PRIME $B C K$ - SUBMODULES OF $B C K$ - MODULES

N. Motahari and T. Roudbari

Abstract. In this paper by considering the notion of $B C K$-module X, we have introduced prime $B C K$ - submodules and we have proved some results by it. As a result we have shown that if M_{1} and M_{2} be left $B C K$ - modules over X and ϕ be a $B C K$ - epimorphism from M_{1} to M_{2}. Also N be a prime $B C K$ - submodule of M_{2}. Then $\phi^{-1}(N)$ is a prime $B C K$ - submodule of M_{1}.

2000 Mathematics Subject Classification: 06D99,06F35,08A30.
Keywords: $B C K$ - algebra, $B C K$ - module, prime $B C K$ - submodule.

1. Introduction

Every module is an action of ring on certain group. This is, indeed, a source of motivation to study the action of certain algebraic structures on groups. BCKmodule is an action of $B C K$-algebra on commutative group. In 1994, the notion of $B C K$-module was introduced by M. Aslam, H. A. S. Abujabal and A. B. Thaheem [2]. They established isomorphism theorems and studied some properties of $B C K-$ modules. The theory of $B C K$-modules was further developed by Z. Perveen and M. Aslam [9]. Now, in this paper we have introduced the concept of prime $B C K$ submodules and we have proved some results by it. As a result we have shown that if M_{1} and M_{2} be left $B C K$ - modules over X and ϕ be a $B C K$ - epimorphism from M_{1} to M_{2}. Also N be a prime $B C K$ - submodule of M_{2}. Then $\phi^{-1}(N)$ is a prime $B C K$ - submodule of M_{1}.

2. Preliminaries

Let us to begin this section with the definition of a $B C K$-algebra.
Definition 1. [8] Let X be a set with a binary operation $*$ and a constant 0 . Then $(X, *, 0)$ is called a BCK-algebra if it satisfies the following axioms:
$(B C K 1)((x * y) *(x * z)) *(z * y)=0$,

$$
(\text { BCK2) }(x *(x * y)) * y=0,
$$

(BCK3) $x * x=0$,
(BCK4) $0 * x=0$,
(BCK5) $x * y=y * x=0$ imply that $x=y$, for all $x, y, z \in X$.
We can define a partial ordering $\leq b y x \leq y$ if and only if $x * y=0$.
If there is an element 1 of a BCK-algebra X, satisfying $x * 1=0$, for all $x \in X$, the element 1 is called unit of X. A BCK-algebra with unit is called to be bounded.

Definition 2. [8] Let $(X, *, 0)$ be a $B C K$-algebra and X_{0} be a nonempty subset of X. Then X_{0} is called to be a subalgebra of X, if for any $x, y \in X_{0}, x * y \in X_{0}$ i.e., X_{0} is closed under the binary operation $*$ of X.

Definition 3. [8] A BCK-algebra $(X, *, 0)$ is said to be commutative, if it satisfies, $x *(x * y)=y *(y * x)$, for all x, y in X.

Definition 4. [8] A BCK-algebra $(X, *, 0)$ is called implicative, if $x=x *(y * x)$, for all x, y in X.

Theorem 1. [8] Every implicative BCK-algebra is a commutative, but its converse may not be true.
Definition 5. [8] A non-empty subset A of $B C K$-algebra $(X, *, 0)$ is called an ideal of X if it satisfies the following conditions:
(i) $0 \in A$,
(ii) $(\forall x \in X)(\forall y \in A)(x * y \in A \Rightarrow x \in A)$.

Theorem 2. [2] Let X be a bounded implicative BCK- algebra and let $x+y=$ $(x * y) \vee(y * x)$, for all $x, y \in X$ then we have:
(i) $(X,+)$ forms a commutative group,
(ii) Any ideal I of X consisting of two elements forms an X - module.

Definition 6. [8] Suppose A is an ideal of $B C K$ - algebra $(X, *, 0)$. For any x, y in X, we denote $x \sim y$ if and only if $x * y \in A$ and $y * x \in A$. It is easy to see that, \sim is an equivalence relation on X.
Denote the equivalence class containing x by C_{x} and $\frac{X}{A}=\left\{C_{x}: x \in X\right\}$. Also we define $C_{x} * C_{y}=C_{x * y}$, for all x, y in X.

Definition 7. [8] Let X be a lower $B C K$-semilattice and A be a proper ideal of X. Then A is said to be prime if $a \wedge b=b *(b * a) \in A$ implies that $a \in A$ or $b \in A$, for any a, b in X.

Theorem 3. [8] In a lower BCK-semilattice $(X, *, 0)$ the following are equivalent:
(i) I is a prime ideal,
(ii) I is an ideal and satisfies that for any $A, B \in I(X), A \subseteq I$ or $B \subseteq I$ whenever $A \cap B \subseteq I$.

Definition 8. [1] Let $(X, *, 0)$ be a BCK-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that
(i) $(x \wedge y) \cdot m=x \cdot(y \cdot m)$,
(ii) $x \cdot\left(m_{1}+m_{2}\right)=x \cdot m_{1}+x \cdot m_{2}$,
(iii) $0 \cdot m=0$,
for all $x, y \in X, m_{1}, m_{2} \in M$, where $x \wedge y=y *(y * x)$. Then M is called a left X-module.
If X is bounded, then the following additional condition holds:
(iv) $1 \cdot m=m$.

A right X-module can be defined similarly.
Theorem 4. [1] Every bounded implicative BCK-algebra forms module over itself. In the sequel X is a BCK-algebra.

Example 1. [1] Let A be a non-empty set and $X=P(A)$ be the power set of A. Then X is a bounded commutative $B C K$-algebra with $x \wedge y=x \cap y$, for all $x, y \in X$. Define $x+y=(x \cup y) \cap(x \cap y)^{\prime}$, the symmetric difference. Then $M=(X,+)$ is an abelian group with empty set \emptyset as an identity element and $x+x=\emptyset$. Define $x \cdot m=x \cap m$, for any $x, m \in X$. Then simple calculations show that :
(i) $(x \wedge y) \cdot m=(x \cap y) \cap m=x \cap(y \cap m)=x \cdot(y \cdot m)$,
(ii) $x \cdot\left(m_{1}+m_{2}\right)=x \cdot m_{1}+x \cdot m_{2}$,
(iii) $0 \cdot m=\emptyset \cap m=\emptyset=0$,
(iv) $1 \cdot m=A \cap m=m$. Thus X itself is an X-module.

Definition 9. [1] Let M_{1}, M_{2} be X-modules. A mapping $f: M_{1} \longrightarrow M_{2}$ is called a $B C K$ - homomorphism, if for any $m_{1}, m_{2} \in M_{1}$, we have :
(i) $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$,
(ii) $f\left(x \cdot m_{1}\right)=x \cdot f\left(m_{1}\right)$, for all $x \in X$.
$\operatorname{Ker}(f)$ and $\operatorname{Img}(f)$ have usual meaning.
Definition 10. [4] Let $(X, *, 0)$ be a $B C K$-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that
(i) $(x \wedge y) \cdot m=x \cdot(y \cdot m)$,
(ii) $x \cdot\left(m_{1}+m_{2}\right)=x \cdot m_{1}+x \cdot m_{2}$,
(iii) $0 \cdot m=0$,
(iv) $(x \vee y) \cdot m=x \cdot m+(y * x) . m$.
then M is called an extended BCK-module.
Definition 11. Let M be a left $B C K$ - module over X, and N be a $B C K$-submodule of M, then we define $A n n_{X}(M)=\{x \in X \mid x \cdot m=0$, for all $m \in M\}$. M is called faithful if $A n n_{X}(M)=0$.

Theorem 5. [2] Any ideal consisting of two elements in a bounded commutative $B C K$ - algebra X forms an X - module under the binary operations $x . m=x \wedge m$.

Example 2. [4] Let X be a non-empty set. Then $(P(X),-)$ is a bounded $B C K$ algebras, Z (integer set) with the followings operations is a $P(X)$-module, $x_{0} \in X$ and $\cdot: P(X) \times Z \rightarrow Z$ such that

$$
A . n= \begin{cases}n & \text { if } x_{0} \in A \\ 0 & \text { if } x_{0} \notin A\end{cases}
$$

3. Prime $B C K$ - submodule

The notion of $B C K$-module was introduced by Abujabal, Aslam and Thaheem [1]. A $B C K$-module is an action of a $B C K$-algebra on abelian group $(M,+)$. In this section we have defined prime $B C K$-submoduls and have obtained some theorems.

Definition 12. Let M be a left $B C K$ - module over X and N be a submodule of M. Then N is said to be prime $B C K$-submodule of M, if $N \neq M$ and $x \cdot m \in N$, implies that $m \in N$ or $x . M \subseteq N$, for any x in X and any m in M.

Example 3. Let $X=P(A=\{1,2, \ldots, n\})$, $B_{i}=\{1,2, \ldots, n\}-\{i\}$, for $i \in$ $\{1,2, \ldots, n\}$. Then $P\left(B_{i}\right)$ is a prime $B C K$ - submodule of $P(A)$, because we can define

- $=\cap: P(A) \times P\left(B_{i}\right) \longrightarrow P\left(B_{i}\right)$. It is easy to see that $P\left(B_{i}\right)$ is a $B C K$ - submodule of $P(A)$. Now we show that $P\left(B_{i}\right)$ is a prime BCK-submodule. Let for subsets C and D of $A, C \cap D \subseteq P\left(B_{i}\right), D \notin P\left(B_{i}\right)$ and $C \cap P(A) \nsubseteq P\left(B_{i}\right)$. Then $i \in D$ and there exists $K \subseteq A$ such that $C \cap K \nsubseteq B_{i}$. Since $B_{i}=\{1,2, \ldots, n\}-\{i\}$, therefore $i \in C \cap K$. So $i \in D \cap C \cap K \subseteq D \cap C \subseteq B_{i}$ and this is a contradiction. Then $P\left(B_{i}\right)$ is a prime $B C K$ - submodule of $P(A)$.

Theorem 6. Let M be a left $B C K$-module over X. Then P is a prime $B C K-$ submodule of M containing N if and only if $\frac{P}{N}$ is a prime BCK-submodule of $\frac{M}{N}$.

Proof. Necessity. First we show that $\frac{P}{N} \neq \frac{M}{N}$. Since P is a prime BCK-submodule of M, then $N \neq M$ therefore there exists $m \in M-P$, so $m+N \in \frac{M}{N}-\frac{P}{N}$. In fact if $m+N \in \frac{P}{N}$, then $m+N=p_{1}+N$ for some $p_{1} \in P$, hence $m-p_{1} \in N \subseteq P$ and so $m \in P$, which is a contradiction.
Let $(x, m+N) \longrightarrow x \cdot m+N$ be a mapping of $X \times \frac{M}{N} \longrightarrow \frac{M}{N}$.
Now let $x \in X$ and $m \in M$ such that $x \cdot(m+N) \in \frac{P}{N}$ i.e. $x \cdot m+N \in \frac{P}{N}$, then $x \cdot m+N=p_{1}+N$, for some $p_{1} \in P, x \cdot m-p_{1} \in N \subseteq P$. So $x \cdot m \in P$. Since P
is a prime $B C K$ - submodule P we get that $m \in P$ or $x \cdot M \subseteq P$. If $m \in P$, then $m+N \in \frac{P}{N}$ and the proof is complete. If $x \cdot M \subseteq P$, then for all $m \in M, x \cdot m+N \in \frac{P}{N}$ i.e. $x \cdot(m+N) \in \frac{P}{N}$. Hence $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$.

Sufficiency. First we show that $P \neq M$. we have $\frac{P}{N} \neq \frac{M}{N}$, so there exists $m \in M$, such that $m+N \notin \frac{P}{N}$. We claim $m \notin P$. If $m \in P$, hence $m+N \in \frac{P}{N}$, and this is a contradiction. Now let $x \in X$ and $m \in M$ such that $x \cdot m \in P$, clearly $x \cdot m+N \in \frac{P}{N}$, for all $m \in M$. Since $\frac{P}{N}$ is a prime $B C K$ - submodule of $\frac{M}{N}$. So $m+N \in \frac{P}{N}$ or $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$.
If $m+N \in \frac{P}{N}$, then $m+N=p_{1}+N$, for some $p_{1} \in P$, hence $m-p_{1} \in N \subseteq P$, then $m \in P$ and the proof is complete. If $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$, then $x \cdot(m+N) \in \frac{P}{N}$ for all $m \in M$, so $x \cdot m+N \in \frac{P}{N}$. Since $N \subseteq P$, we get that $x \cdot m \in P$, for all $m \in M$ i.e. $x \cdot M \subseteq P$. Therefore the proof is complete.

Theorem 7. In Example 1, let I be a prime ideal of X. Then $P(I)$ is a prime $B C K$ - submodule of $P(X)$.

Proof. Since $I \neq X$, then $P(I) \neq P(X)$. Now let K and N be subsets of X and $K \wedge N=K \cap N \in P(I)$. Since I is a prime ideal of X , then $K \subseteq I$ or $N \subseteq I$. If $N \subseteq I$, the proof is complete. If $K \subseteq I$, we have for all $C \subseteq X, K \cap C \subseteq K \subseteq I$ i.e. $K \cap C \subseteq I$ and this complete the proof.

In the sequel X is a $B C K$-algebra.
Definition 13. A left BCK-module M over X, will be called fully faithful, if every nonzero BCK-submodule of M is faithful.

Remark 1. Let M be a left $B C K$ - module over X and N be a $B C K$ - submodule of M. Then we define $(N: M)=\{x \in X \mid x \cdot M \subseteq N\}$.

Theorem 8. Let X be a bounded implicative BCK-algebra and M be an extended X-module. $B C K$ - submodule N of M, is prime if and only if, $P=(N: M)$ is a prime ideal of X and the left $\frac{X}{P}$ - module $\frac{M}{N}$ is fully faithful.

Proof. Necessity. Suppose N is a prime $B C K$ - submodule of M. Now we prove that $(N: M)$ is a prime ideal of X . By primitivity N , we have $(N: M) \neq X$, because $1 \in X$, but $1 \notin(N: M)$. Now we show that $(N: M)$ is a prime ideal. Let $(x \wedge y) \in$ $(N: M)$, for all $x, y \in X$, so $(x \wedge y) \cdot M \subseteq N$, therefore $(x \wedge y) \cdot m=x \cdot(y \cdot m) \in N$, for all $m \in M$. Since $x \in X$ and N is a prime $B C K$ - submodule of M , then $y \cdot m \in N$ or $x \cdot M \subseteq N$.
If $x \cdot M \subseteq N$, then $x \in(N: M)$.
If $x \cdot M \nsubseteq N$, we show that $y \cdot M \subseteq N$.
Because if $y \cdot M \nsubseteq N$, then there exists $m_{1} \in M$ such that $y \cdot m_{1} \notin N$. Since
$x \cdot(y \cdot m) \in N$, for all $m \in M$, then $x \cdot\left(y \cdot m_{1}\right) \in N$. By primitivity N , we get $x \cdot M \subseteq N$, this is a contradiction. Hence $y \cdot M \subseteq N$. So $P=(N: M)$ is a prime ideal of X. Since N is prime, then $N \neq M$. So there exists $m_{0} \in M-N$. Now we show that the left $\frac{X}{P}$-module $\frac{M}{N}$ is fully faithful. Since $x . m+N=N$ for all $m \in M$, then $x . m \in N$. So $x . m_{0} \in N$. By primitivity $\mathrm{N}, m_{0} \in N$ or $x . M \subseteq N$. Since $m_{0} \notin N$, then $x . M \subseteq N$. Hence $x \in(N: M)=P$. Then every submodule of $\frac{M}{N}$ is faithful. So $\frac{X}{P}$-module $\frac{M}{N}$ is fully faithful.
Sufficiency. let for any $x \in X$ and $m \in M, x \cdot m \in N$. Then it is easy to see that $\frac{\leq m>+N}{N}$, is $\frac{X}{P}-B C K$ - submodule of $\frac{M}{N}$. Since $\frac{M}{N}$ is a fully faithful $\frac{X}{P}$ module and $(x+P) \cdot(<m>+N)=x \cdot<m>+N=N$, then $x+P=P$ i.e. $x \in P=(N: M)$. Hence $x \cdot M \subseteq N$. Therefore N is a prime $B C K$ - submodule of M .

Theorem 9. Let M_{1} and M_{2} be left $B C K$ - modules over X and ϕ be a $B C K$ epimorphism from M_{1} to M_{2}. Also N be a prime $B C K$ - submodule of M_{2}. Then $\phi^{-1}(N)$ is a prime $B C K$ - submodule of M_{1}.

Proof. It is immediate that $\phi^{-1}(N) \neq M_{1}$, now we show that $\phi^{-1}(N)$ is a prime $B C K$ - submodule of M_{1}. Let $x \in X$ and $m \in M_{1}$ such that $x \cdot m \in \phi^{-1}(N)$, so $\phi(x \cdot m) \in N$, hence $x \cdot \phi(m) \in N$, since N is a prime $B C K$ - submodule of M. Therefore $x \cdot M_{2} \subseteq N$ or $\phi(m) \in N$. If $x \cdot M_{2} \subseteq N$, then it is easy to see that $x \cdot M_{1} \subseteq \phi^{-1}(N)$, also if $\phi(m) \in N$, so $m \in \phi^{-1}(N)$. This complete the proof.

In above theorem, it may be N a prime $B C K$ - submodule of M_{1}, but $\phi(N)$ is not a prime $B C K$ - submodule of M_{2}.
Consider the following example:
Example 4. In Example 3, let $A=\{1,2\}$ and $B=\{1\}$, and let $\lambda: P(A) \longrightarrow P(A)$ such that $\lambda(T)=\emptyset$, for any T in $P(A)$. It is clear that λ is $B C K$-homomorphism and $P(B)$ is a prime $B C K$ - submodule of $P(A)$, but $\lambda(P(B))=\emptyset$ is not a prime $B C K$-submodule of $P(A)$, because if $x=\{1\}$ and $y=\{2\}$, then x and y are subsets of A and $x \cap y=\emptyset$ whereas $x \neq \emptyset$ and $y \cap P(A)=\{2\} \neq \emptyset$.

Let X be a lower semilattice $B C K$ - algebra. Then $N(X)$ will denote the intersection of all prime ideals of X.

Theorem 10. Let P be a prime ideal of a lower semilattice X containing I. Then $\frac{P}{I}$ is a prime ideal of BCK- algebra $\frac{X}{I}$.
Proof. First we show $\frac{P}{I} \neq \frac{X}{I}$. If $\frac{P}{I}=\frac{X}{I}$, then $X=P$, because $x \in X$, implies that $C_{x} \in \frac{X}{I}=\frac{P}{I}$ i.e. $C_{x}=C_{p_{1}}$, for some $p_{1} \in P$. So $x * p_{1} \in I \subseteq P$. Hence $x \in P$. Therefore $X=P$, this is a contradiction. Now let $\left(C_{x}\right) \wedge\left(C_{y}\right) \in \frac{P}{I}$. Then $C_{x \wedge y} \in \frac{P}{I}$. It is easy to see that $x \wedge y \in P$. By primitivity P , we get that $C_{x} \in \frac{P}{I}$ or $C_{y} \in \frac{P}{I}$. Therefore $\frac{P}{I}$ is a prime ideal of $B C K$ - algebra $\frac{X}{I}$.

Theorem 11. Let M be a left $B C K$ - module over X such that $\operatorname{hom}\left(M, \frac{X}{N(X)}\right) \neq 0$. Then M contains a prime $B C K$ - submodule.

Proof. Since $\operatorname{hom}\left(M, \frac{X}{N(X)}\right) \neq 0$, there exists a $B C K$ - homomorphism v such that $v\left(m_{0}\right) \neq N(X)$, for some $m_{0} \in M$. In the other hand there exists $x_{0} \in X$ such that $v\left(m_{0}\right)=C_{x_{0}}$ and $C_{x_{0}} \neq C_{0}$, hence $x_{0} \notin N(X)$. i.e. there exists a prime ideal P_{0} of X such that $x_{0} \notin P_{0}$.
Since $C_{x_{0}} \notin C_{P_{0}}$, we get that $v(M) \nsubseteq C_{P_{0}}$. By theorem $10 C_{P_{0}}$ is a prime ideal of $\frac{X}{N(X)}$. So by Theorem $9 v^{-1}\left(C_{P_{0}}\right)$ is a prime $B C K$ - submodule of M .

Theorem 12. Let A be an ideal of X and M be a left $B C K$ - module over X. Then there exists a proper $B C K$ - submodule N of M such that $A=(N: M)$ if and only if $A \cdot M \neq M$ and $A=(A \cdot M: M)$.

Proof. The sufficiency is clear.
Conversely, suppose that $A=(N: M)$, for some proper $B C K$ - submodule N of M , since $A \cdot M \subseteq N$, we have $A \cdot M \neq M$.
Moreover clearly $A \subseteq(A \cdot M: M)$, it is sufficient to show that $(A \cdot M: M) \subseteq A$. Let $x \in(A \cdot M: M)$. Then $x \cdot M \subseteq A \cdot M$, so $x \cdot M \subseteq N$ i.e. $x \in(N: M)$.

Let M be a left $B C K$ - module over lower semilattice X and P be a prime ideal of X . Then we shall denote by $\mathrm{M}(\mathrm{P})$ the following subset of M :
$M(P)=\{m \in M \mid A \cdot m \subseteq P \cdot M$, for some ideal $A \nsubseteq P\}$.
It is clear that $\mathrm{M}(\mathrm{P})$ is a $B C K$ - submodule of M and $P \cdot M \subseteq M(P)$.
Note the following fact about $\mathrm{M}(\mathrm{P})$.
Theorem 13. Let P be a prime ideal of a lower semilattice X and M be a left $B C K$ - module over X such that there exists a prime $B C K$ - submodule K of M with $(K: M)=P$. Then $M(P) \subseteq K$.

Proof. Let $m \in M(P)$. Then there is an ideal A of X such that $A \nsubseteq P$ and $A \cdot m \subseteq P \cdot M$.
Since $P \cdot M \subseteq K$, then we have $A \cdot m \subseteq K$ and $A \nsubseteq P$, so $a_{1} \notin P$, for some $a_{1} \in A$. In the other hand, $A \cdot m \subseteq K$, hence $a_{1} \cdot m \in K$. By primitivity K, we have $m \in K$ or $a_{1} \cdot M \subseteq K$. If $a_{1} \cdot M \subseteq K$, then we have $a_{1} \in(K: M)=P$, therefore $a_{1} \in P$. This is a contradiction. So $m \in K$. The proof is complete.

Acknowledgements. The authors are extremely grateful to the referees for giving them many valuable comments and helpful suggestions which helped to improve the presentation of this paper.

References

[1] H .A .S. Abujabal, M. Aslam, A. B. Thaheem, On actions of BCK- algebras on groups, Panamerican Mathematical Journal 4(3)(1994), 43-48.
[2] H. A. S. Abujabal, M. A. obaid, Jeddab and A. B. Thaheem, On annihilators of BCK-algebras, Czechoslovak Mathematical Journal, 45(120) 1995.
[3] M. Bakhshi, M. M. Zahedi, R. A. Borzooei, Fuzzy (positive, weak implicative) hiper BCK-ideal, Iranian Journal of fuzzy system, Vol.1, No. 2 (2004), PP 63-79.
[4] R. A. Borzooei, J. Shohani and M. Jafari, Extended BCK-module, World Applied Sciences Journal 14(2011), 1843-1850.
[5] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22.
[6] B. Imran and M. aslam, On certain BCK-modules, CSouthest Asian Bulletin of Mathematics, (2010) 34, 1-10.
[7] K. Iseki, An algebraic related with a propositional calculus, Proc. Japan Acad. 42(1966), 26-29.
[8] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co, Korea, 1994.
[9] Z. Perveen, M. aslam and A. B. Thaheem, On BCK-module, Southeast Asian Bulletin of Mathematics (2006) 30, 317-329.
[10] R. F. Reftery, On prime ideal and subdirect decompositions of BCK-algebras, Math. Japonica, 32(1987) 811-818.

N. Motahari
Department of Mathematics, Islamic Azad University,
Kahnooj Branch, Kerman, Iran
email: narges.motahari@yahoo.com
T. Roudbari Lor
Department of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran email: T.Roodbarylor@yahoo.com

