THE EDGE VERSION OF ATOM-BOND CONNECTIVITY INDEX OF CONNECTED GRAPH

M. Reza Farahani

Abstract. The atom-bond connectivity index is a topological index was defined as $A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}}$, in which degree of a vertex v denoted by d_{v}. Now we define a new version of $A B C$ index as $A B C_{e}(G)=\sum_{e f \in E(L(G))} \sqrt{\frac{d_{e}+d_{f}-2}{d_{e} d_{f}}}$, where d_{e} denotes the degree of an edge e in G. The goal of this paper is to further the study of the $A B C_{e}$ index of graphs.

2000 Mathematics Subject Classification: 65Lxx, 65L05.

1. Introduction

A graph is a collection of points and lines connecting them. The points and lines of a graph are also called vertices and edges respectively. If e is an edge of G, connecting the vertices u and v, then we write $e=u v$ and say " u and v are adjacent". A connected graph is a graph such that there is a path between all pairs of vertices. The distance $d(u, v)$ between two vertices u and v is the length of the shortest path between u and v in G. A simple graph is an unweighted, undirected graph without loops or multiple edges. A single number that can be used to characterize some property of the graph is called a Topological Index for that graph. Obviously, the number of vertices and the number of edges are topological indices. The Wiener index is the first graph invariant reported (distance based) topological index and is defined as a half sum of the distances between all the pairs of vertices in a graph [1]. Also, the edge version of Wiener index which were based on distance between edges introduced by A. Iranmanesh et al. in 2008 [2]. These topological indices are formulated as follow:

$$
\begin{align*}
W_{v}(G) & =\sum_{\{u, v\} \subset V(G)} d(u, v) \tag{1}\\
W_{e}(G) & =\sum_{\{e, f\} \subset E(G)} d(e, f) \tag{2}
\end{align*}
$$

in which degree of vertex v and edge e denoted by d_{v} and d_{e}.
The degree of a vertex v is the number of vertices joining to v. Also, the degree of an edge $e \in E(G)$ is the number of its adjacent vertices in $V(L(G))$, where the line graph $L(G)$ of a graph G is defined to be the graph whose vertices are the edges of G, with two vertices being adjacent if the corresponding edges share a vertex in G.

A class of atom-bond connectivity indices may be defined as

$$
\begin{equation*}
A B C_{\text {general }}(G)=\sum_{u v \in E(G)} \sqrt{\frac{Q_{u}+Q_{v}-2}{Q_{u} \times Q_{v}}} \tag{3}
\end{equation*}
$$

where Q_{v} is some quantity that in a unique manner can be associated with the vertex v of the graph G. The first member of this class was considered by E. Estrada et. al. [3], by setting Q_{v} and Q_{u} to be the degree of a vertex v and u :

$$
\begin{equation*}
A B C_{1}(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} \times d_{v}}} \tag{4}
\end{equation*}
$$

The second member of this class was considered by A. Graovac and M. Ghorbani [4] in 2010 by setting Q_{u} to be the number n_{u} of vertices of G lying closer to the vertex u than to the vertex v for the edge $u v$ of the graph $G\left(n_{u}=\{y \mid y \in V(G), d(u, y)<\right.$ $d(y, v)\})$:

$$
\begin{equation*}
A B C_{2}(G)=\sum_{u v \in E(G)} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} \times n_{v}}} \tag{5}
\end{equation*}
$$

The third member of this class was considered by M.R. Farahani [5]

$$
\begin{equation*}
A B C_{3}(G)=\sum_{u v \in E(G)} \sqrt{\frac{m_{u}+m_{v}-2}{m_{u} \times m_{v}}} \tag{6}
\end{equation*}
$$

where m_{u} denotes the number of vertices of G whose distances to vertex u are smaller than those to other vertex v of the edge $e=u v$ and m_{v} is defined analogously. The fourth member of this class was considered by M. Ghorbani et al. [6] as:

$$
\begin{equation*}
A B C_{4}(G)=\sum_{u v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} \times S_{v}}} \tag{7}
\end{equation*}
$$

in which $S_{u}=\sum_{v \in N_{G}(u)} d_{v}$ and $N_{G}(u)=\{v \in V(G) \mid u v \in E(G)\}$. The fifth member
of this class was introduced by M.R. Farahani [7] by setting Q_{u} to be the number ϵ_{u} the eccentricity of vertex u :

$$
\begin{equation*}
A B C_{5}(G)=\sum_{u v \in E(G)} \sqrt{\frac{\epsilon_{u}+\epsilon_{v}-2}{\epsilon_{u} \times \epsilon_{v}}} \tag{8}
\end{equation*}
$$

Here, we define the new member (edge version of atom-bond connectivity index) of this class on the ground of the end-vertex degree d_{e} and d_{f} of edges e and f in a line graph of G as follows:

$$
\begin{equation*}
A B C_{e}(G)=\sum_{e f \in E(L(G))} \sqrt{\frac{d_{e}+d_{f}-2}{d_{e} \times d_{f}}} \tag{9}
\end{equation*}
$$

where d_{e} denotes the degree of the edge e in G. The reader can find more information about the atom-bond connectivity index in [8-16]. The goal of this paper is to further the study of the $A B C_{e}$ index.

2. Main Result

The goal of this section is to study and computing the $A B C_{e}$ index of the complete graph K_{n}, path P_{n}, cycle C_{n} and star graph S_{n}. In continue we obtain a closed formula of this index for a famous molecular graph that is Circumcoronene Series of Benzenoid H_{k}. For every positive integer number k, the general form of circumcoronene series of benzenoid H_{k} is shown in Figure 1. Also, its line graph is shown in Figure 2. For more information of this family, see the paper series [7, 10, 16-23].
Lemma 1. Let K_{n} be the complete graph on n vertices. Then $L\left(K_{n}\right)$ will be a (2n-2)_regilar graph and for every $e \in E\left(K_{n}\right)$ (or $\left.e \in V\left(L\left(K_{n}\right)\right)\right) d_{v}=2(n-1)$. So $\left|E\left(L\left(K_{n}\right)\right)\right|=\frac{1}{2}\left|E\left(K_{n}\right)\right| 2(n-1)=\frac{1}{2} n(n-1)^{2}$. This implies that

$$
\begin{gather*}
A B C_{e}\left(K_{n}\right)=\sum_{e f \in E\left(L\left(K_{n}\right)\right)} \sqrt{\frac{d_{e}+d_{f}-2}{d_{e} d_{f}}}= \\
\left|E\left(L\left(K_{n}\right)\right)\right| \sqrt{\frac{2(n-1)+2(n-1)-2}{2(n-1) \times 2(n-1)}}=\frac{n(n-1) \sqrt{4 n-6}}{4} \tag{10}
\end{gather*}
$$

Lemma 2. Let C_{n} be the cycle of length n. Then one can see that $L\left(C_{n}\right)=C_{n}$ and for every $v \in V\left(C_{n}\right)$ and $e \in V\left(L\left(C_{n}\right)\right) d_{v}=d_{e}=2$, So

$$
\begin{equation*}
A B C_{e}\left(C_{n}\right)=\left|E\left(L\left(C_{n}\right)\right)\right| \sqrt{\frac{2+2-2}{2 \times 2}}=\frac{\sqrt{2}}{2} n \tag{11}
\end{equation*}
$$

Figure 1: The Circumcoronene Series of Benzenoid $H_{k}(k \geq 1)$ with edges marking. [16]

Lemma 3. Let P_{n} be a path of length n. Then $L\left(P_{n}\right)=P_{n-1}$ and for all vertices of $L\left(P_{n}\right):$ de $=2$, (except first and end vertices on path, that are as degree one), thus

$$
\begin{equation*}
A B C_{e}\left(P_{n}\right)=(n-3) \sqrt{\frac{2+2-2}{2 \times 2}}+(2) \sqrt{\frac{1+2-2}{1 \times 2}}=\frac{\sqrt{2}}{2}(n-1) \tag{12}
\end{equation*}
$$

Lemma 4. Let S_{n} be a star graph with $n+1$ vertices. Then $L\left(S_{n}\right)$ will be a ($n-$ 1)_regilar graph (or a complete graph on n vertices) and for every $e \in E\left(S_{n}\right)$ (or $\left.e \in V\left(L\left(S_{n}\right)\right)\right) d_{v}=n-1$. So $\left|E\left(L\left(S_{n}\right)\right)\right|=\left|E\left(K_{n}\right)\right|=\frac{1}{2} n(n-1)$. This implies that

$$
\begin{equation*}
A B C_{e}\left(S_{n}\right)=\left|E\left(L\left(S_{n}\right)\right)\right| \sqrt{\frac{(n-1)+(n-1)-2}{(n-1) \times(n-1)}}=\frac{n \sqrt{2 n-4}}{2}=A B C_{1}\left(K_{n}\right) \tag{13}
\end{equation*}
$$

Theorem 5. Let G be the graphs from the circumcoronene series of benzenoid H_{k} $\forall k \geq 1$ with $6 k^{2}$ vertices and $9 k^{2}-3 k$ edges, then

$$
\begin{gather*}
A B C_{1}\left(H_{k}\right)=6 k^{2}+(6 \sqrt{2}-10) k+(4-3 \sqrt{2}) \tag{14}\\
A B C_{e}\left(H_{k}\right)=\frac{9}{2} \sqrt{6} k^{2}+(8+2 \sqrt{15}-9 \sqrt{6}) k+\left(\frac{9}{2} \sqrt{6}-2 \sqrt{15}+6 \sqrt{2}-12\right) \tag{15}
\end{gather*}
$$

Figure 2: The general representation of line graph of Circumcoronene Series of Benzenoid $H_{k}(k \geq 1)$ with edges marking. [19]

Proof. Consider the circumcoronene series of benzenoid H_{k}, for all positive integer number k. The first part of theorem proved in ref. [16]. So we start the proof of second part, immediately. By refer to Proposition 1, the edge version of atom-bond connectivity index of H_{k} is equivalent with atom-bond connectivity index of its line graph. At first, we category the vertex set and edge set of H_{k} as follow:
$V_{3}=\left\{v \in V\left(H_{k}\right) \mid d_{v}=3\right\} \Rightarrow\left|V_{3}\right|=6 k(k-1)$
$V_{2}=\left\{v \in V\left(H_{k}\right) \mid d_{v}=2\right\} \Rightarrow\left|V_{2}\right|=6 k$
$E_{4}=\left\{e=u v \in E\left(H_{k}\right) \mid d_{u}=d_{v}=2\right\} \Rightarrow\left|E_{4}\right|=6$
$E_{5}=\left\{e=u v \in E\left(H_{k}\right) \mid d_{u}=3 \& d_{v}=2\right\} \Rightarrow\left|E_{5}\right|=12(k-1)$
$E_{6}=\left\{e=u v \in E\left(H_{k}\right) \mid d_{u}=d_{v}=3\right\} \Rightarrow\left|E_{6}\right|=9 k^{2}-15 k+6$
In Figure 1, all edges belong to E_{4}, E_{5} and E_{6} marked by red, green and black colors, respectively. It is easy to see that $\forall k \geq 1 ; L\left(H_{k}\right)$ has $9 k^{2}-3 k$ vertices and from $\frac{4\left(9 k^{2}-15 k+6\right)+3 \times 12(k-1)+2 \times 6}{2}=18 k^{2}-12 k$ edges. Alternatively, we can category the vertex set and edge set of $L\left(H_{k}\right)$ by using the results of ref.[19] as follow:

$$
\begin{aligned}
& V L_{2}=\left\{e \in E\left(H_{k}\right) \mid d_{e}=2\right\} \Rightarrow\left|V L_{2}\right|=\left|E_{4}\right|=6 \\
& V L_{3}=\left\{e \in E\left(H_{k}\right) \mid d_{e}=3\right\} \Rightarrow\left|V L_{3}\right|=\left|E_{5}\right|=12(k-1) \\
& V L_{4}=\left\{e \in V\left(L\left(H_{k}\right)\right) \text { or } e \in E\left(H_{k}\right) \mid d_{e}=4\right\} \Rightarrow\left|V L_{4}\right|=\left|E_{6}\right|=9 k^{2}-15 k+6 \\
& E L_{5}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=2, d_{f}=3\right\} \Rightarrow\left|E L_{5}\right|=2\left|V L_{2}\right|=12
\end{aligned}
$$

$$
\begin{aligned}
& E L_{6}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=d_{f}=3\right\} \Rightarrow\left|E L_{6}\right|=\left|V L_{3}\right|-\left|V L_{2}\right|=6(2 k-3) \\
& E L_{7}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=3, d_{f}=3\right\} \Rightarrow\left|E L_{7}\right|=\left|V L_{3}\right|-\left|V L_{2}\right|=12(k-1) \\
& E L_{8}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=d_{f}=4\right\} \Rightarrow\left|E L_{8}\right|=\left|E\left(L\left(H_{k}\right)\right)\right|-\left|E L_{7}\right|-\left|E L_{6}\right|- \\
& \left|E L_{5}\right| \\
& \Rightarrow \quad=18 k^{2}-36 k+18=18(k-1)^{2} .
\end{aligned}
$$

Similar above, in Figure 2 all edges belong to $E L_{5}, E L_{6}, E L_{7}$ and $E L_{8}$ marked by red, green and black colors, respectively.

$$
\begin{align*}
& A B C_{e}\left(H_{k}\right)=\sum_{e f \in E\left(L\left(H_{k}\right)\right)} \sqrt{\frac{d_{e}+d_{f}-2}{d_{e} d_{f}}} \\
& =\sum_{e f \in E L_{5}} \sqrt{\frac{3+2-2}{3 \times 2}}+\sum_{e f \in E L_{6}} \sqrt{\frac{3+3-2}{3 \times 3}}+\sum_{e f \in E L_{7}} \sqrt{\frac{4+3-2}{4 \times 3}}+\sum_{e f \in E L_{8}} \sqrt{\frac{4+4-2}{4 \times 4}} \\
& =\frac{\sqrt{2}}{2}\left|E L_{5}\right|+\frac{2}{3}\left|E L_{6}\right|+\frac{\sqrt{15}}{6}\left|E L_{7}\right|+\frac{\sqrt{6}}{4}\left|E L_{8}\right| \\
& =\frac{\sqrt{2}}{2}(12)+\frac{2}{3}(12 k-18)+\frac{\sqrt{15}}{6}(12 k-12)+\frac{\sqrt{6}}{4}\left(18 k^{2}-36 k+18\right) \\
& =\frac{9}{2} \sqrt{6} k^{2}+(8+2 \sqrt{15}-9 \sqrt{6}) k+\left(\frac{9}{2} \sqrt{6}-2 \sqrt{15}+6 \sqrt{2}-12\right) \tag{16}
\end{align*}
$$

And it completes the proof.
Example 1. Let H_{3} be the Circumcoronene. Then the number of edges e_{5}, e_{6}, e_{7} and e_{8} in line graph H_{3} are equal to 12, 18, 24 and 72, respectively (see Figure 3). So $A B C_{e}$ index of H_{3} is equal to $A B C_{e}\left(H_{3}\right)=A B C\left(L\left(H_{3}\right)\right)=80.0681$.

Figure 3: The representation of Circumcoronene H_{3} and its line graph $\left(L\left(H_{3}\right)\right)$. [19]

References

[1] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc, (1947), 69, 7-20.
[2] A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani, MATCH Commun. Math. Comput. Chem. 61(3), (2009), 663.
[3] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, Indian J. Chem. 1998, 37A, 849-855.
[4] A. Graovac, M. Ghorbani, A New Version of Atom-Bond Connectivity Index, Acta Chim. Slov. 57, 609-612, (2010).
[5] M.R. Farahani, A New Version of Atom-Bond Connectivity Index of Circumcoronene Series of Benzenoid, Submitted for publication (2013).
[6] M. Ghorbani, M.A. Hosseinzadeh Computing $A B C_{4}$ index of nanostar dendrimers, Optoelectron. Adv. Mater.-Rapid Commun. 4(9), (2010), 1419-1422.
[7] M.R. Farahani, Eccentricity Version of Atom-Bond Connectivity Index of Benzenoid Family ABC5 (H_{k}), World Applied Sciences Journal, (2013), 21(9), 1260-1265.
[8] B. Furtula, A. Graovac, D. Vukicevic, Disc. Appl. Math. 157, (2009). 2828
[9] D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Mathematical Chemistry. 46, (2009). 1369.
[10] M.R. Farahani A New Version of Atom-Bond Connectivity Index of Circumcoronene Series of Benzenoid, J. Math. Nano Science. 2(1), (2012), 15-20.
M. Reza Farahani - The edge version of atom-bond connectivity ndex of ...
[11] J. Asadpour Some topological polynomial indices of nanostructures, Optoelectron. Adv. Mater. - Rapid Commun. 5(7), 2011, 769 - 772.
[12] A. Madanshekaf, M. Ghaneeei, Computing two topological indices of nanostars dendrimer, Optoelectron. Adv. Mater.-Rapid Commun. 4(12), (2010), 2200-2202.
[13] M. Ghorbani, H. Mesgarani, S. Shakeraneh, Computing GA index and ABC index of V-phenylenic nanotube, Optoelectron. Adv. Mater.-Rapid Commun. 5(3), 2011, 324-326.
[14] M. B. Ahmadi, M. Saseghimehr, Atom bond connectivity index of an infinite class $N S_{1}[n]$ of dendrimer nanostars, Optoelectron. Adv. Mater.-Rapid Commun. 4(7), (2010), 1040-1042.
[15] A. Khaksar, M. Ghorbani, H.R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectron. Adv. Mater.-Rapid Commun. 4(11), (2010), 1868-1870.
[16] M.R. Farahani, Computing Randic, Geometric-Arithmetic and Atom-Bond Connectivity indices of Circumcoronene Series of Benzenoid, Int. J. Chem. Model. 5(5), (2013), In press.
[17] V. Chepoi S. Klavzar, Distances in benzenoid systems: Further developments, Discrete Math. 192, (1998) 27-39.
[18] M.V. Diudea, Studia Univ. Babes-Bolyai, 4, (2003) 3-21.
[19] M.R. Farahani, The Edge Version of Geometric-Arithmetic Index of Benzenoid Graph, Romanian Academy Seri B. 15(2). (2013). In press.
[20] S. Klavzar, I. Gutman, B. Mohar, Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations, J. Chem. Int Comput. Sci. 35, (1995) 590-593.
[21] S. Klavzar, A Bird's Eye View of The Cut Method And A Survey of Its Applications In Chemical Graph Theory, MATCH Commun. Math. Comput. Chem. 60, (2008), 255-274.
[22] A. Soncini, E. Steiner, P.W. Fowler, R.W.A. Havenith, L.W. Jenneskens. Perimeter Effects on Ring Currents in Polycyclic Aromatic Hydrocarbons: Circumcoronene and Two Hexabenzocoronenes, Chem. Eur. J. 9, (2003) 2974-2981.
[23] P. Zigert, S. Klavzar, I. Gutman. Calculating the hyper-Wiener index of benzenoid hydrocarbons, ACH Models Chem. 137, (2000) 83-94.

Mohammad Reza Farahani
Department of Mathematics
Iran University of Science and Technology
(IUST) Narmak, Tehran 16844, Iran
email: Mr_Farahani@mathdep.iust.ac.ir, MrFarahani88@gmail.com

