
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 37/2014
pp. 15-30

To Professor ART Solarin on his 60th Birthday Celebration

SOME NORMAL CONGRUENCES IN QUASIGROUPS
DETERMINED BY LINEAR-BIVARIATE POLYNOMIALS OVER

THE RING ZN

E. Ilojide and T. G. Jaiyéo. lá

Abstract. In this work, two normal congruences are built on two quasigroups with
underlining set Z2

n relative to the linear-bivariate polynomial P (x, y) = a+ bx+ cy
that generates a quasigroup over the ring Zn. Four quasigroups are built using the
normal congruences and these are shown to be homomorphic to the quasigroups
with underlining set Z2

n. Some subquasigroups of the quasigroups with underlining
set Z2

n are also found.
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1. Introduction

Let G be a non-empty set. Define a binary operation (·) on G. (G, ·) is called a
groupoid if G is closed under the binary operation (·). A groupoid (G, ·) is called a
quasigroup if the equations a · x = b and y · c = d have unique solutions for x and
y for all a, b, c, d ∈ G. A quasigroup (G, ·) is called a loop if there exists a unique
element e ∈ G called the identity element such that x · e = e · x = x for all x ∈ G.

A function f : S × S → S on a finite set S of size n > 0 is said to be a
Latin square (of order n) if for any value a ∈ S both functions f(a, ·) and f(·, a)
are permutations of S. That is, a Latin square is a square matrix with n2 entries
of n different elements, none of them occurring more than once within any row or
column of the matrix.

Definition 1. A pair of Latin squares f1(·, ·) and f2(·, ·) is said to be orthogonal if
the pairs

(
f1(x, y), f2(x, y)

)
are all distinct, as x and y vary.

Definition 2. An equivalence relation θ on a quasigroup (G, ·) is called normal if
it satisfies the following conditions:

(i) if caθcb, then aθb;
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(ii) if acθbc, then aθb;

(iii) if aθb and cθd, then acθbd.

A normal equivalence relation is also called a normal congruence.

The basic text books on quasigroups, loops are Pflugfelder [10], Bruck [1], Chein,
Pflugfelder and Smith [2], Dene and Keedwell [3], Goodaire, Jespers and Milies [6],
Sabinin [12], Smith [13], Jáıyéo. lá [7] and Vasantha Kandasamy [15].

Definition 3. (Bivariate Polynomial) A bivariate polynomial is a polynomial in two
variables, x and y of the form P (x, y) = Σi,jaijx

iyj.

Definition 4. (Bivariate Polynomial Representing a Latin Square) A bivariate poly-
nomial P (x, y) over Zn is said to represent (or generate) a Latin square if (Zn, ∗) is
a quasigroup where ∗ : Zn×Zn → Zn is defined by x∗y = P (x, y) for all x, y ∈ Zn.

In 2001, Rivest [11] studied permutation polynomials (PPs) over the ring (Zn,+, ·)
where n is a power of 2: n = 2w. This is based on the fact that modern computers
perform computations modulo 2w efficiently (where w = 2, 8, 16, 32 or 64 is the word
size of the machine), and so it was of interest to study PPs modulo a power of 2.
Below are some important results from his work.

Theorem 1. (Rivest [11]) A bivariate polynomial P (x, y) = Σi,jaijx
iyj represents

a Latin square modulo n = 2w, where w ≥ 2, if and only if the four univariate
polynomials P (x, 0), P (x, 1), P (0, y), and P (1, y) are all permutation polynomial
modulo n.

Theorem 2. (Rivest [11]) There are no two polynomials P1(x, y), P2(x, y) modulo
2w for w ≥ 1 that form a pair of orthogonal Latin squares.

In 2009, Vadiraja and Shankar [14] motivated by the work of Rivest continued the
study of permutation polynomials over the ring (Zn,+, ·) by studying Latin squares
represented by linear and quadratic bivariate polynomials over Zn when n 6= 2w

with the characterization of some PPs. Some of the main results they got are stated
below.

Theorem 3. (Vadiraja and Shankar [14] A bivariate linear polynomial a + bx +
cy represents a Latin square over Zn, n 6= 2w if and only if one of the following
equivalent conditions is satisfied:

(i) both b and c are coprime with n;

(ii) a + bx, a + cy, (a + c) + bx and (a + b) + cy are all permutation polynomials
modulo n.
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(iii) b and c are invertible in (Zn, ·).

Theorem 4. (Vadiraja and Shankar [14]) If P (x, y) is a bivariate polynomial having
no cross term, then P (x, y) gives a Latin square if and only if P (x, 0) and P (0, y)
are permutation polynomials.

Theorem 5. (Vadiraja and Shankar [14]) Let n be even and P (x, y) = f(x) +
g(y) + xy be a bivariate quadratic polynomial, where f(x) and g(y) are permutation
polynomials modulo n. Then P (x, y) does not give a Latin square.

The authors were able to establish the fact that Rivest’s result for a bivariate
polynomial over Zn when n = 2w is true for a linear-bivariate polynomial over Zn

when n 6= 2w. Although the result of Rivest was found not to be true for quadratic-
bivariate polynomials over Zn when n 6= 2w with the help of counter examples,
nevertheless some of such squares can be forced to be Latin squares by deleting
some equal numbers of rows and columns.

Furthermore, Vadiraja and Shanhar [14] were able to find examples of pairs of
orthogonal Latin squares generated by bivariate polynomials over Zn when n 6= 2w

which was found impossible by Rivest for bivariate polynomials over Zn when n =
2w.

The study of linear-bivariate polynomials that generate quasigroups over the ring
Zn has furthered been explored in different perspectives by Jaiyéo. lá, Ilojide et. al.
in [4, 8, 9, 5].

Theorem 6. (Theorem I.7.4, Pflugfelder [10]) An equivalence class G = Kg with
respect to a normal equivalence relation θ is a subquasigroup if and only if gθg2.

2. Main Results

2.1. Normal Congruences

Theorem 7. Let P (x, y) = a+ bx+ cy represent a quasigroup over Zn.

(a) Define } on Zn×Zn by (x1, y1)} (x2, y2) = (P (x1, x2), P (y1, y2)). Then (Zn×
Zn,}) is a quasigroup.

(b) Define � on Zn×Zn by (x1, y1)� (x2, y2) = (P (x1, y2), P (x2, y1)). Then (Zn×
Zn,�) is a quasigroup.

Proof. (a) Closure Consider (x1, y1) } (x2, y2) = (P (x1, x2), P (y1, y2)) ∈ (Zn ×
Zn,}).
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Left Cancelation Law Let (x, y) } (x1, y1) = (x, y) } (x2, y2). This im-
plies (P (x, x1), P (y, y1)) = (P (x, x2), P (y, y2)) which implies P (x, x1) =
P (x, x2) and P (y, y1) = P (y, y2) which imply x1 = x2 and y1 = y2 which
imply (x1, y1) = (x2, y2).

Right Cancelation Law Let (x1, y1) } (x, y) = (x2, y2) } (x, y). This im-
plies (P (x1, x), P (y1, y)) = (P (x2, x), P (y2, y)) which implies P (x1, x) =
P (x2, x) and P (y1, y) = P (y2, y) which imply x1 = x2 and y1 = y2 which
imply (x1, y1) = (x2, y2).

We conclude that (Zn × Zn,}) is a quasigroup.

(b) Closure Consider (x1, y1)� (x2, y2) = (P (x1, x2), P (y1, y2)) ∈ (Zn × Zn,�).

Left Cancelation Law Let (x, y) � (x1, y1) = (x, y) � (x2, y2). This im-
plies (P (x, y1), P (x1, y)) = (P (x, y2), P (x2, y)) which implies P (x, y1) =
P (x, y2) and P (x1, y) = P (x2, y) which imply x1 = x2 and y1 = y2 which
imply (x1, y1) = (x2, y2).

Right Cancelation Law Let (x1, y1) � (x, y) = (x2, y2) � (x, y). This im-
plies (P (x1, y), P (x, y1)) = (P (x2, y), P (x, y2)) which implies P (x1, y) =
P (x2, y) and P (x, y1) = P (x, y2) which imply x1 = x2 and y1 = y2 which
imply (x1, y1) = (x2, y2).

We conclude that (Zn × Zn,�) is a quasigroup.

Theorem 8. Let P (x, y) = a + bx + cy represent a quasigroup over Zn. Define

thosen relation ( ˜thosen) on Zn × Zn such that (x1, y1) ˜thosen(x2, y2) if and only if
P (x1, y2) = P (x2, y1). Then

(a) ˜thosen is a normal congruence over (Zn × Zn,}).

(b) if b = c, then ˜thosen is a normal congruence over (Zn × Zn,�).

Proof. Reflexivity Clearly, (x1, y1) ˜thosen(x1, y1) since P (x1, y1) = P (x1, y1).

Symmetry Suppose (x1, y1) ˜thosen(x2, y2). This implies that P (x1, y2) = P (x2, y1)

which implies that P (x2, y1) = P (x1, y2). Thus, (x2, y2) ˜thosen(x1, y1).

Transitivity Suppose (x1, y1) ˜thosen(x2, y2) and (x2, y2) ˜thosen(x3, y3). Then we
have P (x1, y2) = P (x2, y1) and P (x2, y3) = P (x3, y2). These imply that bx1 +

cy3 − cy1 − bx3 = 0 =⇒ (x1, y1) ˜thosen(x3, y3). Hence, transitivity holds.

∴ ˜thosen is an equivalence relation over Zn × Zn.

18
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(a) Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ Zn × Zn.

(i) Assume that (x3, y3) } (x1, y1) ˜thosen(x3, y3) } (x2, y2). This implies(
P (x3, x1), P (y3, y1)

)
˜thosen

(
P (x3, x2), P (y3, y2)

)
⇐⇒

bcx1 + c2y2 = bcx2 + c2y1 (1)

By the way,

(x1, y1) ˜thosen(x2, y2)⇐⇒ bcx1 + c2y2 = bcx2 + c2y1 (2)

Equation 1 and Equation 2 are the same.

∴ (x3, y3) } (x1, y1) ˜thosen(x3, y3) } (x2, y2) =⇒ (x1, y1) ˜thosen(x2, y2).

(ii) Assume that (x1, y1) } (x3, y3) ˜thosen(x2, y2) } (x3, y3). This implies(
P (x1, x3), P (y1, y3)

)
˜thosen

(
P (x2, x3), P (y2, y3)

)
⇐⇒

b2x1 + bcy2 = b2x2 + bcy1 (3)

By the way,

(x1, y1) ˜thosen(x2, y2)⇐⇒ b2x1 + bcy2 = b2x2 + bcy1 (4)

Equation 3 and Equation 4 are the same.

∴ (x1, y1) } (x3, y3) ˜thosen(x2, y2) } (x3, y3) =⇒ (x1, y1) ˜thosen(x2, y2).

(iii) Suppose (x1, y1) ˜thosen(x2, y2) and (x3, y3) ˜thosen(x4, y4). These imply

P (x1, y2) = P (x2, y1) and P (x3, y4) = P (x4, y3)⇐⇒

b2x1 + bcx3 + bcy2 + c2y4 − b2x2 − bcx4 − bcy1 − c2y3 = 0. (5)

But,

(x1, y1) } (x3, y3) ˜thosen(x2, y2) } (x4, y4)⇐⇒

b2x1 + bcx3 + bcy2 + c2y4 − b2x2 − bcx4 − bcy1 − c2y3 = 0 (6)

Equation 5 and Equation 6 are the same.

∴ (x1, y1) ˜thosen(x2, y2) and (x3, y3) ˜thosen(x4, y4) =⇒

(x1, y1) } (x3, y3) ˜thosen(x2, y2) } (x4, y4).
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We therefore conclude that ˜thosen is a normal congruence over (Zn × Zn,}).

(b) We have already shown that ˜thosen is an equivalence relation. It remains to

show that if b = c, then ˜thosen satisfies the three conditions of a normal con-
gruence relative to (Zn×Zn,�). Now, let (x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈
Zn × Zn.

(i) (x1, y1)�(x2, y2) ˜thosen(x1, y1)�(x3, y3) =⇒
(
P (x1, y2), P (x2, y1)

)
˜thosen(

P (x1, y3), P (x3, y1)
)
⇐⇒ P

(
P (x1, y2), P (x3, y1)

)
=

P
(
P (x1, y3), P (x2, y1)

)
⇐⇒ P (a + bx1 + cy2, a + bx3 + cy1) = P (a +

bx1 + cy3, a + bx2 + cy1) ⇐⇒ a + b(a + bx1 + cy2) + c(a + bx3 + cy1) =
a+ b(a+ bx1 + cy3) + c(a+ bx2 + cy1)⇐⇒ bcx3 + bcy2 = bcx2 + bcy3.

(x2, y2) ˜thosen(x3, y3) ⇐⇒ P (x2, y3) = P (x3, y2) ⇐⇒ a + bx2 + cy3 =
a+bx3 +cy2 ⇐⇒ bx2 +cy3 = bx3 +cy2. Multiplying both sides by b gives

b2x2 + bcy3 = b2x3 + bcy2. So, if b = c, (x1, y1)� (x2, y2) ˜thosen(x1, y1)�
(x3, y3) =⇒ (x2, y2) ˜thosen(x3, y3).

(ii) (x2, y2)�(x1, y1) ˜thosen(x3, y3)�(x1, y1) =⇒
(
P (x2, y1), P (x1, y2)

)
˜thosen(

P (x3, y1), P (x1, y3)
)
⇐⇒ P

(
P (x2, y1), P (x1, y3)

)
=

P
(
P (x3, y1), P (x1, y2)

)
⇐⇒ P (a + bx2 + cy1, a + bx1 + cy3) = P (a +

bx3 + cy1, a + bx1 + cy2) ⇐⇒ a + b(a + bx2 + cy1) + c(a + bx1 + cy3) =
a+ b(a+ bx3 + cy1) + c(a+ bx1 + cy2)⇐⇒ b2x2 + c2y3 = b2x3 + c2y2.

(x2, y2) ˜thosen(x3, y3) =⇒ P (x2, y3) = P (x3, y2) ⇐⇒ a + bx2 + cy3 =
a+bx3 +cy2 ⇐⇒ bx2 +cy3 = bx3 +cy2. Multiplying both sides by b gives

b2x2 + bcy3 = b2x3 + bcy2. So, if b = c, (x2, y2)� (x1, y1) ˜thosen(x3, y3)�
(x1, y1) =⇒ (x2, y2) ˜thosen(x3, y3).

(iii) (x1, y1) ˜thosen(x2, y2) and (x3, y3) ˜thosen(x4, y4) =⇒ P (x1, y2) = P (x2, y1)
and P (x3, y4) = P (x4, y3) ⇐⇒ a + bx1 + cy2 = a + bx2 + cy1 and
a + bx3 + cy4 = a + bx4 + cy3 ⇐⇒ bx1 + cy2 − bx2 − cy1 = 0 and
bx3+cy4−bx4−cy3 = 0 =⇒ bx1+cy2−bx2−cy1−bx3−cy4+bx4+cy3 = 0.
Multiplying both sides by b gives b2x1 + bcy2− b2x2− bcy1− b2x3− bcy4 +
b2x4 + bcy3 = 0.

(x1, y1)�(x3, y3) ˜thosen(x2, y2)�(x4, y4) =⇒
(
P (x1, y3), P (x3, y1)

)
˜thosen(

P (x2, y4), P (x4, y2)
)
⇐⇒ P

(
P (x1, y3), P (x4, y2)

)
=
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P
(
P (x2, y4), P (x3, y1)

)
⇐⇒ P (a + bx1 + cy3, a + bx4 + cy2) = P (a +

bx2 + cy4, a + bx3 + cy1) ⇐⇒ a + b(a + bx1 + cy3) + c(a + bx4 + cy2) =
a + b(a + bx2 + cy4) + c(a + bx3 + cy1) ⇐⇒ b2x1 + bcy3 + bcx4 + c2y2 −
b2x2 − bcy4 − bcx3 − c2y1 = 0. So, if b = c, (x1, y1) ˜thosen(x2, y2) and

(x3, y3) ˜thosen(x4, y4) =⇒ (x1, y1)� (x3, y3) ˜thosen(x2, y2)� (x4, y4).

∴ ˜thosen is a normal congruence over (Zn × Zn,�).

Theorem 9. Let P (x, y) = a + bx + cy represent a quasigroup over Zn. Define ∼
on Zn × Zn such that (x1, y1) ∼ (x2, y2) if and only if P (x1, y1) = P (x2, y2). Then

(a) ∼ is a normal congruence over (Zn × Zn,}).

(b) if b = c, then ∼ is a normal congruence over (Zn × Zn,�).

Proof. Reflexivity Clearly, (x1, y1) ∼ (x1, y1) since P (x1, y1) = P (x1, y1).

Symmetry Suppose (x1, y1) ∼ (x2, y2). This implies P (x1, y1) = P (x2, y2) which
implies P (x2, y2) = P (x1, y1) which implies (x2, y2) ∼ (x1, y1).

Transitivity Suppose (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3). Then we have
P (x1, y1) = P (x2, y2) and P (x2, y2) = P (x3, y3). These imply that bx1 + cy1−
bx3− cy3 = 0. Also, (x1, y1) ∼ (x3, y3) gives bx1 + cy1− bx3− cy3 = 0. Hence,
transitivity holds.

(a) Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ Zn × Zn.

(i) Assume that (x3, y3) } (x1, y1) ∼ (x3, y3) } (x2, y2). This implies(
P (x3, x1), P (y3, y1)

)
∼

(
P (x3, x2), P (y3, y2)

)
⇐⇒

bcx1 + c2y1 = bcx2 + c2y2. (7)

(x1, y1) ∼ (x2, y2)⇐⇒ bcx1 + c2y1 = bcx2 + c2y2. (8)

Equation 7 and Equation 8 are the same. ∴ (x3, y3)}(x1, y1) ∼ (x3, y3)}
(x2, y2) =⇒ (x1, y1) ∼ (x2, y2).

(ii) Assume that (x1, y1) } (x3, y3) ∼ (x2, y2) } (x3, y3) which implies(
P (x1, x3), P (y1, y3)

)
∼

(
P (x2, x3), P (y2, y3)

)
⇐⇒
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b2x1 + bcy1 = b2x2 + bcy2. (9)

(x1, y1) ∼ (x2, y2)⇐⇒ b2x1 + bcy1 = b2x2 + bcy2. (10)

Equation 9 and Equation 10 are the same. ∴ (x1, y1) } (x3, y3) ∼
(x2, y2) } (x3, y3) =⇒ (x1, y1) ∼ (x2, y2).

(iii) Suppose (x1, y1) ∼ (x2, y2) and (x3, y3) ∼ (x4, y4). This implies

P (x1, y1) = P (x2, y2) and P (x3, y3) = P (x4, y4) which imply

b2x1 + bcx3 + bcy1 + c2y3 − b2x2 − bcx4 − bcy2 − c2y4 = 0 (11)

(x1, y1) } (x3, y3) ∼ (x2, y2) } (x4, y4)⇐⇒

b2x1 + bcx3 + bcy1 + c2y3 − b2x2 − bcx4 − bcy2 − c2y4 = 0 (12)

Equation 11 and Equation 12 are the same. ∴ (x1, y1) ∼ (x2, y2) and
(x3, y3) ∼ (x4, y4) =⇒ (x1, y1) } (x3, y3) ∼ (x2, y2) } (x4, y4).

We therefore conclude that ∼ is a normal congruence over (Zn × Zn,}).

(b) We have already shown that ∼ is an equivalence relation. It remains to show
that if b = c, then ∼ satisfies the three conditions of a normal congruence
relative to (Zn × Zn,�). Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ (Zn × Zn).

(i) (x1, y1)� (x2, y2) ∼ (x1, y1)� (x3, y3) =⇒(
P (x1, y2), P (x2, y1)

)
∼

(
P (x1, y3), P (x3, y1)

)
⇐⇒

P
(
P (x1, y2), P (x2, y1)

)
= P

(
P (x1, y3), P (x3, y1)

)
⇐⇒ P (a+bx1+cy2, a+

bx2 + cy1) = P (a + bx1 + cy3, a + bx3 + cy1) ⇐⇒ a + b(a + bx1 + cy2) +
c(a+ bx2 + cy1) = a+ b(a+ bx1 + cy3) + c(a+ bx3 + cy1)⇐⇒

bcx2 + bcy2 = bcx3 + bcy3 (13)

(x2, y2) ∼ (x3, y3) ⇐⇒ P (x2, y2) = P (x3, y3) ⇐⇒ a + bx2 + cy2 = a +
bx3 + cy3 ⇐⇒ bx2 + cy2 = bx3 + cy3. Multiplying both sides by b gives

b2x2 + bcy2 = b2x3 + bcy3 (14)

So, if b = c, Equation 13 and Equation 14 are the same. ∴ (x1, y1) �
(x2, y2) ∼ (x1, y1)� (x3, y3) =⇒ (x2, y2) ∼ (x3, y3).
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(ii) (x2, y2)� (x1, y1) ∼ (x3, y3)� (x1, y1) =⇒(
P (x2, y1), P (x1, y2)

)
∼

(
P (x3, y1), P (x1, y3)

)
⇐⇒

P
(
P (x2, y1), P (x1, y2)

)
= P

(
P (x3, y1), P (x1, y3)

)
⇐⇒ P (a+bx2+cy1, a+

bx1 + cy2) = P (a + bx3 + cy1, a + bx1 + cy3) ⇐⇒ a + b(a + bx2 + cy1) +
c(a+ bx1 + cy2) = a+ b(a+ bx3 + cy1) + c(a+ bx1 + cy3)⇐⇒

b2x2 + c2y2 = b2x3 + c2y3. (15)

(x2, y2) ∼ (x3, y3) =⇒ P (x2, y2) = P (x3, y3) ⇐⇒ a + bx2 + cy2 = a +
bx3 + cy3 ⇐⇒ bx2 + cy2 = bx3 + cy3. Multiplying both sides by b gives

b2x2 + bcy2 = b2x3 + bcy3. (16)

So, if b = c, Equation 15 and Equation 16 are the same. ∴ (x2, y2) �
(x1, y1) ∼ (x3, y3)� (x1, y1) =⇒ (x2, y2) ∼ (x3, y3).

(iii) (x1, y1) ∼ (x2, y2) and (x3, y3) ∼ (x4, y4) =⇒ P (x1, y1) = P (x2, y2) and
P (x3, y3) = P (x4, y4)⇐⇒ a+bx1+cy1 = a+bx2+cy2 and a+bx3+cy3 =
a+ bx4 + cy4 ⇐⇒ bx1 + cy1 − bx2 − cy2 = 0 and bx3 + cy3 − bx4 − cy4 =
0 =⇒ bx1 + cy1− bx2− cy2− bx3− cy3 + bx4 + cy4 = 0. Multiplying both
sides by b gives

b2x1 + bcy1 − b2x2 − bcy2 − b2x3 − bcy3 + b2x4 + bcy4 = 0 (17)

(x1, y1)� (x3, y3) ∼ (x2, y2)� (x4, y4) =⇒
[P (x1, y3), P (x3, y1)] ∼ [P (x2, y4), P (x4, y2)]⇐⇒ P [P (x1, y3), P (x3, y1)] =
P [P (x2, y4), P (x4, y2)] ⇐⇒ P (a + bx1 + cy3, a + bx3 + cy1) = P (a +
bx2 + cy4, a + bx4 + cy2) ⇐⇒ a + b(a + bx1 + cy3) + c(a + bx3 + cy1) =
a+ b(a+ bx2 + cy4) + c(a+ bx4 + cy2)⇐⇒

b2x1 + bcy3 + bcx3 + c2y1 − b2x2 − bcy4 − bcx4 − c2y2 = 0 (18)

So, if b = c, Equation 17 and Equation 18 are the same. Thus, (x1, y1) ∼
(x2, y2) and (x3, y3) ∼ (x4, y4) =⇒ (x1, y1)� (x3, y3) ∼ (x2, y2)� (x4, y4).

∴ ∼ is a normal congruence over (Zn × Zn,�).
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2.2. Quotient Quasigroups

Theorem 10. Let P (x, y) = a+ bx+ cy represent a quasigroup over Zn.

(a) If Z2
n/ ˜thosen = {[Kz]}z∈Z2

n
and for all Kz1 ,Kz2 ∈ Z2

n/ ˜thosen, ∗ is defined on

Z2
n/ ˜thosen as Kz1 ∗Kz2 = Kz1}z2, then (Z2

n/ ˜thosen, ∗) is a quasigroup.

(b) ˜thosen induces an homomorphism from (Z2
n,}) to (Z2

n/ ˜thosen, ∗).

Proof. (a) Left Cancelation Law Let Kz1 ∗Kz2 = Kz1 ∗Kz3 , where z1 = (x1, y1),
z2 = (x2, y2), z3 = (x3, y3). This implies

K(x1,y1) ∗K(x2,y2) = K(x1,y1) ∗K(x3,y3) =⇒
K(x1,y1)}(x2,y2) = K(x1,y1)}(x3,y3) =⇒

(x1, y1) } (x2, y2) ˜thosen(x1, y1) } (x3, y3) =⇒ (x2, y2) ˜thosen(x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .

Right Cancelation Law LetKz2∗Kz1 = Kz3∗Kz1 , where z1 = (x1, y1), z2 =
(x2, y2), z3 = (x3, y3). This implies

K(x2,y2) ∗K(x1,y1) = K(x3,y3) ∗K(x1,y1) =⇒
K(x2,y2)}(x1,y1) = K(x3,y3)}(x1,y1) =⇒

(x2, y2) } (x1, y1) ˜thosen(x3, y3) } (x1, y1) =⇒ (x2, y2) ˜thosen(x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .

We conclude that (Z2
n/ ˜thosen, ∗) is a quasigroup.

(b) Define α : (Z2
n,}) −→ (Z2

n/ ˜thosen, ∗) by α[(x, y)] = K(x,y). Consider

α[(x1, y1)}(x2, y2)] = K(x1,y1)}(x2,y2) = K(x1,y1)∗K(x2,y2) = α[(x1, y1)]∗α[(x2, y2)].

Thus, α is an homomorphism.

Theorem 11. Let P (x, y) = a+ bx+ by represent a quasigroup over Zn.

(a) If Z2
n/ ˜thosen = {[Kz]}z∈Z2

n
and for all Kz1 ,Kz2 ∈ Z2

n/ ˜thosen, ∗ is defined on

Z2
n/ ˜thosen as Kz1 ∗Kz2 = Kz1�z2, then (Z2

n/ ˜thosen, ∗) is a quasigroup.

(b) ˜thosen induces an homomorphism from (Z2
n,�) to (Z2

n/ ˜thosen, ∗).
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Proof. (a) Left Cancelation Law Let Kz1 ∗Kz2 = Kz1 ∗Kz3 , where z1 = (x1, y1),
z2 = (x2, y2), z3 = (x3, y3). This implies

K(x1,y1) ∗K(x2,y2) = K(x1,y1) ∗K(x3,y3) =⇒
K(x1,y1)�(x2,y2) = K(x1,y1)�(x3,y3) =⇒

(x1, y1)� (x2, y2) ˜thosen(x1, y1)� (x3, y3) =⇒ (x2, y2) ˜thosen(x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .

Right Cancelation Law Let Kz2 ∗ Kz1 = Kz3 ∗ Kz1 , where z1 = (x1, y1),
z2 = (x2, y2), z3 = (x3, y3). This implies

K(x2,y2) ∗K(x1,y1) = K(x3,y3) ∗K(x1,y1) =⇒
K(x2,y2)�(x1,y1) = K(x3,y3)�(x1,y1) =⇒

(x2, y2)� (x1, y1) ˜thosen(x3, y3)� (x1, y1) =⇒ (x2, y2) ˜thosen(x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .

We conclude that (Z2
n/ ˜thosen, ∗) is a quasigroup.

(b) Define α : (Z2
n,�) −→ (Z2

n/ ˜thosen, ∗) by α[(x, y)] = K(x,y). Consider

α[(x1, y1)�(x2, y2)] = K(x1,y1)�(x2,y2) = K(x1,y1)∗K(x2,y2) = α[(x1, y1)]∗α[(x2, y2)].

Thus, α is an homomorphism.

Theorem 12. Let P (x, y) = a+ bx+ cy represent a quasigroup over Zn.

(a) If Z2
n/ ∼= {[Kz]}z∈Z2

n
and for all Kz1 ,Kz2 ∈ Z2

n/ ∼, ∗ is defined on Z2
n/ ∼ as

Kz1 ∗Kz2 = Kz1}z2, then (Z2
n/ ∼, ∗) is a quasigroup.

(b) ∼ induces an homomorphism from (Z2
n,}) to (Z2

n/ ∼, ∗).

Proof. (a) Left Cancelation Law Let Kz1 ∗Kz2 = Kz1 ∗Kz3 , where z1 = (x1, y1),
z2 = (x2, y2), z3 = (x3, y3). This implies

K(x1,y1) ∗K(x2,y2) = K(x1,y1) ∗K(x3,y3) =⇒
K(x1,y1)}(x2,y2) = K(x1,y1)}(x3,y3) =⇒

(x1, y1) } (x2, y2) ∼ (x1, y1) } (x3, y3) =⇒ (x2, y2) ∼ (x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .
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Right Cancelation Law Let Kz2∗Kz1 = Kz3∗Kz1 , where z1 = (x1, y1), z2 =
(x2, y2), z3 = (x3, y3). This implies

K(x2,y2) ∗K(x1,y1) = K(x3,y3) ∗K(x1,y1) =⇒
K(x2,y2)}(x1,y1) = K(x3,y3)}(x1,y1) =⇒

(x2, y2) } (x1, y1) ∼ (x3, y3) } (x1, y1) =⇒ (x2, y2) ∼ (x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .

We conclude that (Z2
n/ ∼, ∗) is a quasigroup.

(b) Define α : (Z2
n,}) −→ (Z2

n/ ∼, ∗) by α[(x, y)] = K(x,y). Consider

α[(x1, y1)}(x2, y2)] = K(x1,y1)}(x2,y2) = K(x1,y1)∗K(x2,y2) = α[(x1, y1)]∗α[(x2, y2)].

Thus, α is an homomorphism.

Theorem 13. Let P (x, y) = a+ bx+ by represent a quasigroup over Zn.

(a) If Z2
n/ ∼= {[Kz]}z∈Z2

n
and for all Kz1 ,Kz2 ∈ Z2

n/ ∼, ∗ is defined on Z2
n/ ∼ as

Kz1 ∗Kz2 = Kz1�z2, then (Z2
n/ ∼, ∗) is a quasigroup.

(b) ∼ induces an homomorphism from (Z2
n,�) to (Z2

n/ ∼, ∗).

Proof. (a) Left Cancelation Law Let Kz1 ∗Kz2 = Kz1 ∗Kz3 , where z1 = (x1, y1),
z2 = (x2, y2), z3 = (x3, y3). This implies

K(x1,y1) ∗K(x2,y2) = K(x1,y1) ∗K(x3,y3) =⇒
K(x1,y1)�(x2,y2) = K(x1,y1)�(x3,y3) =⇒

(x1, y1)� (x2, y2) ∼ (x1, y1)� (x3, y3) =⇒ (x2, y2) ∼ (x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .

Right Cancelation Law Let Kz2 ∗ Kz1 = Kz3 ∗ Kz1 , where z1 = (x1, y1),
z2 = (x2, y2), z3 = (x3, y3). This implies

K(x2,y2) ∗K(x1,y1) = K(x3,y3) ∗K(x1,y1) =⇒
K(x2,y2)�(x1,y1) = K(x3,y3)�(x1,y1) =⇒

(x2, y2)� (x1, y1) ∼ (x3, y3)� (x1, y1) =⇒ (x2, y2) ∼ (x3, y3) =⇒
K(x2,y2) = K(x3,y3) =⇒ Kz2 = Kz3 .

We conclude that (Z2
n/ ∼, ∗) is a quasigroup.
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(b) Define α : (Z2
n,�) −→ (Z2

n/ ∼, ∗) by α[(x, y)] = K(x,y). Consider

α[(x1, y1)�(x2, y2)] = K(x1,y1)�(x2,y2) = K(x1,y1)∗K(x2,y2) = α[(x1, y1)]∗α[(x2, y2)].

Thus, α is an homomorphism.

Theorem 14. Let P (x, y) = a+ bx+ cy represent a quasigroup over Zn.

(a) K(x,y) ∈ (Z2
n/ ∼, ∗) is a subquasigroup of (Z2

n,}) ⇐⇒ b(x − y) + c(P (x, x) −
P (y, y)) = 0.

(b) K(x,x) = {(y, y)}y∈Zn is a subquasigroup of (Z2
n,}).

(c) (b+ cb+ c2) = 0 if and only if K(x,y) ∈ (Z2
n/ ∼, ∗) is a subquasigroup of (Z2

n,}).

Proof. (a) By Theorem 6, it suffices to show that (x, y) ∼ (x, y)2 i.e. (x, y) ∼
(x, y) } (x, y). This implies (x, y) ∼

(
P (x, x), P (y, y)

)
⇔ P

(
x, P (x, x)

)
=

P
(
y, P (y, y)

)
⇔ a+ bx+ cP (x, x) = a+ by+ cP (y, y)⇔ b(x− y) + c[P (x, x)−

P (y, y)] = 0 as required. Moreover,

(b) K(x,x) = {(y, z)|(x, x) ∼ (y, z)} = {(y, z)|P (x, y) = P (x, z)} = {(y, z)|a + bx +
cy = a+ bx+ cz} = {(y, z)|cy = cz} = {(y, z)|y = z} = {(y, y)}y∈Zn .

(c) b(x−y) + c[P (x, x)−P (y, y)] = 0⇐⇒ b(x−y) + c[a+ bx+ cx− (a+ by+ cy)] =
0⇔ (x− y)[b+ bc+ c2] = 0.

Theorem 15. Let P (x, y) = a+ bx+ by represent a quasigroup over Zn.

(a) K(x,y) ∈ (Z2
n/ ∼, ∗) is a subquasigroup of (Z2

n,�)⇐⇒ x = y.

(b) K(x,x) = {(y, y)}y∈Zn is a subquasigroup of (Z2
n,�).

Proof. (a) By Theorem 6, it suffices to show that (x, y) ∼ (x, y)2 i.e. (x, y) ∼
(x, y) � (x, y). This implies (x, y) ∼

(
P (x, y), P (x, y)

)
⇐⇒ P (x, P (x, y)) =

P (y, P (x, y))⇐⇒ a+ bx+ cP (x, y) = a+ by+ cP (x, y)⇐⇒ x = y as required.

(b) K(x,x) = {(y, z)|(x, x) ∼ (y, z)} = {(y, z)|P (x, y) = P (x, z)} = {(y, z)|a + bx +
cy = a+ bx+ cz} = {(y, z)|cy = cz} = {(y, z)|y = z} = {(y, y)}y∈Zn .

Theorem 16. Let P (x, y) = a+ bx+ cy represent a quasigroup over Zn.
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(a) K(x,y) ∈ (Z2
n/ ˜thosen, ∗) is a subquasigroup of (Z2

n,}) ⇐⇒ b[x − P (x, x)] =
c[y − P (y, y)].

(b) If P (x, x) = x+ c and P (y, y) = b+ y, then K(x,y) ∈ Z2
n/ ˜thosen is a subquasi-

group of (Z2
n,}).

(c) If P (x, x) = x and P (y, y) = y, then K(x,y) ∈ (Z2
n/ ∼, ∗) is a subquasigroup of

(Z2
n,}). Conversely, if K(x,y) ∈ (Z2

n/ ˜thosen, \∗) is a subquasigroup of (Z2
n,}),

then, P (x, x) = x⇐⇒ P (y, y) = b.

Proof. (a) By Theorem 6, it suffices to show that (x, y) ˜thosen(x, y)2 i.e.

(x, y) ˜thosen(x, y) } (x, y). This implies (x, y) ˜thosen
(
P (x, x), P (y, y)

)
⇐⇒

P (x, P (y, y)) = P (P (x, x), y) ⇐⇒ a + bx + cP (y, y) = a + bP (x, x) + cy ⇐⇒
b[x− P (x, x)] = c[y − P (y, y)] as required. Moreover,

(b) If P (x, x) = x+ c and P (y, y) = b+ y, the last equation is satisfied.

(c) If P (x, x) = x and P (y, y) = y, the last equation is also satisfied.

Theorem 17. Let P (x, y) = a+ bx+ by represent a quasigroup over Zn.

(a) K(x,y) ∈ (Z2
n/ ˜thosen, ∗) is a subquasigroup of (Z2

n,�)⇐⇒ x = y.

(b) K(x,x) = {(y, y)}y∈Zn is a subquasigroup of (Z2
n,�).

Proof. (a) By Theorem 6, it suffices to show that (x, y) ˜thosen(x, y)2 i.e.

(x, y) ˜thosen(x, y) � (x, y). This implies (x, y) ˜thosen
(
P (x, y), P (x, y)

)
⇐⇒

P (x, P (x, y)) = P (P (x, y), y) ⇐⇒ a + bx + cP (x, y) = a + bP (x, y) + cy ⇐⇒
b[x− P (x, y)]− c[y − P (x, y)] = 0⇐⇒ x = y as required.

(b) K(x,x) = {(y, z)|(x, x) ˜thosen(y, z)} = {(y, z)|P (x, z) = P (y, x)} = {(y, z)|a +
bx + cz = a + by + cx} = {(y, z)|b(x − y) = b(x − z)} = {(y, z)|y = z} =
{(y, y)}y∈Zn .
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