ON A FAMILY OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS

D. Olufunmilayo Makinde

ABSTRACT. In this paper, we introduce and study a new subclass $M(w, \alpha, \beta, \gamma)$ of meromorphically univalent functions with positive coefficients. We first obtained a necessary and sufficient conditions for a function to be in the class $M(w, \alpha, \beta, \gamma)$, we then investigated the convex combination of certain meromorphic functions as well as the distortion and convolution properties.

2000 Mathematics Subject Classification: 30C45.

Keywords: Meromorphic, Distortion, Convolution.

1. INTRODUCTION

Let M_p denote the class of functions f(z) of the form:

$$f(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_n z^n \ (a_n \ge 0, p \in N = \{1, 2, 3, ...\})$$
(1)

which are analytic and univalent in the punctured unit disk

$$D = \{ z : z \in C \text{ and } 0 < |z| < 1 \}$$

and which have a simple pole at the origin (z = 0) with residue 1 there. Altintas et al [1] defines the function $M(p, \alpha, \beta)$ as the function $f(z) \in M_p$ satisfying the inequality:

$$\operatorname{Re}\{zf(z) - \alpha z^2 f'(z)\} > \beta \tag{2}$$

for some $\alpha(\alpha > 1)$ and $\beta(0 \le \beta < 1)$, for all $z \in D$. Other subclasses of the class M_p were studied recently by Cho et al [2,3]

Let $A_w(z)$ denote the set of functions analytic in D given by

$$f(z) = \frac{1 - \alpha}{z - w} + \sum_{n=1}^{\infty} a_n (z - w)^n$$
(3)

which have a simple pole at (z = w) with residue $1 - \alpha$, $0 \le \alpha < 1$ there, $z_1 \in D$ and w is an arbitrary fixed point in D.

Firas Ghanim and Maslina Darus obtained various properties of the function of the form $~\sim$

$$f(z) = \frac{1}{z-p} + \sum_{n=1}^{\infty} a_n z^n$$

with fixed second coefficient. We define the function f(z) in $A_w(z)$ to be in the class $M(w, \alpha, \beta, \gamma)$ if it satisfies the inequality:

$$\operatorname{Re}\{(z-w)f(z) - \beta(z-w)^2 f'(z)\} > \gamma$$
(4)

for some $\beta(\beta > 1)$, $\alpha(\alpha < 1)$ and $\gamma(0 \le \gamma < 1)$, for all $z, w \in D$. The purpose of this paper is to investigate some properties of the functions belonging to the class $M(w, \alpha, \beta, \gamma)$.

2. MAIN RESULTS

Theorem 1. Let the function f(z) be in the class $A_w(z)$. Then $A_w(z)$ belong to the class $M(w, \alpha, \beta, \gamma)$ if and only if

$$\sum_{n=1}^{\infty} (n\beta - 1)a_n \le (1 - \alpha)(1 + \beta) - \gamma \tag{5}$$

Proof. Let f(z) be as in (3), suppose that

$$f(z) \in M(w, \alpha, \beta, \gamma)$$

Then we have from (4) that

$$\operatorname{Re}\{(z-w)(\frac{1-\alpha}{z-w} + \sum_{n=1}^{\infty} a_n(z-w)^n) - \beta(z-w)^2(-\frac{1-\alpha}{(z-w)^2} + \sum_{n=1}^{\infty} na_n(z-w)^{n-1})\}$$
$$= \operatorname{Re}\{1-\alpha + \sum_{n=1}^{\infty} a_n(z-w)^{n+1} + \beta(1-\alpha) - \sum_{n=1}^{\infty} \beta na_n(z-w)^{n+1}\}$$
$$= \operatorname{Re}\{(1-\alpha)(1+\beta) - \sum_{n=1}^{\infty} (n\beta - 1)a_n(z-w)^{n+1}\} > \gamma \quad (z,w \in D)$$

If we choose z - w to be real and let $z - w \to 1^-$, we get

$$(1-\alpha)(1+\beta) - \sum_{n=1}^{\infty} (n\beta - 1)a_n \ge \gamma \quad (\beta > 1; 0 \le \gamma < 1)$$

which is equivalent to (5) Conversely, let us suppose that the inequality (5) holds. Then we have:

$$|(z-w)f(z) - \beta(z-w)^2 f'(z) - (1-\alpha)(1+\alpha)|$$

= $|-\sum_{n=1}^{\infty} (n\beta - 1)a_n(z-w)^{n+1}| \le \sum_{n=1}^{\infty} (n\beta - 1)a_n|(z-w)|^{n+1}$
 $\le (1-\alpha)(1+\beta) - \gamma, \quad (z,w \in D, \ \beta > 1, \ 0 \le \alpha < 1, \ 0 \le \gamma < 1)$

which implies that $f(z) \in M(w, \alpha, \beta, \gamma)$ Finally, we note that the assertion (5) of theorem 1 is sharp, the external function being:

$$f(z) = \frac{1-\alpha}{z-w} + \frac{(1-\alpha)(1+\beta) - \gamma}{n\beta - 1} z^n, \quad n \in \mathbb{N} = \{1, 2, 3, \dots\}$$

Corollary 2. Let f(z) be in $A_w(z)$. If $f(z) \in M(w, \alpha, \beta, \gamma)$, then

$$a_n \le \frac{(1-\alpha)(1+\beta)-\gamma}{n\beta-1}$$
 $n \ge 1$

Theorem 3. Let the function f(z) be in $A_w(z)$ and the function g(z) defined by

$$\frac{1-\alpha}{z-w} + \sum_{n=1}^{\infty} b_n (z-w)^n, \quad b_n \ge 0$$
(6)

be in the same class $M(w, \alpha, \beta, \gamma)$. Then the function h(z) defined by

$$h(z) = (1 - \lambda)f(z) + \lambda g(z) = \frac{1 - \alpha}{z - w} + \sum_{n=1}^{\infty} c_n (z - w)^n$$

also in the class $M(w, \alpha, \beta, \gamma)$, where $c_n = (1 - \lambda)a_n + \lambda b_n$; $0 \le \lambda \le 1$

Proof. Suppose that each of f(z), g(z) is in the class $M(w, \alpha, \beta, \gamma)$ hen by (5) we have

$$\sum_{n=1}^{\infty} (n\beta - 1)c_n = \sum_{n=1}^{\infty} (n\beta - 1)[(1 - \lambda)a_n + \lambda b_n]$$

= $(1 - \lambda)\sum_{n=1}^{\infty} (n\beta - 1)a_n + \sum_{n=1}^{\infty} (n\beta - 1)b_n$
 $\leq (1 - \lambda)(1 - \alpha)(1 + \beta) - \gamma + \lambda)(1 - \alpha)(1 + \beta) - \gamma$
= $(1 - \alpha)(1 + \beta) - \gamma$ ($0 \leq \alpha < 1, \beta > 1, 0 \leq \gamma, 0 \leq \lambda \leq 1$)

This completes the proof of Theorem 2.

Distortion Theorem

Theorem 4. Let $f(z) \in M(w, \alpha, \beta, \gamma)$, then

$$\frac{1-\alpha}{|z-w|} - \frac{(1-\alpha)(1+\beta) - \gamma}{n\beta - 1} |z-w|^n \le |f(z)| \le |f(w)| \le \frac{1-\alpha}{|z-w|} + \frac{(1-\alpha)(1+\beta) - \gamma}{n\beta - 1} |z-w|^n$$
(7)

The result is sharp for the function f(z) given by

$$|f(z)| = \frac{1-\alpha}{|z-w|} - \frac{(1-\alpha)(1+\beta)-\gamma}{n\beta-1} |z-w|^n \le |, \ \ 0 \le \alpha < 1, \ \beta > 1, \ 0 \le \gamma < 1, \ n \in \mathbb{N}$$
(8)

Proof. Since

$$\sum_{n=1}^{\infty} a_n \le \frac{(1-\alpha)(1+\beta) - \gamma}{n\beta - 1}, \quad 0 \le \alpha < 1, \ \beta > 1, \ 0 \le \gamma < 1, \ n \in N$$
(9)

and

$$\sum_{n=1}^{\infty} na_n \le n \left[\frac{(1-\alpha)(1+\beta) - \gamma}{n\beta - 1} \right], \quad 0 \le \alpha < 1, \ \beta > 1, \ 0 \le \gamma < 1, \ n \in N$$
(10)

For $|f(z)| \in M(w, \alpha, \beta, \gamma)$, we have

$$\begin{aligned} |f(z)| &\geq \frac{1-\alpha}{|z-w|} - |z-w|^n \sum_{n=1}^{\infty} a_n \\ &\geq \frac{1-\alpha}{|z-w|} - \frac{(1-\alpha)(1+\beta) - \gamma}{n\beta - 1} |z-w|^n \end{aligned}$$

and

$$\begin{split} |f(z)| &\leq \quad \frac{1-\alpha}{|z-w|} + |z-w|^n \sum_{n=1}^{\infty} a_n \\ &\leq \quad \frac{1-\alpha}{|z-w|} + \frac{(1-\alpha)(1+\beta) - \gamma}{n\beta - 1} |z-w|^n \end{split}$$

which complete the proof of the theorem 3.

Theorem 5. Let $f(z) \in M(w, \alpha, \beta, \gamma)$, then

$$\frac{1-\alpha}{|z-w|^2} - \frac{n[(1-\alpha)(1+\beta)-\gamma]}{n\beta-1}|z-w|^{n-1} \le |f'(z)| \le |f(w)| \le \\ \le \frac{1-\alpha}{|z-w|^2} + \frac{n[(1-\alpha)(1+\beta)-\gamma]}{\beta-1}|z-w|^{n-1}$$

Proof. We find from (3) and (10) that

$$|f'(z)| \geq \frac{1-\alpha}{|z-w|^2} - n|z-w|^{n-1} \sum_{n=1}^{\infty} a_n$$

$$\geq \frac{1-\alpha}{|z-w|^2} - \frac{n[(1-\alpha)(1+\beta) - \gamma]}{n\beta - 1} |z-w|^{n-1}$$

and

$$\begin{aligned} f'(z)| &\leq \frac{1-\alpha}{|z-w|^2} + |z-w|^{n-1} \sum_{n=1}^{\infty} a_n \\ &\geq \frac{1-\alpha}{|z-w|^2} + \frac{n[(1-\alpha)(1+\beta)-\gamma]}{n\beta-1} |z-w|^{n-1} \end{aligned}$$

which complete the proof of the theorem 4.

Convolution Properties

Let the convolution of two complex-valued meromorphic functions

$$f_1(z) = \frac{1-\alpha}{z-w} + \sum_{n=1}^{\infty} a_{n1}(z-w)^n$$
 and $f_1(z) = \frac{1-\alpha}{z-w} + \sum_{n=1}^{\infty} a_{n1}(z-w)^n$

be defined by

$$F(z) = (f_1(z) * f_2(z)) = (f_1 * f_2)(z)\frac{1-\alpha}{z-w} + \sum_{n=1}^{\infty} a_{n1}a_{n2}(z-w)^n$$

Theorem 6. Let the function F(z) be in the class $A_w(z)$. Then F(z) belong to the class $M(w, \alpha, \beta, \gamma)$ if and only if

$$\sum_{n=1}^{\infty} (n\beta - 1)a_{n1}a_{n2} \le (1 - \alpha)(1 + \beta) - \gamma$$

Proof. Following the procedure in he proof of the Theorem 1, we obtain the result.

Theorem 7. Let the function F(z) be in the class $A_w(z)$ and the function G(z) be defined by $\frac{1-\alpha}{z-w} + \sum_{n=1}^{\infty} b_{n1}b_{n2}(z-w)^n, \quad b_{n1}b_{n2} \ge 0$ $\frac{1-\alpha}{z-w} + \sum_{n=1}^{\infty} a_{n1}a_{n2}(z-w)^n$ be in the same class $M(w, \alpha, \beta, \gamma)$. Then the function H(z) defined by

$$H(z) = (1 - \lambda)F(z) + \lambda G(z) = \frac{1 - \alpha}{z - w} + \sum_{n=1}^{\infty} c_n (z - w)^n$$

is also in the class $M(w, \alpha, \beta, \gamma)$, where $c_n = (1 - \lambda)a_{n1}a_{n2} + \lambda b_{n1}b_{n2}$; $0 \le \lambda \le 1$ *Proof.* Suppose that each of F(z), G(z) is in the class $M(w, \alpha, \beta, \gamma)$. Then by (5) we have

$$\sum_{n=1}^{\infty} (n\beta - 1) = \sum_{n=1}^{\infty} (n\beta - 1)[(1 - \lambda)a_{n1}a_{n2} + \lambda b_{n1}b_{n2}]$$

= $(1 - \lambda)\sum_{n=1}^{\infty} (n\beta - 1)a_{n1}a_{n2} + \lambda \sum_{n=1}^{\infty} (n\beta - 1)b_{n1}b_{n2}]$
 $\leq (1 - \lambda)(1 - \alpha)(1 + \beta) - \gamma + \lambda(1 - \alpha)(1 + \beta) - \gamma$
= $(1 - \alpha)(1 + \beta) - \gamma$ ($0 \leq \alpha < 1, \beta > 1, 0 \leq \gamma < 1, 0 \leq \lambda \leq 1$)

This completes the proof of Theorem 6.

References

[1] O. Altintas., Irmak H and Srivasta H.M., A family of meromorphically univalent functions with positive coefficient, DMS-689-IR 1994.

[2] Cho, N.E., S. Owa, Lee S.H., and Altintas O., *Generalization class of certain meromorphic univalent functions with positive coefficients*, Kyungypook Math. J. 29, 133-139 1969.

[3] Cho, N.E., Lee S.H., S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4, 43-50 1987.

[4] Ghanim F. and Darus M., On a certain subclass of meromorphic univalent functions with fixed second positive coefficients, Surveys in Mathematics and Applications 5 49-60 2010.

Deborah Olufunmilayo Makinde

Department of Mathematics, Faculty of Science,

Obafemi Awolowo University,

Ile-Ife, Nigeria

email: domakinde.comp@gmail.com, dmakinde@oauife.edu.ng