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NAN-HUR-STABILITY OF AN ADDITIVE MAPPING

A. Ghaffaripour, H. Azadi Kenary, A. Toorani, A. Heidarzadegan

Abstract. In this paper, using the fixed point alternative approach and direct
method we investigate the generalized Hyers-Ulam stability of the following additive
functional equation

H

(
x+ y

2
+ z

)
=
H(x) +H(y)

2
+H(z) (1)

in non-Archimedean normed spaces.
The concept of Hyers-Ulam-Rassias stability (briefly, HUR-stability) originated from
Th. M. Rassias stability theorem that appeared in his paper: On the stability of
the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

2000 Mathematics Subject Classification: 39B22, 39B52, 42S10.

Keywords: Hyers-Ulam stability, non-Archimedean normed spaces, fixed point
method.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique
element having the 0 valuation, |rs| = |r||s| and the triangle inequality holds, i.e.,

|r + s| ≤ max{|r|, |s|}.

A field K is called a valued field if K carries a valuation. The usual absolute values
of R and C are examples of valuations.
Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by |r + s| ≤ max{|r|, |s|}, for all
r, s ∈ K, then the function | · | is called a non-Archimedean valuation and the field is
called a non-Archimedean field. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ≥ 1. A
trivial example of a non-Archimedean valuation is the function | · | taking everything
except for 0 into 1 and |0| = 0.
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Definition 1. Let X be a vector space over a field K with a non-Archimedean
valuation | · |. A function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if the
following conditions hold:

(a) ‖x‖ = 0 if and only if x = 0 for all x ∈ X;
(b) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;
(c) the strong triangle inequality holds:

‖x+ y‖ ≤ max{‖x‖, ‖y‖}

for all x, y ∈ X.
Then (X, ‖ · ‖) is called a non-Archimedean normed space(briefly NAN-spaces).

Definition 2. Let {xn} be a sequence in a non-Archimedean normed space X.
(a) A sequence {xn}∞n=1 in a non-Archimedean space is a Cauchy sequence iff, the
sequence {xn+1 − xn}∞n=1 converges to zero.
(b) The sequence {xn} is said to be convergent if, for any ε > 0, there are a positive
integer N and x ∈ X such that ‖xn − x‖ ≤ ε, for all n ≥ N . Then the point x ∈ X
is called the limit of the sequence {xn}, which is denote by limn→∞ xn = x.
(c) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

Definition 3. Let X be a set. A function d : X×X → [0,∞] is called a generalized
metric on X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1. Let (X,d) be a complete generalized metric space and J : X → X be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X,
either

d(Jnx, Jn+1x) =∞ (2)

for all nonnegative integers n or there exists a positive integer n0 such that
(a) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <∞};
(d) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

The first stability problem concerning group homomorphisms was raised by Ulam
[26] in 1940. In the next year, Hyres [14] gave a positive answer to the above question
for additive groups under the assumption that the groups are Banach spaces. In
1978, Rassias [20] proved a generalization of Hyres’ theorem for additive mappings.
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Theorem 2. (Th.M. Rassias) Let f : X → Y be a mapping from a normed vector
space X into a Banach space Y subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖r + ‖y‖r) (3)

for all x, y ∈ X , where ε and r are constants with ε > 0 and r < 1. Then the limit
L(x) := limn→∞

f(2nx)
2n exists for all x ∈ X and L : X → Y is the unique linear

mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖r (4)

for all x ∈ X. Also, if for each x ∈ X the function f(tx) is continuous in t ∈ R,
then L is R-linear.

The result of Rassias has influenced the development of what is now called the
Hyers-Ulam-Rassias stability problem for functional equations. In 1994, a general-
ization of Rassias’s theorem was obtained by Gǎvruta [12] by replacing the bound
ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y).
The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called a quadratic
functional equation. In particular, every solution of the quadratic functional equa-
tion is said to be a quadratic mapping. In 1983, a generalized Hyers-Ulam stability
problem for the quadratic functional equation was proved by Skof [25] for mappings
f : X → Y , where X is a normed space and Y is a Banach space. In 1984, Cholewa
[5] noticed that the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group and, in 2002, Czerwik [6] proved the generalized Hyers-Ulam
stability of the quadratic functional equation.
The stability problems of several functional equations have been extensively inves-
tigated by a number of authors and there are many interesting results concerning
this problem ([1]- [4],[7]–[11], [17], [19]- [24]).
In 1897, Hensel [13] has introduced a normed space which does not have the Archime-
dean property. It turned out that non-Archimedean spaces have many nice applica-
tions ( [15], [16], [18]).
In this paper, we prove the generalized Hyers-Ulam stability of the following func-
tional equation

H
(x+ y

2
+ z
)

=
H(x) +H(y)

2
+H(z) (5)

in non-Archimedean spaces.
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2. Non-Archimedean stability of Eq.(5): a fixed point method

Throughout this section, using the fixed point alternative approach we prove the gen-
eralized Hyers-Ulam stability of functional equation (5) in non-Archimedean normed
spaces.
Also, in this section we assume that X is a non-Archimedean normed space and that
Y is a complete non-Archimedean space. Let |2| 6= 1.

Definition 4. Let £ : X3 → [0,∞) be a function such that there exists an L < 1
with

|2|£
(x

2
,
y

2
,
z

2

)
≤ L£(x, y, z) (6)

for all x, y, z ∈ X. Let H : X → Y be a mapping satisfying∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ £(x, y, z) (7)

for all x, y, z ∈ X. Then there is a unique additive mapping R : X → Y such that

‖H(x)−K(x)‖Y ≤
L£(x, x, x)

|2|(1− L)
(8)

Proof. Putting x = y = z in (7), we have∥∥∥2H
(x

2

)
−H(x)

∥∥∥
Y
≤ £

(x
2
,
x

2
,
x

2

)
(9)

for all x ∈ X . Consider the set S := {G : X → Y } and the generalized metric d in
S defined by

d(H,G) = inf
{
µ ∈ (0,+∞) : ‖G(x)−H(x)‖Y ≤ µ£(x, x, x), ∀x ∈ X

}
, (10)

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [17], Lemma 2.1).
Now, we consider a linear mapping J : S → S such that

JG(x) := 2G
(x

2

)
(11)

for all x ∈ X. Let G,K ∈ S be such that d(G,H) = λ. Then ‖G(x) −H(x)‖Y ≤
ε£(x, x, x) for all x ∈ X and so

‖JG(x)− JH(x)‖Y =
∥∥∥2G

(x
2

)
− 2H

(x
2

)∥∥∥
Y
≤ |2|λ£

(x
2
,
x

2
,
x

2

)
≤ λL

for all x ∈ X . Thus d(G,H) = ε implies that d(JG, JH) ≤ Lλ. This means that

d(JG, JH) ≤ Ld(G,H) (12)
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for all G,H ∈ S. It follows from (9) that

d(H,JH) ≤ L

|2|
<∞. (13)

By Theorem (1), there exists a mapping K : X → Y satisfying the following:
(1) K is a fixed point of J , that is,

K
(x

2

)
=
K(x)

2
(14)

for all x ∈ X. The mapping K is a unique fixed point of J in the set

Ω = {H ∈ S : d(G,H) <∞}. (15)

This implies that K is a unique mapping satisfying (14) such that there exists
µ ∈ (0,∞) satisfying

‖H(x)−K(x)‖Y ≤ µ£(x, x, x) (16)

for all x ∈ X.
(2) d(JnH,K)→ 0 as n→∞. This implies the equality

lim
n→∞

2nH
( x

2n

)
= K(x) (17)

for all x ∈ X.
(3) d(H,K) ≤ d(H,JH)

1−L with H ∈ Ω, which implies the inequality

d(H,K) ≤ L

|2|(1− L)
. (18)

This implies that the inequality (8) holds. On the other hand, By (7), we get∥∥∥K(x+ y

2
+ z
)
− K(x) +K(y)

2
−K(z)

∥∥∥
Y
≤ lim

n→∞
Ln£(x, y, z)

for all x, y, z ∈ X and n ∈ N. Thus, the mapping R : X → Y is additive, as
desired.

Corollary 3. Let θ ≥ 0 and q be a real number with 0 < q < 1. Let H : X → Y be
a mapping satisfying∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ θ(‖x‖q + ‖y‖q + ‖z‖q) (19)
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for all x, y, z ∈ X. Then

K(x) = lim
n→∞

2nH
( x

2n

)
(20)

exists for all x ∈ X and K : X → Y is a unique additive mapping such that

‖H(x)−K(x)‖ ≤ 3θ‖x‖q

|2|(|2|q−1 − 1)
(21)

for all x ∈ X .

Proof. The proof follows from Theorem (4) by taking

ζ(x, y, z) = θ(‖x‖q + ‖y‖q + ‖z‖q) (22)

for all x, y, z ∈ X. In fact, if we choose L = |2|1−q, then we get the desired result.

Similarly, we have the following and then we omit the proof.

Theorem 4. Let £ : X3 → [0,∞) be a function such that there exists an L < 1
with

ζ(x, y, z) ≤ |2|L£
(x

2
,
y

2
,
z

2

)
(23)

for all x, y, z ∈ X. Let H : X → Y be a mapping satisfying∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ £(x, y, z) (24)

for all x, y, z ∈ X. Then

K(x) = lim
n→∞

H(2nx)

2n
(25)

exists for all x ∈ X and defines a unique additive mapping K : X → Y such that

‖H(x)−K(x)‖ ≤ 1

|2| − |2|L
£(x, x, x) (26)

Proof. It follows from (9) that∥∥∥H(x)− 1

2
H(2x)

∥∥∥ ≤ 1

|2|
£(x, x, x) (27)

for all x ∈ X . The rest of the proof is similar to the proof of Theorem (4).
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Corollary 5. Let θ ≥ 0 and r1, r2, r3 ∈ R+ be real numbers with r1 + r2 + r3 > 1.
Let H : X → Y be a mapping satisfying∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ θ(‖x‖r1 .‖y‖r2 .‖z‖r3) (28)

for all x, y, z ∈ X . Then

K(x) = lim
n→∞

H(2nx)

2n
(29)

exists for all x ∈ X and K : X → Y is a unique additive mapping such that

‖H(x)−K(x)‖ ≤ θ‖x‖r1+r2+r3

|2| − |2|r1+r2+r3
(30)

for all x ∈ X.

Proof. The proof follows from Theorem (4) by taking

£(x, y, z) = θ(‖x‖r1 .‖y‖r2 .‖z‖r3) (31)

for all x, y, z ∈ X . In fact, if we choose L = |2|r1+r2+r3−1, then we get the desired
result.

3. Non-Archimedean Hyers-Ulam stability of Eq.(5): a direct method

Throughout this section, using direct method we prove the generalized Hyers-Ulam
stability of functional equation (5) in non-Archimedean normed spaces.
Also, in this section we assume that G is a commutative semigroup and X is a
complete non-Archimedean space.

Theorem 6. Let ω : G3 → [0,+∞) be a function such that

lim
n→∞

|2|nω
( x

2n
,
y

2n
,
z

2n

)
= 0 (32)

for all x, y, z ∈ G and let for each x ∈ G the limit

∇(x) = lim
n→∞

max
{
|2|kω

( x
2k
,
x

2k
,
x

2k

)
; 0 ≤ k < n

}
(33)

exists. Suppose that Q : G→ X is a mapping satisfies∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ ω(x, y, z). (34)
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Then
<(x) := lim

n→∞
2nH

( x
2n

)
(35)

exists for all x ∈ G and defines an additive mapping < : G→ X such that

||H(x)−<(x)|| ≤ ∇(x) (36)

Moreover, if

lim
j→∞

lim
n→∞

max
{
|2|kω

( x
2k
,
x

2k
,
x

2k

)
; j ≤ k < n+ j

}
= 0 (37)

then < is the unique additive mapping satisfying (36).

Proof. Putting x = y = z in (34), we get∥∥∥2H
(x

2

)
−H(x)

∥∥∥ ≤ ω(x
2
,
x

2
,
x

2

)
(38)

for all x ∈ G. Replacing x by x
2n in (38), we obtain∥∥∥2n+1H

( x

2n+1

)
− 2nH

( x
2n

)∥∥∥ ≤ |2|nω( x
2n
,
x

2n
,
x

2n

)
(39)

It follows from (32) and (39) that the sequence
{

2nH( x
2n )
}
n≥1

is a Cauchy sequence.

SinceX is complete, so
{

2nH( x
2n )
}
n≥1

is convergent. Set <(x) := limn→∞ 2nH
(

x
2n

)
.

Using induction one can show that∥∥∥2nH
( x

2n

)
−H(x)

∥∥∥
Y
≤ max

{
|2|kω

( x
2k
,
x

2k
,
x

2k

)
; 0 ≤ k < n

}
. (40)

for all n ∈ N and all x ∈ G. By taking n to approach infinity in (40), and using
(33), one obtains (36). By (32) and (42), we get∥∥∥K(x+ y

2
+ z
)
− K(x) +K(y)

2
−H(z)

∥∥∥
Y
≤ lim

n→∞
|2|nω

( x
2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ G. Therefore the function < : G → X satisfies (5). To prove the
uniqueness property of <, Let = : G→ X be another function satisfying (36). Then∥∥∥=(x)−<(x)

∥∥∥
Y

= lim
n→∞

|2|n
∥∥∥=( x

2n

)
−<

( x
2n

)∥∥∥
Y

≤ lim
k→∞

|2|nmax
{∥∥∥=( x

2n

)
−H

( x
2n

)∥∥∥
Y
,
∥∥∥H( x

2n

)
−<

( x
2n

)∥∥∥
Y

}
≤ lim

j→∞
lim
n→∞

max
{
|2|kω

( x
2k
,
x

2k
,
x

2k

)
; j ≤ k < n+ j

}
= 0

for all x ∈ G. Therefore = = <, and the proof is complete.
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Corollary 7. Let ξ : [0,∞)→ [0,∞) be a function satisfying

ξ(|2|−1t) ≤ ξ(|2|−1)ξ(t) (t ≥ 0) ξ(|2|−1) < |2|−1 (41)

Let κ > 0 and H : G→ X be a mapping satisfying∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ κ(ξ(|x|) + ξ(|y|) + ξ(|z|)). (42)

for all x, y, z ∈ G. Then there exists a unique additive mapping < : G → X such
that

||H(x)−<(x)|| ≤ 3κξ(|x|) (43)

Proof. Defining ω : G3 → [0,∞) by ω(x, y, z) := κ(ξ(|x|) + ξ(|y|) + ξ(|z|)). Applying
Theorem (6), we get desired results.

Theorem 8. Let ω : G3 → [0,+∞) be a function such that

lim
n→∞

|2|−nω(2nx, 2ny, 2nz) = 0 (44)

for all x, y, z ∈ G and let for each x ∈ G the limit

∇(x) = lim
n→∞

max
{
|2|−kω(2kx, 2ky, 2kz); 0 ≤ k < n

}
(45)

exists. Suppose that f : G→ X be a mapping satisfies∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ ω(x, y, z). (46)

Then

<(x) := lim
n→∞

H(2nx)

2n
(47)

exists for all x ∈ G and defines an additive mapping < : G→ X, such that

||H(x)−<(x)|| ≤ |2|−1∇(x) (48)

Moreover, if

lim
j→∞

lim
n→∞

max
{
|2|−kω(2kx, 2kx, 2kx); j ≤ k < n+ j

}
= 0 (49)

then < is the unique mapping satisfying (48).
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Proof. Putting x = y = z in (46), we get∥∥∥H(x)− H(2x)

2

∥∥∥ ≤ |2|−1ω(x, x, x) (50)

for all x ∈ G. Replacing x by 2nx in (50), we obtain∥∥∥H(2nx)

2n
− H(2n+1x)

2n+1

∥∥∥ ≤ |2|−(n+1)ω(2nx, 2nx, 2nx) (51)

It follows from (44) and (51) that the sequence
{

H(2nx)
2n

}
n≥1

is convergent. Set

<(x) := limn→∞
H(2nx)

2n . On the other hand, it follows from (51) that∥∥∥H(2px)

2p
− H(2qx)

2q

∥∥∥ ≤ max
{∥∥∥H(2kx)

2k
− H(2k+1x)

2k+1

∥∥∥ ; p ≤ k < q
}

≤ 1

|2|
max

{
|2|−kω(2kx, 2kx, 2kx); p ≤ k < q

}
for all x ∈ G and all non-negative integers p, q with q > p ≥ 0. Letting p = 0 and
passing the limit q →∞ in the last inequality and using (45), we obtain (48). The
rest of the proof is similar to the proof of Theorem (6).

Corollary 9. Let ξ : [0,∞)→ [0,∞) be a function satisfying

ξ(|2|t) ≤ ξ(|2|)ξ(t) (t ≥ 0), ξ(|2|) < |2| (52)

Let κ > 0 and f : G→ X be a mapping satisfying∥∥∥H(x+ y

2
+ z
)
− H(x) +H(y)

2
−H(z)

∥∥∥
Y
≤ κ(ξ(|x|).ξ(|y|).ξ(|z|)). (53)

for all x, y, z ∈ G. Then, there exists a unique additive mapping = : G → X such
that

||Q(x)−=(x)|| ≤ κξ3(|x|)
|2|

(54)

Proof. Define ζ : G3 → [0,∞) by ζ(x, y, z) := κ(ξ(|x|).ξ(|y|).ξ(|z|)) and apply The-
orem (8) to get the result.
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