ON GENERALIZED φ-RECURRENT TRANS-SASAKIAN MANIFOLDS

dedicated to late professor m.C.CHAKI

D. Debnath, A. Bhattacharyya

Abstract. The object of the present paper is to study generalized φ-recurrent trans-Sasakian manifolds.It is proved that a generalized φ-recurrent trans-Sasakian manifold is an Einstein manifold.Also we obtained a relation between the associated 1-forms A and B for a generalized φ-recurrent and generalized concircular φ-recurrent trans-Sasakian manifolds and finally proved that a three dimensional locally generalized φ-recurrent trans-Sasakian manifold is of constant curvature.

2000 Mathematics Subject Classification: 53C25.
Keywords: α - Sasakian, β - Kenmotsu, cosymplectic, generalized φ - recurrent.

1. Introduction

The notion of locally φ-symmetric Sasakian manifold was introduced by T. Takahashi [20] in 1977. φ-recurrent Sasakian manifold and generalized φ-recurrent Sasakian manifold were studied by the author [5] and [15] respectively.

Also J. A .Oubina in 1985 introduced a new class of almost contact metric structures which was a generalization of Sasakian [14], α-Sasakian [9], Kenmotsu [8], β-Kenmotsu [9] and cosymplectic [9] manifolds, which was called trans-Sasakian manifold [11]. After him many authors [3],[4], [5],[8],[10], [11], [12], [13], [14], [17], [18], [21], have studied various type of properties in trans-Sasakian manifold.

In the Gray-Hervella classification of almost Hermitian manifolds [7], there appears a class, W_{4}, of Hermitian manifolds which are closely related to locally conformal kaehler manifolds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [14] if the product manifold $M \times R$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}$ ([11], [12]) coincides with the class of trans-Sasakian structures of type (α, β).In fact, in [12], local nature of the two subclasses, namely C_{5} and C_{6} structures, of trans-Sasakian structures are characterized completely.In [18], trans-Sasakian structures of type (0,0), $(0, \beta)$ and $(\alpha, 0)$ are cosymplectic [1],
β-Kenmotsu [9] and α-Sasakian [9] respectively.In [21], it is proved that transSasakian structures are generalized quasi-Sasakian.Thus, trans-Sasakian structures also provide a large class of generalized quasi-Sasakian structures.

2. Preliminaries

Let M be an almost contact metric manifold [1] with an almost contact structure (φ, ξ, η, g), where φ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form and g is a compatible Riemannian metric such that,

$$
\begin{align*}
& \varphi^{2}=-I+\eta \otimes \xi,(b) \quad \eta(\xi)=1,(c) \quad \varphi(\xi)=0,(d) \quad \eta o \varphi=0 \tag{2.1}\\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{align*}
$$

$$
\begin{equation*}
g(X, \varphi Y)=-g(\varphi X, Y) \tag{2.3}
\end{equation*}
$$

$$
\text { (b) } g(X, \xi)=\eta(X)
$$

for all $X, Y \in T M$.
An almost contact structure (φ, ξ, η, g), on M is called trans-Sasakian structure [14] if $(M \times R, J, G)$ belongs to the class $W_{4}[7]$, where J is the almost complex structure on $M \times R$ defined by

$$
J(X, f d / d t)=(\varphi X-f \xi, \eta(X) d / d t)
$$

for all vector fields X on M and smooth functions f on $M \times R$, and G is the product metric on $M \times R$. This may be expressed by the condition [18]

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\varphi X, Y) \xi-\eta(Y) \varphi X) \tag{2.4}
\end{equation*}
$$

for some smooth functions α and β on M.
From (2.4) it follows that

$$
\begin{align*}
& \nabla_{X} \xi=-\alpha \varphi X+\beta(X-\eta(X) \xi) \tag{2.5}\\
& \left(\nabla_{X} \eta\right) Y=-\alpha g(\varphi X, Y)+\beta g(\varphi X, \varphi Y) \tag{2.6}
\end{align*}
$$

In [18], authors obtained some results which shall be useful for next sections. They are

$$
\begin{gather*}
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y)+2 \alpha \beta(\eta(Y) \varphi X-\eta(X) \varphi Y) \tag{2.7}\\
+(Y \alpha) \varphi X-(X \alpha) \varphi Y+(Y \beta) \varphi^{2} X-(X \beta) \varphi^{2} Y
\end{gather*}
$$

$$
\begin{gather*}
R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}-\xi \beta\right)(\eta(X) \xi-X) \tag{2.8}\\
2 \alpha \beta+\xi \alpha=0 \tag{2.9}\\
S(X, \xi)=\left(2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(2 n-1) X \beta-(\varphi X) \alpha \tag{2.10}\\
Q \xi=\left(2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \xi-(2 n-1) \operatorname{grad} \beta+\varphi(\operatorname{grad} \alpha) \tag{2.11}
\end{gather*}
$$

where R is the curvature tensor, S is the Ricci-tensor and r is the scalar curvature.Also

$$
\begin{equation*}
g(Q X, Y)=S(X, Y) \tag{2.12}
\end{equation*}
$$

Q being the symmetric endomorphism of the tangent space at each point corresponding to the Ricci-tensor S.
When

$$
\begin{equation*}
\varphi(\operatorname{grad} \alpha)=(2 n-1) \operatorname{grad} \beta, \tag{2.13}
\end{equation*}
$$

then (2.10) and (2.11) reduces to

$$
\begin{gather*}
S(X, \xi)=2 n\left(\alpha^{2}-\beta^{2}\right) \eta(X) \tag{2.14}\\
Q \xi=2 n\left(\alpha^{2}-\beta^{2}\right) \xi . \tag{2.15}
\end{gather*}
$$

Again a Sasakian manifold is said to be a φ-recurrent manifold if there exists a non zero 1 -form A such that

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=A(X) R(Y, Z) W \tag{2.16}
\end{equation*}
$$

for all vector fields X,Y,Z,W orthogonal to ξ. A Riemannian manifold ($M^{2 n+1}, g$) is called generalized recurrent [6], if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z) W=A(X) R(Y, Z) W+B(X)[g(Z, W) Y-g(Y, W) Z] \tag{2.17}
\end{equation*}
$$

where, A and B are two 1 -forms, B is non zero and these are defined by

$$
\begin{equation*}
g\left(X, \rho_{1}\right)=A(X) \text { and } \quad g\left(X, \rho_{2}\right)=B(X), \forall X \in T M \tag{2.18}
\end{equation*}
$$

ρ_{1} and ρ_{2} being the vector fields associated to the 1 -form A and B.
Definition 1. Trans-Sasakian manifold $\left(M^{2 n+1}, g\right)$ is called generalized φ-recurrent if its curvature tensor R satisfies the condition

$$
\begin{align*}
\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)= & A(W) R(X, Y) Z \tag{2.19}\\
& +B(W)[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where A and B are two 1-forms, B is non zero and these are defined by

$$
g\left(W, \rho_{1}\right)=A(W) \quad \text { and } \quad g\left(W, \rho_{2}\right)=B(W), \forall W \in T M
$$

ρ_{1} and ρ_{2} being the vector fields associated to the 1 -form A and B.
The notion of generalized φ-recurrent Kenmotsu manifolds was introduced by A.Basari and C.Murathan[2] and also generalizing the notion of φ-recurrency, the authors D.A.Patil, D.G.Prakasha and C.S.Bagewadi[15] introduced the notion of generalized φ-recurrent Sasakian manifolds. Motivated by the above studies, we have studied of generalized φ-recurrent trans-Sasakian manifolds and obtained some interesting results.

3. On GEneralized φ-RECURRENT TRANS-SASAKIAN MANIFOLD

In this section we consider a generalized φ-recurrent trans-Sasakian manifold.Then by virtue of (2.1) and (2.19) we have

$$
\begin{align*}
-\left(\nabla_{W} R\right) & (X, Y) Z+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi \tag{3.1}\\
& =A(W) R(X, Y) Z+B(W)[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

From (3.1) it follows that

$$
\begin{align*}
& -g\left(\left(\nabla_{W} R\right)(X, Y) Z, U\right)+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \eta(U) \tag{3.2}\\
= & A(W) g(R(X, Y) Z, U)+B(W)[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] .
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots, 2 n+1$, be an orthonormal basis of the tangent space at any point of the manifold.Then putting $X=U=e_{i}$ in (3.2) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{gather*}
-\left(\nabla_{W} S\right)(Y, Z)+\sum_{i=1}^{2 n+1} \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right) \tag{3.3}\\
=A(W) S(Y, Z)+2 n B(W) g(Y, Z)] .
\end{gather*}
$$

The second term of (3.3) by putting $Z=\xi$ takes the form $g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) g\left(e_{i}, \xi\right)$. Consider

$$
\begin{align*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) & =g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y\right) \xi, \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{3.4}
\end{align*}
$$

at $p \in M$.Since $\left\{e_{i}\right\}$ is an orthonormal basis, so $\nabla_{X} e_{i}=0$ at p.
Using (2.7), (2.1)(a) and (2.3)(b), we have

$$
\begin{align*}
g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right) & =g\left(\left(\alpha^{2}-\beta^{2}\right)\left(\eta\left(\nabla_{W} Y\right) e_{i}-\eta\left(e_{i}\right) \nabla_{W} Y\right)\right) \\
& +2 \alpha \beta\left(\eta\left(\nabla_{W} Y\right) \varphi e_{i}-\eta\left(e_{i}\right) \varphi\left(\nabla_{W} Y\right)\right. \\
& +\left(\nabla_{W} Y\right) \alpha\left(\varphi e_{i}\right)-\left(e_{i} \alpha\right) \varphi\left(\nabla_{W} Y\right) \tag{3.5}\\
& \left.+\left(\nabla_{W} Y\right) \beta \varphi^{2} e_{i}-\left(e_{i} \beta\right) \varphi^{(}\left(\nabla_{W} Y\right), \xi\right)=0 .
\end{align*}
$$

Using (3.5) in (3.4) we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{3.6}
\end{equation*}
$$

Since $\left(\nabla_{W} g\right)=0$, we have $\left.g\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)+g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)=0$, which implies

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{3.7}
\end{equation*}
$$

Using (2.5) in (3.7) we get

$$
\begin{align*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) & =-g\left(R\left(e_{i}, Y\right) \xi,-\alpha \varphi W+\beta(W-\eta(W) \xi)\right) \\
& -g\left(R\left(e_{i}, Y\right)-\alpha \varphi W+\beta(W-\eta(W) \xi), \xi\right) \tag{3.8}\\
& =\alpha g\left(R\left(e_{i}, Y\right) \xi, \varphi W\right)-\beta g\left(R\left(e_{i}, Y\right) \xi, W\right) \\
& +\alpha g\left(R\left(e_{i}, Y\right) \varphi W, \xi\right)-\beta g\left(R\left(e_{i}, Y\right) W, \xi\right)=0 .
\end{align*}
$$

Replacing Z by ξ in (3.3) and using (2.3)(b), (2.13) and (2.14) we have

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=-\left[2 n\left(\alpha^{2}-\beta^{2}\right) A(W)+2 n B(W)\right] \eta(Y) \tag{3.9}
\end{equation*}
$$

Now we know

$$
\left(\nabla_{W} S\right)(Y, \xi)=\nabla_{W} S(Y, \xi)-S\left(\nabla_{W} Y, \xi\right)-S\left(Y, \nabla_{W} \xi\right)
$$

Using (2.5) and (2.14) in the above relation we get, after a brief calculation

$$
\begin{align*}
\left(\nabla_{W} S\right)(Y, \xi) & =2 n\left(\alpha^{2}-\beta^{2}\right)[-\alpha g(\varphi W, Y)+\beta g(\varphi Y, \varphi W)]+\alpha S(Y, \varphi W) \tag{3.10}\\
& -S(Y, \beta W)+2 n \beta\left(\alpha^{2}-\beta^{2}\right) \eta(Y) \eta(W)
\end{align*}
$$

By virtue of (2.2), (3.10) reduces to

$$
\begin{align*}
\left(\nabla_{W} S\right)(Y, \xi) & =2 n\left(\alpha^{2}-\beta^{2}\right)[-\alpha g(Y, \varphi W)+\beta g(Y, W)] \tag{3.11}\\
& +\alpha S(Y, \varphi W)-\beta S(Y, W) .
\end{align*}
$$

From (3.9) and (3.11) we have

$$
\begin{gather*}
2 n\left(\alpha^{2}-\beta^{2}\right)[-\alpha g(Y, \varphi W)+\beta g(Y, W)]+\alpha S(Y, \varphi W)-\beta S(Y, W) \tag{3.12}\\
=-\left[2 n\left(\alpha^{2}-\beta^{2}\right) A(W)+2 n B(W)\right] \eta(Y) .
\end{gather*}
$$

Replacing $Y=\xi$ in (3.12) then using (2.1)(b), (2.3)(b), (2.13) and (2.14) we get

$$
\begin{equation*}
\left(\alpha^{2}-\beta^{2}\right) A(W)+B(W)=0 . \tag{3.13}
\end{equation*}
$$

Again replacing Y and W by φY and φW respectively in (3.12) and then using $(2.1)(a),(2.3)(a),(2.12),(2.13)$ and (2.15) we obtain

$$
\begin{equation*}
S(Y, W)=2 n\left(\alpha^{2}-\beta^{2}\right) g(Y, W) \tag{3.14}
\end{equation*}
$$

and

$$
S(\varphi Y, W)=2 n\left(\alpha^{2}-\beta^{2}\right) g(\varphi Y, W)
$$

Thus we can state
Theorem 1. A generalized φ-recurrent trans-Sasakian manifold $\left(M^{2 n+1}, g\right)$ satisfying $\varphi(\operatorname{grad} \alpha)=(2 n-1) \operatorname{grad} \beta$, is an Einstein manifold and more over, the 1-forms A and B are related as $\left(\alpha^{2}-\beta^{2}\right) A+B=0$.

Now from (2.19) and (2.16) we have

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y) Z=\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi \tag{3.15}\\
& \quad-a A(W) R(X, Y) Z+B(W)[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

Using Bianchi's identity in (3.15) and use (3.13) we get

$$
\begin{align*}
& A(W) R(X, Y) Z-\left(\alpha^{2}-\beta^{2}\right) A(W)[g(Y, Z) X-g(X, Z) Y] \tag{3.16}\\
+ & A(X) R(Y, W) Z-\left(\alpha^{2}-\beta^{2}\right) A(X)[g(W, Z) Y-g(Y, Z) W] \\
+ & A(Y) R(W, X) Z-\left(\alpha^{2}-\beta^{2}\right) A(Y)[g(X, Z) W-g(W, Z) X]=0 .
\end{align*}
$$

Putting $Y=Z=\left\{e_{i}\right\}$, where $\left\{e_{i}\right\}$ be an orthonormal basis of the tangent space at any point of the manifold, in (3.16) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
S\left(W, \rho_{1}\right)=-6 n\left(\alpha^{2}-\beta^{2}\right) A(W) \tag{3.16}
\end{equation*}
$$

From (3.16), we can state the following
Theorem 2. In a generalized φ-recurrent trans-Sasakian manifold ($M^{2 n+1}, g$), $n \geq 1$, $6 n\left(\alpha^{2}-\beta^{2}\right)$ is the eigen value of the Ricci-tensor corresponding to the eigen vector ρ_{1}, where ρ_{1} is the associated vector field of the 1 -form A.

4. On GENERALIZED CONCIRCULAR φ-RECURRENT TRANS-SASAKIAN MANIFOLD

Definition 2. A trans-Sasakian manifold $\left(M^{2 n+1}, \underline{g}\right)$ is called generalized concircular φ-recurrent if its concircular curvature tensor \bar{C} (Yano, K; Kon, M, 1984)

$$
\bar{C}(X, Y) Z=R(X, Y) Z-\frac{r}{2 n(2 n+1)}[g(Y, Z) X-g(X, Z) Y]
$$

satisfies the condition[21]

$$
\begin{align*}
\varphi^{2}\left(\left(\nabla_{W} \bar{C}\right)(X, Y) Z\right)= & A(W) \bar{C}(X, Y) Z \tag{4.1}\\
& +B(W)[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where A and B are two 1-forms, B is non zero and these are defined by

$$
g\left(W, \rho_{1}\right)=A(W) \quad \text { and } \quad g\left(W, \rho_{2}\right)=B(W), \forall W \in T M
$$

ρ_{1} and ρ_{2} being the vector fields associated to the 1 -form A and B.
Let us consider a generalized concircular φ-recurrent trans-Sasakian manifold.Then by virtue of $(2.1)(a)$ and (4.1) we have

$$
\begin{align*}
-\left(\nabla_{W} \bar{C}\right)(X, Y) Z & +\eta\left(\left(\nabla_{W} \bar{C}\right)(X, Y) Z\right) \xi \tag{4.2}\\
& =A(W) \bar{C}(X, Y) Z+B(W)[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

From (4.2) it follows that

$$
\begin{align*}
& -g\left(\left(\nabla_{W} \bar{C}\right)(X, Y) Z, U\right)+\eta\left(\left(\nabla_{W} \bar{C}\right)(X, Y) Z\right) \eta(U) \tag{4.3}\\
& \quad=A(W) g(\bar{C}(X, Y) Z, U)+B(W)[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots, 2 n+1$, be an orthonormal basis of the tangent space at any point of the manifold. Then putting $Y=Z=\left\{e_{i}\right\}$ in (4.3) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{align*}
-\left(\nabla_{W} S\right)(X, U)+ & \frac{\nabla_{W r} r}{2 n+1} g(X, U)+\left(\nabla_{W} S\right)(X, \xi) \eta(U)-\frac{\nabla_{W} r}{2 n+1} \eta(X) \eta(U) \tag{4.4}\\
& \left.=A(W)\left[S(X, U)-\frac{r}{2 n+1} g(X, U)\right]+2 n B(W) g(X, U)\right] .
\end{align*}
$$

Replacing U by ξ in (4.4) and using (2.3)(b), (2.13) and (2.14) we have

$$
\begin{align*}
& \text { 5) } \quad A(W)\left[2 n\left(\alpha^{2}-\beta^{2}\right)-\frac{r}{2 n+1}\right] \eta(X)+2 n B(W) \eta(X)=0 . \tag{4.5}\\
& \eta(W) \neq 0, \quad A(W)\left[2 n\left(\alpha^{2}-\beta^{2}\right)-\frac{r}{2 n+1}\right]+2 n B(W)=0 \\
& \text { 6) } \quad \text { i.e } \quad B(W)=A(W)\left[\frac{r}{2 n+1}-\left(\alpha^{2}-\beta^{2}\right)\right] . \tag{4.6}
\end{align*}
$$

So we get the following theorem
Theorem 3. In a generalized concircular φ-recurrent trans-Sasakian manifold $\left(M^{2 n+1}, g\right)$, the 1-forms A and B are related as (4.6).

5. Three dimensional locally generalized φ-RECurrent trans-Sasakian MANIFOLD

In a three dimensional Riemannian manifold $\left(M^{3}, g\right)$, we get

$$
\begin{align*}
R(X, Y) Z & =g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \tag{5.1}\\
& +\frac{r}{2}[g(X, Z) Y-g(Y, Z) X]
\end{align*}
$$

where Q is the Ricci-operator that is $S(X, Y)=g(Q X, Y)$ and r is the scalar curvature of the manifold.Now putting $Z=\xi$ in (5.1) and using (2.3)(b), (2.13) and (2.14) we get

$$
\begin{align*}
R(X, Y) \xi & =\eta(Y) Q X-\eta(X) Q Y+2 n\left(\alpha^{2}-\beta^{2}\right) \eta(Y) X-\eta(X) Y \tag{5.2}\\
& +\frac{r}{2}[\eta(X) Y-\eta(Y) X] .
\end{align*}
$$

Using (2.7) and (5.2) we have

$$
\begin{gather*}
\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y)+2 \alpha \beta(\eta(Y) \varphi X-\eta(X) \varphi Y) \\
+(Y \alpha) \varphi X-(X \alpha) \varphi Y+(Y \beta) \varphi^{2} X-(X \beta) \varphi^{2} Y \tag{5.3}
\end{gather*}
$$

$$
\begin{aligned}
& =\eta(Y) Q X-\eta(X) Q Y+2 n\left(\alpha^{2}-\beta^{2}\right) \eta(Y) X-\eta(X) Y \\
& +\frac{r}{2}[\eta(X) Y-\eta(Y) X]
\end{aligned}
$$

Again, putting $X=\xi$ we obtain

$$
\begin{align*}
Q Y & =\left\{\left(\alpha^{2}-\beta^{2}-\xi \beta\right)-2\left(\alpha^{2}-\beta^{2}\right)+\frac{r}{2}\right\} Y \tag{5.4}\\
& +\left[4\left(\alpha^{2}-\beta^{2}\right)-\left(\alpha^{2}-\beta^{2}-\xi \beta\right)-\frac{r}{2}\right] \eta(Y) \xi
\end{align*}
$$

It follows from (5.4) that

$$
\begin{equation*}
S(Y, Z)=\left\{\frac{r}{2}-\left(\alpha^{2}-\beta^{2}+\xi \beta\right)\right\} g(Y, Z)+\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right] \eta(Y) \eta(Z) \tag{5.5}
\end{equation*}
$$

Thus from (5.1), (5.4), and (5.5) we have

$$
\begin{align*}
R(X, Y) Z & =\left[\left(r+\frac{r}{2}\right)-2\left(\alpha^{2}-\beta^{2}+\xi \beta\right)\right][g(Y, Z) X-g(X, Z) Y] \\
& +\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right][g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi] \tag{5.6}\\
& +\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right][\eta(Y) \eta(Z) X-\eta(Z) \eta(X) Y]
\end{align*}
$$

Taking the covariant differentiation to the both sides of the equation (5.6) we get

$$
\begin{aligned}
\left(\nabla_{W} R\right)(X, Y) Z & =\frac{3 d r(W)}{2}[g(Y, Z) X-g(X, Z) Y] \\
& -\frac{3 d r(W)}{2}[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
& +\eta(Y) \eta(Z) X-\eta(Z) \eta(X) Y] \\
& -\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]\left(\nabla_{W} \xi\right) \\
& +\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right][\eta(Y) X-\eta(X) Y]\left(\nabla_{W} \eta\right)(Z) \\
& +\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right][g(Y, Z) \xi-\eta(Z) Y]\left(\nabla_{W} \eta\right)(X) \\
& -\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right][g(X, Z) \xi-\eta(Z) X]\left(\nabla_{W} \eta\right)(Y)
\end{aligned}
$$

We may assume that all the vector fields X, Y, Z, W are orthogonal to ξ
$\left(\nabla_{W} R\right)(X, Y) Z=\frac{3 d r(W)}{2}[g(Y, Z) X-g(X, Z) Y]$

$$
\begin{equation*}
\left.\left.+\left[3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta-\frac{r}{2}\right]\left[g(Y, Z) \nabla_{W} \eta\right)(X)-g(X, Z) \nabla_{W} \eta\right)(Y)\right] \tag{5.8}
\end{equation*}
$$

Applying φ^{2} to the both sides of (5.8)

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=\frac{3 d r(W)}{2}[g(Y, Z) X-g(X, Z) Y] \tag{5.9}
\end{equation*}
$$

Now,

$$
\begin{equation*}
A(W) R(X, Y) Z=\left[\frac{3 d r(W)}{2}-B(W)\right][g(Y, Z) X-g(X, Z) Y] \tag{5.10}
\end{equation*}
$$

Putting $W=\left\{e_{i}\right\}$, where $\left\{e_{i}\right\}, i=1,2,3$, be an orthonormal basis of the tangent space at any point of the manifold and taking summation over $i, 1 \leq i \leq 3$, we get

$$
R(X, Y) Z=\lambda[g(Y, Z) X-g(X, Z) Y]
$$

where $\quad \lambda=\frac{1}{A\left(e_{i}\right)}\left[\frac{3 d r\left(e_{i}\right)}{2}-B\left(e_{i}\right)\right]$ is the scalar, since A is non zero one form. Therefore, $\left(M^{3}, g\right)$ is of constant curvature λ.
Thus we the following theorem
Theorem 4. A three dimensional locally generalized φ-recurrent trans-Sasakian manifold is a manifold of constant curvature.

6. Example of generalized φ-RECURRENT TRANS-SASAKian MANIFOLD

Consider three dimensional manifold $M=\left\{(x, y, z) \in R^{3} \backslash z \neq 0\right\}$, where (x, y, z) are the standard coordinates of R^{3}. The vector fields

$$
\begin{equation*}
e_{1}=\frac{x}{z} \frac{\partial}{\partial x}, \quad e_{2}=\frac{y}{z} \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z} \tag{6.1}
\end{equation*}
$$

are linearly independent at each point of M.Let g be the Riemannian metric defined by

$$
\begin{align*}
& g\left(e_{1}, e_{1}\right)=1, \quad g\left(e_{2}, e_{2}\right)=1, g\left(e_{3}, e_{3}\right)=1 \tag{6.2}\\
& g\left(e_{1}, e_{2}\right)=0, \quad g\left(e_{1}, e_{3}\right)=0, \quad g\left(e_{2}, e_{3}\right)=0 .
\end{align*}
$$

Let η be the 1 -form defined by $\eta=g\left(X, e_{3}\right)$ for any vector field $X \in \chi(M)$. Let φ be the $(1,1)$ tensor field defined by

$$
\begin{equation*}
\varphi\left(e_{1}\right)=e_{2}, \quad \varphi\left(e_{2}\right)=-e_{1}, \quad \varphi\left(e_{3}\right)=0 \tag{6.3}
\end{equation*}
$$

Then using the linearity of φ and g we have
$\eta\left(e_{3}\right)=1, \quad \varphi^{2} X=-X+\eta(Z) e_{3}, \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)$,
for any $X, Y \in \chi(M)$.Hence for $e_{3}=\xi$, the structure defines an almost contact structure on M.Let ∇ be the Livi-Civita connection with respect to the metric g, then we obtain

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{2}, e_{3}\right]=\frac{1}{z} e_{2}, \quad\left[e_{1}, e_{3}\right]=\frac{1}{z} e_{1} . \tag{6.4}
\end{equation*}
$$

The Riemannian connection ∇ of the matric g is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \tag{6.5}\\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) .
\end{align*}
$$

Using (6.5), we get

$$
2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right)=2 g\left(\frac{1}{z} e_{1}, e_{1}\right)+2 g\left(e_{2}, e_{1}\right)=2 g\left(\frac{1}{z} e_{1}+e_{2}, e_{1}\right),
$$

since $g\left(e_{1}, e_{2}\right)=0$. Hence

$$
\begin{equation*}
\nabla_{e_{1}} e_{3}=\frac{1}{z} e_{1}+e_{2} \tag{6.6}
\end{equation*}
$$

Again from (6.5) we obtain

$$
2 g\left(\nabla_{e_{2}} e_{3}, e_{2}\right)=2 g\left(\frac{1}{z} e_{2}, e_{2}\right)-2 g\left(e_{1}, e_{2}\right)=2 g\left(\frac{1}{z} e_{2}-e_{1}, e_{2}\right),
$$

since $g\left(e_{1}, e_{2}\right)=0$.Hence we get

$$
\begin{equation*}
\nabla_{e_{2}} e_{3}=\frac{1}{z} e_{2}-e_{1} \tag{6.7}
\end{equation*}
$$

Again from (6.5) we obtain

$$
\begin{align*}
& \nabla_{e_{1}} e_{1}=-\frac{1}{z} e_{1}, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=-\frac{1}{z} e_{2}, \tag{6.8}\\
& \nabla_{e_{3}} e_{1}=0, \nabla_{e_{3}} e_{2}=0, \nabla_{e_{3}} e_{3}=0
\end{align*}
$$

The manifold M satisfies (2.5) with $\alpha=-1$ and $\beta=\frac{1}{z}$. Hence M is a trans Sasakian manifold.With the help of (6.6),(6.7) and (6.8) we get

$$
\begin{align*}
& R\left(e_{1}, e_{3}\right) e_{3}=-\frac{1}{z} e_{2}, R\left(e_{3}, e_{1}\right) e_{3}=\frac{1}{z} e_{2}, R\left(e_{1}, e_{2}\right) e_{3}=\frac{1}{z}\left(e_{1}-e_{2}\right), \tag{6.9}\\
& R\left(e_{1}, e_{1}\right) e_{3}=0, R\left(e_{1}, e_{3}\right) e_{1}=0, R\left(e_{1}, e_{3}\right) e_{2}=0
\end{align*}
$$

The vectors $\left\{e_{1}, e_{2}, e_{3}\right\}$ form a basis of the manifold M and so the vector can be written as $X=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\lambda_{3} e_{3}$ where $\lambda_{i} \in \Re^{3}, i=1,2,3$. Thus the covariant derivatives of the components of the curvature tensor are given by

$$
\left(\nabla_{X} R\right)\left(e_{1}, e_{3}\right) e_{3}=-\left(\frac{\lambda_{1}}{z}+\frac{\lambda_{3}}{z^{2}}\right) e_{1}+\left(\frac{2 \lambda_{3}}{z^{2}}+\frac{\lambda_{2}}{z^{2}}-\frac{\lambda_{1}}{z^{2}}-\frac{\lambda_{1}}{z}\right) e_{2}
$$

Applying φ^{2} to both sides of the above equation, we obtain

$$
\varphi^{2}\left(\left(\nabla_{X} R\right)\left(e_{1}, e_{3}\right) e_{3}\right)=A(X) R\left(e_{1}, e_{3}\right) e_{3}+B(X)\left[g\left(e_{3}, e_{3}\right) e_{1}-g\left(e_{1}, e_{3}\right) e_{3}\right]
$$

where $\quad A(X)=\lambda_{1}+\frac{\lambda_{3}}{z}$ and $B(X)=-\left(\frac{2 \lambda_{3}}{z^{2}}+\frac{\lambda_{2}}{z^{2}}-\frac{\lambda_{1}}{z^{2}}-\frac{\lambda_{1}}{z}\right)$.
This implies that there exist a generalized φ-recurrent trans-Sasakian manifold.

References

[1] D.E. Blair, contact manifolds in Riemannian geometry, Lecture notes in Math.509,Springer verlag, 1976.
[2] A. Basari, C. Murathan, On generalized φ-recurrent kenmotsu manifolds, Sdu Fen Edebiyat Fakultesi Fen Dergisi (E-DERGI), 3 10(2008),91-97.
[3] D. Chinea, C. Gonzalez, Curvature relations in a trans-Sasakian manifolds, Proceedings of the XIIth Portuguese -Spanish Conference on Mathematics, Vol. II (Portuguese) (Braga, 1987), 664-671, Univ. Minho, Braga, 1987.
[4] D. Debnath, On some type of curvature tensors on a trans-Sasakian manifold satisfying a condition with $\xi \in N(k)$, Lucknow Journal of the Tensor Society (JTS),Vol. 3(2009),1-9.
[5] D. Debnath, On some types of trans-Sasakian manifold, Lucknow Journal of the Tensor Society (JTS),Vol. 5(2011),101-110.
[6] U.C. De, On φ-recurrent Sasakian manifolds, Novisad J. Math. 33(2) (2003). 43-48.
[7] U.C. De, N. Guha, On generalized-recurrent manifolds,J.National Academy of Math. India,9(1991),85-92.
[8] D. Debnath, On a Type of Concircular phi-recurrent Trans-Sasakian Manifolds, Tamsui Oxford Journal of Information and Mathematical Sciences, Vol. 28(4) (2012) 341-348.
[9] A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and there linear invariants, Ann. Mat. Pura Appl.,(4)123(1980), 35-58.
[10] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math .J. 4(1981), 1-27.
[11] J.S. Kim, R. Prasad, M.M. Tripathi, On generalized Ricci recurrent transSasakian manifolds, J. Korean .Math. Soc., 39(2002).no. 6, 953-961.
[12] J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. pura appl.,(4) 162 (1992), 77-86.
[13] J.C. Marrero, D. Chinea, Trans-Sasakian manifolds, Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. I-III (Spanish) (Puerto de la Cruz, 1989), 655-659, Univ. La Laguna, La guna, 1990.
[14] I. Mihai, M. Shahid, Generic submanifolds of a trans-Sasakian manifold, Publ.Math.Debrecen 47 3-4(1995).209-218.
[15] J.A. Oubina, New classes of almost contact metric structures, Publ. Math.Debrecen 32 (1985),187-195.
[16] D.A. Patil, D.G. Prakasha, C.S. Bagewadi, On generalized φ-recurrent Sasakian manifolds, Bulletin Mathematical Analysis and Applications, vol 1 3(2009), pages 4248.
[17] M. Tarafdar, A. Bhattachryya, A special type of trans-Sasakian manifolds, Tensor, vol. 64, (3)(Dec 2003). 274-281.
[18] M. Tarafdar, A. Bhattacharyya, D. Debnath, A type of pseudo projective φ recurrent trans-Sasakian manifold, Analele Stintifice Ale Universitatii "AL.I.CUZA" IASI, Tomul LII,s.I,Mathematica,2006,f.2.
[19] M.M Tripathi, U.C. De, Ricci tensor in 3-dimensional trans-Sasakian manifolds, KYUNGPOOK.Math J.43(2003). 1-9.
[20] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math.J., 40(1988), 441-448
[21] T. Takahashi, Sasakianب-symmetric spaces; Tohoku Math j., 29 (1977),91-113.
[22] M.M. Tripathi, Trans-Sasakian manifolds are generalized quasi-Sasakian, Nepali Math. Sci. 18 (1999-2000), nos. 1-2, 11-14, (2001).
[23] K. Yano, M. Kon, Structures on manifolds, Series in Pure Math. Vol 3 World Sci, (1984).

Dipankar Debnath
Department of Mathematics, Bamanpukur High School(H.S)
Bamanpukur, Sree Mayapur
Nabadwip,Nadia, Pin-741313, India
email: dipankardebnath123@hotmail.com

Arindam Bhattacharyya
Department of Mathematics, Jadavpur University
Kolkata-700032, India
email: bhattachar1968@yahoo.co.in

