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CONCAVITY OF RUSCHEWEYH DIFFERENTIAL OPERATOR

I. AlDawish, M. Darus and R. W. Ibrahim

Abstract. In this article we introduce a class of concave analytic functions
DnC0(α) defined by Ruscheweyh differential operator. We study some properties
such as coefficient inequalities and distortion theorems for this class.
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1. Introduction

The study of operators plays an important role in mathematics especially in the
geometric function theory. Recently interest in this direction has been increasing
as it permits detailed investigations of problems with physical applications. For ex-
ample, the differential operator is linked between function theory and mathematical
physics. Sălăgean [19], Noor and Noor [16, 17], Noor [15] and many others , for
example, [9, 13], defined new operators and studied various classes of analytic and
univalent functions which generalized a number of previously known classes and at
times discovering new classes of analytic functions.

In 1975 Ruscheweyh [18] defined the differential operator Dn of the class of
analytic functions by using the technique of convolution. Many authors have used
the Ruscheweyh operator to define and investigate the properties of certain known
and new classes of analytic functions. We mention some of them in recent years.

In 2010, Lupas [1] defined a new operator using the Sălăgean and Ruscheweyh
operators, and studied some differential subordinations regarding the new operator.

Also, Lupas [2] studied a new operatorDIαn,λ,l using the multiplier transformation
and Ruscheweyh derivative given by

DIαn,λ,I : A → A, DIαn,λ,If(z) = (1− α)Dnf(z) + αI(n, λ, l)f(z), z ∈ D,

where Dnf(z) denote the Ruscheweyh derivative and I(n, λ, I)f(z) is the multiplier
transformation. Several differential subordinations were established regarding the
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operator DIαn,λ,l.
Najafzadeh [14] introduced a new subclass of holomorphic univalent functions with
negative and fixed finitely coefficient based on Sălăgean and Ruscheweyh differential
operators defined by

Ωn
λ : A → A, Ωn

λf(z) = (1− λ)Snf(z) + λDnf(z), z ∈ D, n ∈ N ∪ {0} and λ ≥ 0.

In 2011, again Lupas [3] derived a new operator using the generalized Sălăgean and
Ruscheweyh operators, given by

DRmλ : A → A, DRmλ f(z) = (Dm
λ ∗Rm)f(z),

where DRmλ is the Hadamard product of the generalized Sălăgean operator Dm
λ and

Ruscheweyh operator Rm.
In 2012, Lupas [4] established several strong differential superordinations regard-

ing the new operator SDm defined by convolution product of the extended Sălăgean
operator and Ruscheweyh derivative,

SDm : A∗ζ → A∗ζ , SDmf(z, ζ) = (Sm ∗Dm)f(z, ζ), z ∈ D and ζ ∈ D̄,

where Dmf(z, ζ) denote the extended Ruscheweyh derviative and Smf(z, ζ) is the
extended Sălăgean operator.

Later Swamy [20] gave a new operator DImα, β, λ defined by

DImα, β, λf(z) = (1− λ)Dmf(z) + λImα, βf(z), λ ≥ 0,

where Dmf(z) is the Ruscheweyh operator.
Moreover, Lupas [5] studied the operator defined by using the Ruscheweyh derivative
Dnf(z) and the Sălăgean operator Snf(z), denoted by

Lnα : A → A, Lnαf(z) = (1− α)Dnf(z) + αSnf(z), z ∈ D.

2. Preliminaries

Let H be the class of functions analytic in D and H[a, n] be the subclass of H
consisting of functions of the form f(z) = a + akz

k + ak+1z
k+1 + .... Let A be the

subclass of H consisting of functions of the form

f(z) = z +

∞∑
k=2

akz
k, z ∈ D. (1)

74



I. AlDawish, M. Darus and R. W. Ibrahim – Concavity of Ruscheweyh . . .

Let n ∈ N0 = 0, 1, 2, 3, .... The Ruscheweyh derivative of nth of order f , denoted by
Dnf(z), is defined by

Dnf(z) =
z(zn−1f(z))n

n!
, n ∈ N0.

Ruscheweyh determined that

Dnf(z) =
z

(1− z)n+1
∗ f(z) = z +

∞∑
k=2

C(n, k)akz
k, (2)

where C(n, k) = Γ(k+n)
Γ(k)Γ(n+1) , k ≥ 2, n ≥ 0 such that

D0f(z) = f(z)

D1f(z) = zf ′(z)

2D2f(z) = z(D′f(z))′ +D′f(z)

(n+ 1)Dn+1f(z) = z(Dnf(z))′ + nDnf(z).

A function f : D → C is said to belong to the family C0(α), if f satisfies the
following conditions:

(i) f is analytic in D with the standard normalization f(0) = f ′(0) − 1 = 0. In
addition, it satisfies f(1) =∞.

(ii) f maps D conformally onto a set whose complement with respect to C is
convex.

(iii) The opening angle of f(D) at ∞ is less than or equal to πα, α ∈ (1, 2].

The class C0(α) is referred to concave univalent functions and for a detailed discus-
sion about concave functions we refer to [6],[7],[10] and the references therein.
We recall the analytic characterization for the functions in C0(α), α ∈ (1, 2] : f ∈
C0(α) if and only if ReP (z) > 0, z ∈ D, where

Pf (z) =
2

α− 1

[
(α+ 1)

2

1 + z

1− z
− 1− z f

′′(z)

f ′(z)

]
In [8] they used this characterization.

Now in the following definition, we define new subclasses of concave analytic
functions containing Ruscheweyh differential operator.
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Definition 1. Let f(z) ∈ A. Then f(z) ∈ DnC0(α) if and only if

Re
2

α− 1

[
α+ 1

2

1 + z

1− z
− 1− z [Dnf(z)]′′

[Dnf(z)]′

]
> 0,

α ∈ (1, 2], n ≥ 0 and z ∈ D. Where Dnf(z) is given by (2).

Remark 1. When n = 0, we get the class of concave univalent functions.

The object of the present paper is to investigate some new properties of this
class.

3. General properties of DnC0(α)

In this part, we study the coefficient estimates for functions of the form (1) in the
class DnC0(α).

Theorem 1. Let f(z) ∈ A. If for α ∈ (1, 2], n ≥ 0 and

∞∑
k=2

|ak|C(n, k)(k2 + αk) < α− 1 (3)

then f(z) ∈ DnC0(α). The result (3) is sharp.

Proof. We want to prove that

Re
2

α− 1

[
α+ 1

2

1 + z

1− z
− zg′(z)

g(z)

]
> 0

By using the fact Rew > 0 ←→ |1+w| > |1−w|. It is enough to show that |w| < 1.

Let w = 2
α−1

[
α+1

2
1+z
1−z −

zg′(z)
g(z)

]
, g(z) = z(Dnf(z))′ andDnf(z) = z+

∑∞
k=0C(n, k)akz

k.

So we have

g(z) = z

(
1 +

∞∑
k=2

kakC(n, k)zk−1

)

g′(z) = 1 +
∞∑
k=2

k2akC(n, k)zk−1
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We Know that ∣∣∣∣α+ 1

2

1 + z

1− z
+

1 +
∑∞

k=2 k
2akz

k−1

1 +
∑∞

k=2 kakz
k−1

∣∣∣∣
≤ α+ 1

2

∣∣∣∣1 + z

1− z

∣∣∣∣+

∣∣∣∣1 +
∑∞

k=2 k
2akz

k−1

1 +
∑∞

k=2 kakz
k−1

∣∣∣∣
≤ α+ 1

2

∣∣∣∣1 + z

1− z

∣∣∣∣+
1 +

∑∞
k=2 k

2|ak||z|k−1

1−
∑∞

k=2 k|ak||z|k−1

≤ α+ 1

2

(∣∣∣∣1 + z

1− z

∣∣∣∣+
1 +

∑∞
k=2 k

2|ak||zk−1|
1−

∑∞
k=2 k|ak||zk−1|

)
By the assumption on (3) and z → −1, we have

1 +
∑∞

k=2 k
2|ak|

1−
∑∞

k=2 k|ak|
≤ α− 1

2
.

We obtain ∣∣∣∣α+ 1

2

1 + z

1− z
+

1 +
∑∞

k=2 k
2akz

k−1

1 +
∑∞

k=2 kakz
k−1

∣∣∣∣ ≤ α− 1

2
.

This implies ∣∣∣∣α+ 1

2

1 + z

1− z

∣∣∣∣− ∣∣∣∣1 +
∑∞

k=2 k
2akz

k−1

1 +
∑∞

k=2 kakz
k−1

∣∣∣∣ < α− 1

2∣∣∣∣α+ 1

2

1 + z

1− z
−

1 +
∑∞

k=2 k
2akz

k−1

1 +
∑∞

k=2 kakz
k−1

∣∣∣∣ < α− 1

2
.

So we have

Re
2

α− 1

[
α+ 1

2

1 + z

1− z
− zg′(z)

g(z)

]
> 0.

Finally the result is sharp with the extremal function f given by

f(z) = z +

∞∑
k=2

α− 1

(k2 + αk)C(n, k)
zk.

Corollary 2. Let the assumption of Theorem 1 be satisfied. Then

|ak| ≤
α− 1

(k2 + αk)C(n, k)
, ∀k ≥ 2, α ∈ (1, 2]..
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Corollary 3. Let the assumption of Theorem 1 be satisfied. Then for n = 0

|ak| ≤
α− 1

k2 + αk
, ∀k ≥ 2, α ∈ (1, 2].

Next, by using inequality (3) the following theorems gives distortion bounds for func-
tions contained in the class DnC0(α).

Theorem 4. Let the assumption of Theorem 1 be satisfied. Then for z ∈ D and
α ∈ (1, 2]

|Dnf(z)| ≥ |z| − α− 1

2(α+ 2)
|z|2

and

|Dnf(z)| ≤ |z|+ α− 1

2(α+ 2)
|z|2.

.

Proof. From Theorem 1, we have

2(α+ 2)

∞∑
k=2

C(n, k)|ak| ≤
∞∑
k=2

C(n, k)|ak|(k2 + αk) ≤ α− 1

That is
∞∑
k=2

C(n, k)|ak| ≤
α− 1

2(α+ 2)

According to (2) we obtain

|Dnf(z)| ≤|z|+
∞∑
k=2

C(n, k)|ak||z|k

≤ |z|+
∞∑
k=2

C(n, k)|ak||z|2

≤ |z|+ α− 1

2(α+ 2)
|z|2
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On the other hand, we have

|Dnf(z)| =

∣∣∣∣∣z +

∞∑
k=2

C(n, k)akz
k

∣∣∣∣∣
≥ |z| −

∞∑
k=2

C(n, k)|ak||z|k

≥ |z| −
∞∑
k=2

C(n, k)|ak||z|2

≥ |z| − α− 1

2(α+ 2)
|z|2.

This completes the proof.

Also the next theorem provides distortion theorem.

Theorem 5. Let the assumption of Theorem 1 be satisfied. Then for z ∈ D and
α ∈ (1, 2]

|f(z)| ≥ |z| − (α− 1)Γ(n+ 1)

2(3− α)Γ(n+ 2)
|z|2

and

|f(z)| ≤ |z|+ (α− 1)Γ(n+ 1)

2(3− α)Γ(n+ 2)
|z|2

.

Proof. According to the Theorem 1 we get that

2(α+ 2)
Γ(n+ 2)

Γ(n+ 1)

∞∑
k=2

|ak| ≤
∞∑
k=2

C(n, k)|ak|(k2 + αk) ≤ α− 1

Thus we get
∞∑
k=2

|ak| ≤
(α− 1)Γ(n+ 1)

2(α+ 2)Γ(n+ 2)
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Next from (1), we have

|f(z)| =

∣∣∣∣∣z +
∞∑
k=2

akz
k

∣∣∣∣∣
≤ |z|+

∞∑
k=2

|ak||z|k

≤ |z|+
∞∑
k=2

|ak||z|2

≤ |z|+ (α− 1)Γ(n+ 1)

2(α+ 2)Γ(n+ 2)
|z|2

The other assertion can be proved as follows

|f(z)| =

∣∣∣∣∣z +

∞∑
k=2

akz
k

∣∣∣∣∣
≥ |z| −

∞∑
k=2

|ak||z|2

≥ |z| − (α− 1)Γ(n+ 1)

2(α+ 2)Γ(n+ 2)
|z|2

This completes the proof.

4. Conclusion

The class of concave analytic functions DnC0(α) defined by Ruscheweyh differen-
tial operator are introduced. Characterization and other properties of this class are
studied.
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