ON A FAMILY OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS

D. Olufunmilayo Makinde

Abstract. In this paper, we introduce and study a new subclass $M(w, \alpha, \beta, \gamma)$ of meromorphically univalent functions with positive coefficients. We first obtained a necessary and sufficient conditions for a function to be in the class $M(w, \alpha, \beta, \gamma)$, we then investigated the convex combination of certain meromorphic functions as well as the distortion and convolution properties.

2000 Mathematics Subject Classification: 30C45.
Keywords: Meromorphic, Distortion, Convolution.

1. Introduction

Let M_{p} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0, p \in N=\{1,2,3, \ldots\}\right) \tag{1}
\end{equation*}
$$

which are analytic and univalent in the punctured unit disk

$$
D=\{z: z \in C \text { and } 0<|z|<1\}
$$

and which have a simple pole at the origin $(z=0)$ with residue 1 there. Altintas et al [1] defines the function $M(p, \alpha, \beta)$ as the function $f(z) \in M_{p}$ satisfying the inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{z f(z)-\alpha z^{2} f^{\prime}(z)\right\}>\beta \tag{2}
\end{equation*}
$$

for some $\alpha(\alpha>1)$ and $\beta(0 \leq \beta<1)$, for all $z \in D$. Other subclasses of the class M_{p} were studied recently by Cho et al $[2,3]$
Let $A_{w}(z)$ denote the set of functions analytic in D given by

$$
\begin{equation*}
f(z)=\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} a_{n}(z-w)^{n} \tag{3}
\end{equation*}
$$

D. Olufunmilayo Makinde - On a Family of Meromorphic Functions . . .
which have a simple pole at $(z=w)$ with residue $1-\alpha, 0 \leq \alpha<1$ there, $z_{1} \in D$ and w is an arbitrary fixed point in D.
Firas Ghanim and Maslina Darus obtained various properties of the function of the form

$$
f(z)=\frac{1}{z-p}+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

with fixed second coefficient. We define the function $f(z)$ in $A_{w}(z)$ to be in the class $M(w, \alpha, \beta, \gamma)$ if it satisfies the inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{(z-w) f(z)-\beta(z-w)^{2} f^{\prime}(z)\right\}>\gamma \tag{4}
\end{equation*}
$$

for some $\beta(\beta>1), \alpha(\alpha<1)$ and $\gamma(0 \leq \gamma<1)$, for all $z, w \in D$.
The purpose of this paper is to investigate some properties of the functions belonging to the class $M(w, \alpha, \beta, \gamma)$.

2. Main Results

Theorem 1. Let the function $f(z)$ be in the class $A_{w}(z)$. Then $A_{w}(z)$ belong to the class $M(w, \alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n \beta-1) a_{n} \leq(1-\alpha)(1+\beta)-\gamma \tag{5}
\end{equation*}
$$

Proof. Let $f(z)$ be as in (3), suppose that

$$
f(z) \in M(w, \alpha, \beta, \gamma)
$$

Then we have from (4) that

$$
\begin{aligned}
& \operatorname{Re}\left\{(z-w)\left(\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} a_{n}(z-w)^{n}\right)-\beta(z-w)^{2}\left(-\frac{1-\alpha}{(z-w)^{2}}+\sum_{n=1}^{\infty} n a_{n}(z-w)^{n-1}\right)\right\} \\
& =\operatorname{Re}\left\{1-\alpha+\sum_{n=1}^{\infty} a_{n}(z-w)^{n+1}+\beta(1-\alpha)-\sum_{n=1}^{\infty} \beta n a_{n}(z-w)^{n+1}\right\} \\
& =\operatorname{Re}\left\{(1-\alpha)(1+\beta)-\sum_{n=1}^{\infty}(n \beta-1) a_{n}(z-w)^{n+1}\right\}>\gamma \quad(z, w \in D)
\end{aligned}
$$

If we choose $z-w$ to be real and let $z-w \rightarrow 1^{-}$, we get

$$
(1-\alpha)(1+\beta)-\sum_{n=1}^{\infty}(n \beta-1) a_{n} \geq \gamma \quad(\beta>1 ; 0 \leq \gamma<1)
$$

which is equivalent to (5) Conversely, let us suppose that the inequality (5) holds. Then we have:

$$
\begin{gathered}
\left|(z-w) f(z)-\beta(z-w)^{2} f^{\prime}(z)-(1-\alpha)(1+\alpha)\right| \\
=\left|-\sum_{n=1}^{\infty}(n \beta-1) a_{n}(z-w)^{n+1}\right| \leq \sum_{n=1}^{\infty}(n \beta-1) a_{n}|(z-w)|^{n+1} \\
\leq(1-\alpha)(1+\beta)-\gamma, \quad(z, w \in D, \beta>1,0 \leq \alpha<1,0 \leq \gamma<1)
\end{gathered}
$$

which implies that $f(z) \in M(w, \alpha, \beta, \gamma)$ Finally, we note that the assertion (5) of theorem 1 is sharp, the external function being:

$$
f(z)=\frac{1-\alpha}{z-w}+\frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1} z^{n}, \quad n \in N=\{1,2,3, \ldots\}
$$

Corollary 2. Let $f(z)$ be in $A_{w}(z)$. If $f(z) \in M(w, \alpha, \beta, \gamma)$, then

$$
a_{n} \leq \frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1} \quad n \geq 1
$$

Theorem 3. Let the function $f(z)$ be in $A_{w}(z)$ and the function $g(z)$ defined by

$$
\begin{equation*}
\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} b_{n}(z-w)^{n}, \quad b_{n} \geq 0 \tag{6}
\end{equation*}
$$

be in the same class $M(w, \alpha, \beta, \gamma)$. Then the function $h(z)$ defined by

$$
h(z)=(1-\lambda) f(z)+\lambda g(z)=\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} c_{n}(z-w)^{n}
$$

also in the class $M(w, \alpha, \beta, \gamma)$, where $c_{n}=(1-\lambda) a_{n}+\lambda b_{n} ; \quad 0 \leq \lambda \leq 1$
Proof. Suppose that each of $f(z), g(z)$ is in the class $M(w, \alpha, \beta, \gamma)$ hen by (5) we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}(n \beta-1) c_{n} & =\sum_{n=1}^{\infty}(n \beta-1)\left[(1-\lambda) a_{n}+\lambda b_{n}\right] \\
& =(1-\lambda) \sum_{n=1}^{\infty}(n \beta-1) a_{n}+\sum_{n=1}^{\infty}(n \beta-1) b_{n} \\
& \leq(1-\lambda)(1-\alpha)(1+\beta)-\gamma+\lambda)(1-\alpha)(1+\beta)-\gamma \\
& =(1-\alpha)(1+\beta)-\gamma \quad(0 \leq \alpha<1, \beta>1,0 \leq \gamma, 0 \leq \lambda \leq 1)
\end{aligned}
$$

This completes the proof of Theorem 2.

Distortion Theorem

Theorem 4. Let $f(z) \in M(w, \alpha, \beta, \gamma)$, then

$$
\begin{align*}
\frac{1-\alpha}{|z-w|}-\frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1}|z-w|^{n} & \leq|f(z)| \leq|f(w)| \leq \\
& \leq \frac{1-\alpha}{|z-w|}+\frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1}|z-w|^{n} \tag{7}
\end{align*}
$$

The result is sharp for the function $f(z)$ given by
$|f(z)|=\frac{1-\alpha}{|z-w|}-\frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1}|z-w|^{n} \leq \mid, \quad 0 \leq \alpha<1, \beta>1,0 \leq \gamma<1, n \in N$

Proof. Since

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \leq \frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1}, \quad 0 \leq \alpha<1, \beta>1,0 \leq \gamma<1, n \in N \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n a_{n} \leq n\left[\frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1}\right], \quad 0 \leq \alpha<1, \beta>1,0 \leq \gamma<1, n \in N \tag{10}
\end{equation*}
$$

For $|f(z)| \in M(w, \alpha, \beta, \gamma)$, we have

$$
\begin{aligned}
|f(z)| & \geq \frac{1-\alpha}{|z-w|}-|z-w|^{n} \sum_{n=1}^{\infty} a_{n} \\
& \geq \frac{1-\alpha}{|z-w|}-\frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1}|z-w|^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
|f(z)| & \leq \frac{1-\alpha}{|z-w|}+|z-w|^{n} \sum_{n=1}^{\infty} a_{n} \\
& \leq \frac{1-\alpha}{|z-w|}+\frac{(1-\alpha)(1+\beta)-\gamma}{n \beta-1}|z-w|^{n}
\end{aligned}
$$

which complete the proof of the theorem 3 .

Theorem 5. Let $f(z) \in M(w, \alpha, \beta, \gamma)$, then

$$
\begin{aligned}
& \frac{1-\alpha}{|z-w|^{2}}-\frac{n[(1-\alpha)(1+\beta)-\gamma]}{n \beta-1}|z-w|^{n-1} \leq\left|f^{\prime}(z)\right| \leq|f(w)| \leq \\
& \leq \frac{1-\alpha}{|z-w|^{2}}+\frac{n[(1-\alpha)(1+\beta)-\gamma]}{\beta-1}|z-w|^{n-1}
\end{aligned}
$$

Proof. We find from (3) and (10) that

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \geq \frac{1-\alpha}{|z-w|^{2}}-n|z-w|^{n-1} \sum_{n=1}^{\infty} a_{n} \\
& \geq \frac{1-\alpha}{|z-w|^{2}}-\frac{n[(1-\alpha)(1+\beta)-\gamma]}{n \beta-1}|z-w|^{n-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq \frac{1-\alpha}{|z-w|^{2}}+|z-w|^{n-1} \sum_{n=1}^{\infty} a_{n} \\
& \geq \frac{1-\alpha}{|z-w|^{2}}+\frac{n[(1-\alpha)(1+\beta)-\gamma]}{n \beta-1}|z-w|^{n-1}
\end{aligned}
$$

which complete the proof of the theorem 4.

Convolution Properties

Let the convolution of two complex-valued meromorphic functions

$$
f_{1}(z)=\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} a_{n 1}(z-w)^{n} \text { and } f_{1}(z)=\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} a_{n 1}(z-w)^{n}
$$

be defined by

$$
F(z)=\left(f_{1}(z) * f_{2}(z)\right)=\left(f_{1} * f_{2}\right)(z) \frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} a_{n 1} a_{n 2}(z-w)^{n}
$$

Theorem 6. Let the function $F(z)$ be in the class $A_{w}(z)$. Then $F(z)$ belong to the class $M(w, \alpha, \beta, \gamma)$ if and only if

$$
\sum_{n=1}^{\infty}(n \beta-1) a_{n 1} a_{n 2} \leq(1-\alpha)(1+\beta)-\gamma
$$

Proof. Following the procedure inthe proof of the Theorem 1, we obtain the result.

Theorem 7. Let the function $F(z)$ be in the class $A_{w}(z)$ and the function $G(z)$ be defined by
$\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} b_{n 1} b_{n 2}(z-w)^{n}, \quad b_{n 1} b_{n 2} \geq 0$
$\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} a_{n 1} a_{n 2}(z-w)^{n}$ be in the same class $M(w, \alpha, \beta, \gamma)$. Then the function $H(z)$ defined by

$$
H(z)=(1-\lambda) F(z)+\lambda G(z)=\frac{1-\alpha}{z-w}+\sum_{n=1}^{\infty} c_{n}(z-w)^{n}
$$

is also in the class $M(w, \alpha, \beta, \gamma)$, where $c_{n}=(1-\lambda) a_{n 1} a_{n 2}+\lambda b_{n 1} b_{n 2} ; \quad 0 \leq \lambda \leq 1$ Proof. Suppose that each of $F(z), G(z)$ is in the class $M(w, \alpha, \beta, \gamma)$. Then by (5) we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}(n \beta-1) & =\sum_{n=1}^{\infty}(n \beta-1)\left[(1-\lambda) a_{n 1} a_{n 2}+\lambda b_{n 1} b_{n 2}\right] \\
& \left.=(1-\lambda) \sum_{n=1}^{\infty}(n \beta-1) a_{n 1} a_{n 2}+\lambda \sum_{n=1}^{\infty}(n \beta-1) b_{n 1} b_{n 2}\right] \\
& \leq(1-\lambda)(1-\alpha)(1+\beta)-\gamma+\lambda(1-\alpha)(1+\beta)-\gamma \\
& =(1-\alpha)(1+\beta)-\gamma \quad(0 \leq \alpha<1, \beta>1,0 \leq \gamma<1,0 \leq \lambda \leq 1)
\end{aligned}
$$

This completes the proof of Theorem 6.

References

[1] O. Altintas., Irmak H and Srivasta H.M., A family of meromorphically univalent functions with positive coefficient, DMS-689-IR 1994.
[2] Cho, N.E., S. Owa, Lee S.H., and Altintas O., Generalization class of certain meromorphic univalent functions with positive coefficients, Kyungypook Math. J. 29, 133-139 1969.
[3] Cho, N.E., Lee S.H., S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4, 43-50 1987.
[4] Ghanim F. and Darus M., On a certain subclass of meromorphic univalent functions with fixed second positive coefficients, Surveys in Mathematics and Applications 5 49-60 2010.

Deborah Olufunmilayo Makinde
Department of Mathematics, Faculty of Science,
Obafemi Awolowo University,
Ile-Ife, Nigeria
email:domakinde.comp@gmail.com,dmakinde@oauife.edu.ng

