ON CERTAIN SUBCLASSES OF HOLOMORPHIC FUNCTIONS DEFINED ON THE UNIT DISK

C. Selvaraj, R. Geetha

Abstract. We present several results for certain subclasses of the uniformly α spirallike functions. These include distortion and covering theorems, extreme points, radii of close-to-convexity, starlikeness and convexity for these classes. We also obtain integral means inequalities with the extremal functions for these classes.

2000 Mathematics Subject Classification: 30C45.
Keywords: Regular, univalent, spirallike, uniformly convex, integral means, subordination.

1. Introduction, definition and preliminaries

Let A denote the class of all analytic functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are regular in the unit disk $\Delta=\{z:|z|<1\}$ and normalized by $f(0)=0$, $f^{\prime}(0)=1$. The function $f \in A$ is spirallike if $\operatorname{Re}\left\{e^{-i \alpha \frac{z f^{\prime}(z)}{f(z)}}\right\}>0$ for all $z \in \Delta$ and for some α with $|\alpha|<\pi / 2$. Also $f(z)$ is convex spirallike if $z f^{\prime}(z)$ is spirallike.

The class of uniformly convex functions was introduced and studied by various authors as in $[1,2,4,5,6]$.

Let T denote the class consisting of functions f of the form $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$, where a_{n} is a non-negative real number.

Silverman [9] introduced and investigated many subclasses of T.
We now defined $\operatorname{UCSPT}(\alpha, \beta)$ and $S P_{P} T(\alpha, \beta)$.
C. Selvaraj, R. Geetha - On certain subclasses of holomorphic functions ...

Definition 1. [7] Let $\operatorname{UCSPT}(\alpha, \beta)$ be the class of functions $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ which satisfy the condition

$$
R e e^{-i \alpha}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\beta
$$

$|\alpha|<\pi / 2,0 \leq \beta<1$.
Definition 2. [7] Let $S P_{P} T(\alpha, \beta)$ be the class of functions $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ which satisfy the condition

$$
\operatorname{Re} e^{-i \alpha} \frac{z f^{\prime}(z)}{f(z)} \geq\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|+\beta
$$

$|\alpha|<\pi / 2,0 \leq \beta<1$.
In this paper we discuss several results for the classes $U C S P T(\alpha, \beta)$ and $S P_{P} T(\alpha, \beta)$ like distortion bounds, extreme points, radii of close-to-convexity, starlikeness and convexity. We also obtain integral means inequality for the functions belonging to this class.

For proving our results we require the following lemmas.
Lemma 1. [7] Let $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0$. Then

$$
\sum_{n=2}^{\infty}(2 n-\cos \alpha-\beta) n a_{n} \leq \cos \alpha-\beta
$$

if and only if $f(z)$ is in $\operatorname{UCSPT}(\alpha, \beta)$.
Lemma 2. [7] $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0$ is in $S P_{P} T(\alpha, \beta)$ if and only if

$$
\sum_{n=2}^{\infty}(2 n-\cos \alpha-\beta) a_{n} \leq \cos \alpha-\beta
$$

2. Distortion and covering theorems

Theorem 3. If $f(z) \in U C S P T(\alpha, \beta)$ then

$$
r-\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} r^{2} \leq|f(z)| \leq r+\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} r^{2}
$$

C. Selvaraj, R. Geetha - On certain subclasses of holomorphic functions ...
and

$$
1-\frac{\cos \alpha-\beta}{4-\cos \alpha-\beta} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\cos \alpha-\beta}{4-\cos \alpha-\beta} r
$$

and the extreme points are

$$
f_{1}(z)=z, \quad f_{n}(z)=z-\frac{\cos \alpha-\beta}{n(2 n-\cos \alpha-\beta)} z^{n}, \quad n=2,3, \ldots
$$

The result is sharp for $f(z)=z-\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} z^{2}, z= \pm r$.
Proof. $f(z) \in U C S P T(\alpha, \beta)$. Hence by Lemma 1

$$
\begin{aligned}
& \sum_{n=2}^{\infty}(2 n-\cos \alpha-\beta) n a_{n} \leq \cos \alpha-\beta \\
& \quad \therefore \quad \sum_{n=2}^{\infty} a_{n} \leq \frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)}
\end{aligned}
$$

From $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ with $|z|=r(r<1)$ we have

$$
\begin{aligned}
|f(z)| & \leq r+\sum_{n=2}^{\infty} a_{n} r^{n} \\
& \leq r+\sum_{n=2}^{\infty} a_{n} r^{2} \\
& \leq r+\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} r^{2}
\end{aligned}
$$

Theorem 4. If $f(z) \in S P_{P} T(\alpha, \beta)$ then

$$
r-\frac{\cos \alpha-\beta}{4-\cos \alpha-\beta} r^{2} \leq|f(z)| \leq r+\frac{\cos \alpha-\beta}{4-\cos \alpha-\beta} r^{2}
$$

The result is sharp for $f(z)=z-\frac{\cos \alpha-\beta}{4-\cos \alpha-\beta} z^{2}, z= \pm r$.
Proof. From Lemma 2,

$$
\sum_{n=2}^{\infty}(2 n-\cos \alpha-\beta) a_{n} \leq \cos \alpha-\beta
$$

$$
\therefore \quad \sum_{n=2}^{\infty} a_{n} \leq \frac{\cos \alpha-\beta}{4-\cos \alpha-\beta}
$$

From $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ with $|z|=r(r<1)$ we have

$$
\begin{aligned}
|f(z)| & \leq r+\sum_{n=2}^{\infty} a_{n} r^{n} \\
& \leq r+\sum_{n=2}^{\infty} a_{n} r^{2} \\
& \leq r+\frac{\cos \alpha-\beta}{4-\cos \alpha-\beta} r^{2}
\end{aligned}
$$

Also

$$
1-\frac{2(\cos \alpha-\beta)}{4-\cos \alpha-\beta} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(\cos \alpha-\beta)}{4-\cos \alpha-\beta} r
$$

and the extreme points are

$$
f_{1}(z)=z, \quad f_{n}(z)=z-\frac{\cos \alpha-\beta}{2 n-\cos \alpha-\beta} z^{n}, \quad n=2,3, \ldots
$$

3. Integral means inequalities

In [9], Silverman found that the function $f_{2}(z)=z-\frac{z^{2}}{2}$ is often extremal over the family T. He applied this function to resolve his integral means inequality conjectured in [10] and settled in [11], that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\eta} d \theta, \text { for all } f \in T, \eta>0 \text { and } 0<r<1
$$

In [11], he also proved his conjecture for some subclasses of T.
Now, we prove Silverman's conjecture for the class of functions $\operatorname{UCSPT}(\alpha, \beta)$. An analogous result is also obtained for the family of functions $S P_{P} T(\alpha, \beta)$.

We need the concept of subordination between analytic functions and a subordination theorem of Littlewood [3].

Two given functions f and g, which are analytic in Δ, the function f is said to be subordinate to g in Δ if there exists a function w analytic in Δ with $w(0)=0$, $|w(z)|<1(z \in \Delta)$, such that $f(z)=g(w(z))(z \in \Delta)$. We denote this subordination by $f(z) \prec g(z)$.
C. Selvaraj, R. Geetha - On certain subclasses of holomorphic functions ...

Lemma 5. If the functions f and g are analytic in D with $f(z) \prec g(z)$ then for $\eta>0$ and $z=r e^{i \theta}(0<r<1)$

$$
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta
$$

Now we discuss the integral means inequalities for $\operatorname{UCSPT}(\alpha, \beta)$.
Theorem 6. Let $f \in U C S P T(\alpha, \beta),|\alpha|<\pi / 2,0 \leq \beta<1$ and $f_{2}(z)$ be defined by

$$
f_{2}(z)=z-\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} z^{2}
$$

Then for $z=r e^{i \theta}, 0<r<1$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}|f(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} d \theta \tag{2}
\end{equation*}
$$

Proof. For $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n},(2)$ is equivalent to

$$
\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty} a_{n} z^{n-1}\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} z\right|^{\eta} d \theta
$$

By Lemma 2 it is enough to prove that

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1} \prec 1-\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} z
$$

Assuming

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1}=1-\frac{\cos \alpha-\beta}{2(4-\cos \alpha-\beta)} w(z)
$$

and using $\sum_{n=2}^{\infty}(2 n-\cos \alpha-\beta) n a_{n} \leq \cos \alpha-\beta$ we obtain

$$
\begin{aligned}
|w(z)| & =\left|\sum_{n=2}^{\infty} \frac{2(4-\cos \alpha-\beta)}{\cos \alpha-\beta} a_{n} z^{n-1}\right| \\
& \leq|z| \sum_{n=2}^{\infty} \frac{n(2 n-\cos \alpha-\beta)}{\cos \alpha-\beta} a_{n} \leq|z|
\end{aligned}
$$

This completes the proof by Lemma 1.
C. Selvaraj, R. Geetha - On certain subclasses of holomorphic functions ...

For completeness, we now give the integral means inequality for the class $S P_{P} T(\alpha, \beta)$. The method of proving Theorem 7 is similar to that of Theorem 6.

Theorem 7. Let $f \in S P_{P} T(\alpha, \beta),|\alpha|<\pi / 2,0 \leq \beta<1$ and $f_{2}(z)$ is defined by $f(z)=z-\frac{\cos \alpha-\beta}{4-\cos \alpha-\beta} z^{2}$. Then for $z=r e^{i \theta}, 0<r<1$ we have

$$
\int_{0}^{2 \pi}|f(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} d \theta
$$

4. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 8. If $f(z) \in U C S P T(\alpha, \beta)$ then f is close-to-convex of order $\gamma(0 \leq \gamma<$ 1) in $|z|<r_{1}(\alpha, \beta, \gamma)$ where

$$
r_{1}(\alpha, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma)(2 n-\cos \alpha-\beta}{\cos \alpha-\beta}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

Proof. By a computation we have

$$
\left|f^{\prime}(z)-1\right|=\left|-\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1}
$$

Now, f is close-to-convex of order γ if we have the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n}{1-\gamma}\right) a_{n}|z|^{n-1} \leq 1 \tag{3}
\end{equation*}
$$

Considering the coefficient conditions required by Lemma 1 the above inequality (3) is true if $\left(\frac{n}{1-\gamma}\right)|z|^{n-1} \leq \frac{n(2 n-\cos \alpha-\beta)}{\cos \alpha-\beta}$ or if

$$
|z| \leq\left\{\frac{(1-\gamma)(2 n-\cos \alpha-\beta)}{\cos \alpha-\beta}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

This expression yields the bounds required by the above theorem.
Theorem 9. If $f(z) \in U C S P T(\alpha, \beta)$ then f is starlike of order γ $(0 \leq \gamma<1)$ in $|z|<r_{2}(\alpha, \beta, \gamma)$ where

$$
r_{2}(\alpha, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma) n(2 n-\cos \alpha-\beta)}{(n-\gamma)(\cos \alpha-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

C. Selvaraj, R. Geetha - On certain subclasses of holomorphic functions ...

Proof. By a computation we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=\left|-\frac{\sum_{n=2}^{\infty}(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} a_{n} z^{n-1}}\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

Now f is starlike of order γ if we have the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n-\gamma}{1-\gamma}\right) a_{n}|z|^{n-1} \leq 1 \tag{4}
\end{equation*}
$$

Considering the coefficient conditions required by Lemma 1 , the above inequality is true if $\left(\frac{n-\gamma}{1-\gamma}\right)|z|^{n-1} \leq \frac{n(2 n-\cos \alpha-\beta)}{\cos \alpha-\beta}$ or if

$$
|z| \leq\left\{\frac{(1-\gamma) n(2 n-\cos \alpha-\beta)}{(n-\gamma)(\cos \alpha-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

This last expression yields the bound required.
Theorem 10. If $f(z) \in U C S P T(\alpha, \beta)$ then f is convex of order γ $(0 \leq \gamma<1)$ in $|z|<r_{3}(\alpha, \beta, \gamma)$ where

$$
r_{3}(\alpha, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma)(2 n-\cos \alpha-\beta)}{(n-\gamma)(\cos \alpha-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

Proof. By a computation we have

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\left|-\frac{\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n} z^{n-1}}\right| \leq \frac{\sum_{n=2}^{\infty} n(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}}
$$

Now f is convex of order γ if we have the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n(n-\gamma)}{1-\gamma} a_{n}|z|^{n-1} \leq 1 \tag{5}
\end{equation*}
$$

C. Selvaraj, R. Geetha - On certain subclasses of holomorphic functions ...

Considering the coefficient conditions required by Lemma 1, the above inequality (5) is true if $\left(\frac{n(n-\gamma)}{1-\gamma}\right)|z|^{n-1} \leq \frac{n(2 n-\cos \alpha-\beta)}{\cos \alpha-\beta}$ or if

$$
|z| \leq\left\{\frac{(1-\gamma)(2 n-\cos \alpha-\beta)}{(n-\gamma)(\cos \alpha-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2 .
$$

This gives the bound required by the above theorem.
For completeness, we give without proof, theorems concerning the radii of close-to-convexity, starlikeness and convexity for the class $S P_{P} T(\alpha, \beta)$.

Theorem 11. If $f(z) \in S P_{P} T(\alpha, \beta)$ then f is close-to-convex of order $\gamma(0 \leq \gamma<1)$ in $|z|<r_{4}(\alpha, \beta, \gamma)$ where

$$
r_{4}(\alpha, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma)(2 n-\cos \alpha-\beta)}{n(\cos \alpha-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

Theorem 12. If $f(z) \in S P_{P} T(\alpha, \beta)$ then f is starlike of order $\gamma(0 \leq \gamma<1)$ in $|z|<r_{5}(\alpha, \beta, \gamma)$ where

$$
r_{5}(\alpha, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma)(2 n-\cos \alpha-\beta)}{(n-\gamma)(\cos \alpha-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

Theorem 13. If $f(z) \in S P_{P} T(\alpha, \beta)$ then f is convex of order $\gamma(0 \leq \gamma<1)$ in $|z|<r_{6}(\alpha, \beta, \gamma)$ where

$$
r_{6}(\alpha, \beta, \gamma)=\inf _{n}\left\{\frac{(1-\gamma)(2 n-\cos \alpha-\beta)}{n(n-\gamma)(\cos \alpha-\beta)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2
$$

References

[1] R. Bharathi, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang Journal of Mathematics, 28, 1 (1997), 17-32.
[2] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[3] J.E. Littlewood, On inequalities in the theory of functions, Proceedings of the London Mathematical Society, 23, 1 (1925), 481-519.
[4] W. Ma and D. Minda, Uniformly convex functions, Ann. Pol. Math., 57 (1992), 165-175.
C. Selvaraj, R. Geetha - On certain subclasses of holomorphic functions ...
[5] V. Ravichandran, C. Selvaraj and Rajalakshmi Rajagopal, On uniformly convex spiral functions and uniformly spirallike functions, Soochow Journal of Math., 29, 4 (2003), 393-405.
[6] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 18, 1 (1993), 189-196.
[7] C. Selvaraj and R. Geetha, On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions, International Journal of Contemporary Mathematical Sciences, 5, 37-40 (2010).
[8] C. Selvaraj and R. Geetha, On uniformly spirallike functions and a corresponding subclass of spirallike functions, Global Journal of Science Frontier Research, 10, 5 (2010), 36-41.
[9] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, 1 (1975), 109-116.
[10] H. Silverman, A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain J. Math., 21, 3 (1991), 1099-1125.
[11] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math., 23, 1 (1997), 169-174.
C. Selvaraj

Department of Mathematics, Presidency College
Chennai - 600 005, Tamil Nadu, India
email: pamc9439@yahoo.co.in
R. Geetha

Department of Mathematics, RMKCET
Puduvoyal, Chennai, Tamil Nadu, India
email: gbala89@yahoo.com

