denote the cdf and the inverse of the
standard normal distribution, and parameter % reflects the level of systematic
risk and is called the market price of risk.
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• Proportional hazards transform(PHT) (Wang [21]): If g(s) = s1/ρ, ρ ≥ 1, the
distortion function is the power-law transformation and the associated risque
measure is

Πρ(X) =

∫ ∞
0

(1− FX(x))1/ρdx,

where ρ is called distortion parameter. The interpretation of the distortion
above is the following: The initial survival function S(x) = 1−F (x) is replaced
by the transformed survival function S∗ρ(x) = (S(x))1/ρ. Therefore, we have:

Πρ(X) =

∫ ∞
0

S∗ρ(x)dx.

The relationship between the initial and transformed survival functions can

also be written : logS∗ρ(x) =
1

ρ
logS(x), which implies

−d logS∗ρ(x)

dx
=

1

ρ

(
−d logS(x)

dx

)
.

Thus, the hazard functions associated with both distributions are proportional,
which explains the name of the risk measure.

Reinsurance PHT premium
Insurance companies often seek reinsurance to protect themselves against catas-
trophic losses. Reinsurance is the transfer of risk from a direct insurer (the cedent),
to a second insurance carrier. The reinsurance PHT premium with retention level
R > 0, is defined as follows

Πρ,R(X) =

∫ ∞
R

(1− FX(x))1/ρdx (2)

For high-excess loss layers (R→∞) Necir and Boukhetala [13], Vandewalle and
Beirlant [20] and Necir et al. [14] have proposed different asymptotically normal
estimators for Πρ,R based on samples of claim amounts of reinsurance covers of
heavy tailed i.i.d. risks.

Most applications in statistics need time dependence. To illustrate some results
on Πρ,R(X) estimation, we consider some models of ergodic processes, particularly
MA and AR processes driven by regularly varying tail innovation with infinite vari-
ance. For more information on this kind of processes see, for example, Mikosch and
Samorodnitsky [12], Samorodnitsky and Taqqu [19]. This paper is organized as fol-
lows: in Section 2 we introduce linear processes with infinite variance. In Section 3,
we construct a reinsurance PHT premium estimation for an AR(1) processe which
is the main result. In Section 4, we provide the proof of our result.
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2. Linear processes with infinite variance

We consider the moving average process of order infinity, written MA(∞) of the
form

Xt =
∞∑
j=0

cjεt−j , t ∈ Z, (3)

where the i.i.d. innovations εt, t ∈ Z are non-negative random variables having
distribution F for which S = 1 − F is regularly varying at infinity with index −α,
that is:

lim
v→∞

S(vx)

S(v)
= x−α, for any x > 0 and 1 < α < 2. (4)

We define the quantile function associated to the df F as F−1(s) = inf{x ∈ R :
F (x) ≥ s}, 0 < s < 1. Note that the condition (4) is equivalent to

lim
t→∞

U(tx)

U(t)
= x1/α, for any x > 0, (5)

where U(t) = F−1(1/t), t ≥ 1. To get asymptotic normality of estimators of pa-
rameters of extreme events, it is usual to assume the following extra second regular
variation condition, that involves a second order parameter η < 0:

lim
t→∞

(A(t))−1
(
U(tx)

U(t)
− x1/α

)
= x1/α

xη − 1

η
, for any x > 0, (6)

where A is a suitably chosen function of constant sign near infinity. Our concern is
with non-negative time series and we will assume that the coefficients cj are non-
negative satisfying

∑∞
j=0 cj <∞.

The moving average (3) has the same tail behavior as the innovations εt, t ∈ Z.
More precisely Datta and McCormick [3] proved that

lim
x→∞

P (Xt > x)

P (εt > x)
=
∞∑
j=0

cαj (7)

Examples of linear processes with infinite variance include finite-order autoregressive
AR, moving-average MA and autoregressive moving-average ARMA processes.

3. Estimating Πρ,R(Xt) for AR(1) process with infinite variance

Let us consider a finite sequence X0, X1, . . . , Xn of random variables which we sup-
pose verifying the autoregressive AR(1) process given by :

Xt = a1Xt−1 + εt, 0 ≤ t ≤ n (8)
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with 0 < a1 < 1, and εt be an i.i.d. innovations with common distribution F
satisfying (4), (6). There are two possible ways to estimate α:

1. Apply the Hill estimator [8] directly to Xt, i.e

1/α̂X =
1

k

k∑
i=1

log(Xn−i+2,n+1)− log(Xn−k+1,n+1),

where Xj,n+1 is the jth largest order statistic of Xt

2. Estimate autoregressive coefficient a1 with the consistent estimator

â1 =

∑n
t=1(Xt − X̄)(Xt+1 − X̄)∑n

t=1(Xt − X̄)2
,

where X̄ = n−1
∑n

t=1Xt (see, Davis and Resnik [4, 5]), then estimate the
residuals

ε̂t = Xt − â1Xt−1, 1 ≤ t ≤ n,

and apply Hill’s estimator to residuals, we get:

1/α̂ε̂ =
1

k

k∑
i=1

log(ε̂n−i+1,n)− log(ε̂n−k,n),

where ε̂j,n is the jth largest order statistic of ε̂t

Resnick and Stărică [17] demonstrated that the Hill estimator performs better in
the second approach. A similar result was proved by Ling and Peng [10]. The
autoregressive process Xt in (8) can be written as an MA(∞) like in (3) with cj = aj1,
for estimate the right extreme quantile F−1Xt

(1 − u), 0 < u < 1 relation (7) can be
written

lim
x→∞

1− FXt(x)

1− Fεt(x)
= 1/(1− aα1 ),

using the regular variation of 1− Fεt , we obtain the following relationship between
the corresponding right quantile functions:

lim
u↓0

F−1Xt
(1− u)

F−1εt (1− (1− aα1 )u)
= 1.

Then we approximate F−1Xt
(1−u) by F−1ε̂t

(1−(1−âα1 )u) ∼ F−1ε̂t
(1−u) (1− âα1 )−1/α

and estimate the latter by the Weissman estimator [25]
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ε̂n−k,n

(
n(1− âα̂ε̂

1 )u

k

)−1/α̂ε̂

(9)

Defining the estimator and main results
To estimate the risk measure Πρ,R(Xt), given in (2), when Xt is an AR(1) like
in (8), and R = F−1Xt

(1 − k/n) . Let k = kn be sequence of integer satisfying
1 < k < n, k →∞, k/n→ 0. We present now our risk measure Πρ,R(Xt) as

Πρ,R(Xt) = −
∫ k/n

0
s1/ρdF−1Xt

(1− s) (10)

To estimate Πρ,R we use derivation in (9). After an integration, we obtain the
following estimator

Π̂ρ,R(Xt) =
ρ(k/n)1/ρ

(
1− âα̂ε̂

1

)−1/α̂ε̂

α̂ε̂ − ρ
ε̂n−k,n, (11)

Theorem 1. Let Xt an AR(1) process satisfying (8), and assume that (6) holds
with t−1/ρF−1ε (1 − 1/t) → 0 as t → ∞, and k = kn be such that k → ∞, k/n → 0.
If
√
nA(k/n)→ 0 as n→∞ and if the distortion parameter ρ ∈ [1, α[, then

(k/n)−1/ρk1/2

ε̂n−k,n
[Π̂ρ,R(Xt)−Πρ,R(Xt)]

D−→ N (0, σ2(ρ, α, a1)), as n→∞,

σ2(ρ, α, a1) = (1− aα1 )−2/α
ρα2 − 2ρ2α+ ρ3 + ρα4

α3(α− ρ)2
.

Proof. Denoting

H1 = ρ(k/n)1/ρ
(

1− âα̂ε̂
1

)−1/α̂ε̂

ε̂n−k,n

{
1

α̂ε̂ − ρ
− 1

α− ρ

}

H2 =
ρ(k/n)1/ρ

(
1− âα̂ε̂

1

)−1/α̂ε̂

F−1ε̂ (1− k/n)

α− ρ

{
ε̂n−k,n

F−1ε̂ (1− k/n)
− 1

}
,

H3 =
ρ(k/n)1/ρ

(
1− âα̂ε̂

1

)−1/α̂ε̂

F−1ε̂ (1− k/n)

α− ρ
−
∫ ∞
F−1
X (1−k/n)

(SX(x))1/ρdx.
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Then, we can verifies easily that

Π̂ρ,R(Xt)−Πρ,R(Xt) = H1 +H2 +H3.

H1 can be written also

H1 =
ρα̂ε̂α

(
1− âα̂ε̂

1

)−1/α̂ε̂

(k/n)1/ρε̂n−k,n

(α̂ε̂ − ρ)(α− ρ)

{
1

α̂ε̂
− 1

α

}
Since α̂ and â1 are consistent estimators of α and a1 respectively, then for all

large n

H1 = (1 + oP (1))
ρα2 (1− aα1 )−1/α (k/n)1/ρε̂n−k,n

(α− ρ)2

{
1

α̂ε̂
− 1

α

}
and

H2 = (1 + oP (1))
ρ(k/n)1/ρ (1− aα1 )−1/α F−1ε̂t

(1− k/n)

α− ρ

{
ε̂n−k,n

F−1ε̂t
(1− k/n)

− 1

}
In view of Theorems 2.3 and 2.4 of Csörgő and Mason [2], Peng [16], and Necir

et al. [14] has been shown that under the second-order condition (6) and for all large
n

√
kα

(
1

α̂ε̂
− 1

α

)
=

√
n

k
Bn

(
1− k

n

)
−
√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds+ oP (1),

√
k

(
ε̂n−k,n

F−1ε̂t
(1− k/n)

− 1

)
= −α−1

√
n

k
Bn

(
1− k

n

)
+ oP (1),

and
ε̂n−k,n

F−1ε̂t
(1− k/n)

= 1 + oP (1),

where {Bn(s), 0 ≤ s ≤ 1, n = 1, 2, . . .} is the sequence of Brownian bridges. This
implies that for all large n

H1 = (1 + oP (1))
ρα (1− aα1 )−1/α (k/n)1/ρF−1ε̂t

(1− k/n)

k1/2(α− ρ)2

(√
n

k
Bn

(
1− k

n

)

−
√
n

k

∫ 1

1−k/n

Bn(s)

1− s
ds+ oP (1)

)

H2 = (1 + oP (1))
ρ (1− |a1|α)−1/α (k/n)1/ρF−1ε̂t

(1− k/n)

k1/2α(α− ρ)

(
−
√
n

k
Bn

(
1− k

n

)
+ oP (1)

)
.

187



H. Ouadjed, A. Yousfate – Estimation of reinsurance PHT premium . . .

We have frome Necir et al [14] and Necir et al [15]

(k/n)−1/ρk1/2

F−1ε̂ (1− k/n)
(H3) = o(1) n→∞,

and
(k/n)−1/ρk1/2

F−1ε̂ (1− k/n)
(H1 +H2) = ∆n + oP (1),

with

∆n = (1− aα1 )−1/α
[

ρα

(α− ρ)2

(
ρ

α2
− 1

α
+ 1

)
(n/k)1/2Bn(1− k/n)

− ρα

(α− ρ)2
(n/k)1/2

∫ 1

1−k/n

Bn(s)

1− s
ds

]
,

then the asymptotic variance of
(k/n)−1/ρk1/2

F−1ε̂ (1− k/n)
(Π̂ρ,R(Xt) − Πρ,R(Xt)) will be

computed by

σ2(ρ, θ, α) = lim
n→∞

E(∆n)2 = (1− aα1 )−2/α
ρα2 − 2ρ2α+ ρ3 + ρα4

α3(α− ρ)2
.
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