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A CLASS OF NEW DIFFERENCE SEQUENCE SPACES AND
THEIR MATRIX TRANSFORMATIONS

P. Baliarsingh and S. Dutta

Abstract. In this paper, we define a class of new difference sequence spaces
`∞(∆ν

[k]), c(∆
ν
[k]) and c0(∆ν

[k]), where ∆ν
[k]xk = kνkxk − (k + 1)νk+1xk+1 for all k =

1, 2, 3... and ν = (νk) is a fixed sequence of non zero complex numbers satisfying some
conditions. Subsequently, we also derive some inclusion relations and topological
properties of these spaces and discuss about their pα−, pβ−, and pγ− duals. Finally,
we introduce the concept of statistical convergence on these spaces and their matrix
transformations.
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1. Introduction and preliminaries

Let ω be the set of all sequences of real or complex numbers and `∞, c and c0 be the
set of linear spaces that are bounded, convergent and null sequences x = (xk) with
the complex terms respectively, normed by

‖x‖∞ = sup
k
|xk|,

where k ∈ N = {1, 2, 3...}, the set of positive integers. The notion of difference
sequence space was introduced by Kızmaz [1] by defining the sequence space

X(∆) = {x = (xk) : ∆x ∈ X}, (1)

for X = `∞, c and c0, where ∆x = (xk − xk+1). Later on the above idea was gen-
eralized by Et and Çolok [2]. Subsequently, this concept was further extended and
studied by Et and Esi [3], Et and Nuray [4], Baliarsingh[5], Et and Basarır[6] and
many others (see [7]-[13]).
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Let ν = (νk) be any fixed sequence of non zero complex numbers satisfying

lim
k→∞

inf
k
|νk|

1
k = r, (0 < r ≤ ∞).

Now, we define

`∞(∆ν
[k]) =

{
x = (xk) ∈ ω : sup

k
|∆ν

[k]xk| <∞
}
,

c0(∆ν
[k]) =

{
x = (xk) ∈ ω : lim

k→∞
|∆ν

[k]xk| = 0
}
,

c(∆ν
[k]) =

{
x = (xk) ∈ ω : lim

k→∞
|∆ν

[k]xk − L| = 0, for some L
}
,

where ∆ν
[k]xk = kνkxk − (k + 1)νk+1xk+1, for all k ∈ N.

In particular, we have the following observations:

(i) For ∆ν
[k] = I, an identity operator these classes generalize the basic sequence

spaces `∞, c and c0.

(ii) For νk = 1, (k ∈ N), these classes reduce to the sets of spaces `∞(∆[k]), c(∆[k])
and c0(∆[k]), where ∆[k]xk = kxk − (k + 1)xk+1 (see [12]).

2. Topological properties and inclusion relations

In this section, we establish some new relations and basic topological properties
concerning the spaces `∞(∆ν

[k]), c(∆
ν
[k]), c0(∆ν

[k]),`∞(∆[k]), c(∆[k]) and c0(∆[k]).

Theorem 1. `∞(∆ν
[k]), c(∆

ν
[k]) and c0(∆ν

[k]) are linear over C, the field of complex
scalars under co-ordinate wise addition and scalar multiplication.

Proof. The proof is a routine verification, hence omitted.

Corollary 2. `∞(∆[k]), c(∆[k]) and c0(∆[k]) are linear over C, the field of complex
scalars under co-ordinate wise addition and scalar multiplication.

Theorem 3. `∞(∆ν
[k]), c(∆

ν
[k]) and c0(∆ν

[k]) are normed linear over with the norm

‖ x ‖∆ν
[k]

= |ν1x1|+ sup
k
|∆ν

[k]xk|. (2)

Proof. The proof is a routine verification, hence omitted.
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Corollary 4. `∞(∆[k]), c(∆[k]) and c0(∆[k]) are normed linear spaces with the norm

‖ x ‖∆[k]
= |x1|+ sup

k
|∆[k]xk|. (3)

Theorem 5. `∞(∆ν
[k]), c(∆

ν
[k]) and c0(∆ν

[k]) are compete normed linear spaces with

the norm defined in (2).

Proof. We give the proof for the space `∞(∆ν
[k]) only and for other spaces it fol-

lows the similar techniques. Suppose xM = (xMk ), xN = (xNk ) are two elements of
`∞(∆ν

[k]) for every k,M,N ∈ N and

‖ xM − xN ‖∆ν
[k]

= |ν1(xN1 − xM1 )|+ sup
k
|∆ν

[k](x
N
k − xMk )| → 0, as M,N →∞

For every ε > 0, there exists a number N0 such that M,N > N0

|ν1(xN1 − xM1 )| < ε and sup
k
|∆ν

[k](x
N
k − xMk )| < ε,

⇒ (ν1x
N
1 ) is a Cauchy sequence in C. Again for M,N > N0 and k > 1

sup
k
|∆ν

[k]x
N
k −∆ν

[k]x
M
k | < ε

⇒ |kνkxNk − (k + 1)νk+1x
N
k+1 − kνkxMk + (k + 1)νk+1x

M
k+1| < ε

⇒ By putting k = 1, subsequently we get (ν2x
N
2 ) is a Cauchy sequence in C.

Continuing this process one can show that (νkx
N
k ) and (∆ν

[k]x
N
k ) are Cauchy se-

quences in C for all k and for k > 1 respectively. By complement of C,
limN→∞∆ν

[k]x
N
k = xk for each fixed k > 1 .

For given ε > 0 and N0 > M,N

lim
M→∞

sup
k
|∆ν

[k](x
N
k − xMk )| = sup

k
|∆ν

[k]x
N
k − xk| < ε (4)

Now

lim
M→∞

‖ xN − xM ‖∆ν
[k]

= |ν1(xN1 − x1)|+ sup
k
|∆ν

[k]x
N
k − xk| ≤ 2ε.

⇒ xN → x as M →∞.

Since `∞(∆ν
[k]) is linear and x = x − xN + xN , this implies x ∈ `∞(∆ν

[k]). This
completes the proof.

Corollary 6. `∞(∆[k]), c(∆[k]) and c0(∆[k]) are compete normed linear spaces with
the norm defined in (3).
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Theorem 7. `∞(∆ν
[k]), c(∆

ν
[k]) and c0(∆ν

[k]) are BK-spaces under the norm defined

in (2).

Proof. We give the proof of the space `∞(∆ν
[k]) only and for the other spaces it will

follow the similar technique. Let us consider the mapping

T : `∞(∆ν
[k])→ `∞(∆ν

[k])

defined by Tx = y = (0, x2, x3, ...), where x = (xk) = (x1, x2, x3...). It is clear that
T is bounded linear operator on `∞(∆ν

[k]).

The space T (`∞(∆ν
[k])) = {x = (xk) : x1 = 0, x ∈ `∞(∆ν

[k])} is a subspace of `∞(∆ν
[k])

and
‖x‖ =‖ ∆ν

[k]xk ‖∞ in `∞(∆ν
[k]).

On the other hand we can show that the mapping 4T : T (`∞(∆ν
[k]))→ `∞, defined

by 4T (x) = (yk) = (∆ν
[k]xk) is a linear homomorphism.

Now

‖4T (x)‖ = ‖x‖.

Therefore, 4T is linear and bijective. Hence (`∞(∆ν
[k]) is isometrically isomorphic

to `∞.

Corollary 8. `∞(∆[k]), c(∆[k]) and c0(∆[k]) are BK-spaces under the norm defined
in (2).

Theorem 9. c0(∆ν
[k]) ⊂ c(∆

ν
[k]) ⊂ `∞(∆ν

[k]) ⊂ `∞ and the inclusion is strict.

Proof. The proof is trivial.

Corollary 10. c0(∆[k]) ⊂ c(∆[k]) ⊂ `∞(∆[k]) ⊂ `∞ and the inclusion is strict.

Theorem 11. (i) `∞ ∩ `∞(∆[k]) = `∞ ∩ c(∆[k]) = c(∆[k]) and

(ii) `∞ ∩ c0(∆[k]) = c0(∆[k]).

Proof. (i) The proof of `∞∩ c(∆[k]) = c(∆[k]) directly follows from Corollary 10 and
only to show `∞∩ `∞(∆[k]) = c(∆[k]). Suppose x ∈ `∞∩ `∞(∆[k]) which implies that
|xk| < ∞ and |kxk − (k + 1)xk+1| < ∞ for all k ∈ N. Thus, there exists εk and l
such that (kxk − (k + 1)xk+1) = l + εk, εk → 0 as k →∞. Now,

n∑
k=1

(kxk − (k + 1)xk+1) = x1 − (n+ 1)xn+1

= nl +
n∑
k=1

εk.
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Therefore, x ∈ c(∆[k]) , this follows from the fact that l =
1

n
x1 − xn+1 −

1

n
xn+1 −

1

n

n∑
k=1

εk and hence (`∞∩ `∞(∆[k])) ⊂ c(∆[k]). From Corollary 10, the fact c(∆[k]) ⊂

(`∞ ∩ `∞(∆[k])) is clear. This completes the proof.

(ii) This follows from the Corollary 10.

3. Dual spaces

In this section, we give the definition of pα−, pβ− and pγ− duals of X, a nonempty
subset of ω and determine these duals for the spaces `∞(∆ν

[k]), c(∆
ν
[k]) and c0(∆ν

[k]).
We also discuss some lemmas and theorems associated to this concept.

Definition 1. Let X be a nonempty subset of ω and p ≥ 1, then

Xpα =
{

(yk) ∈ ω :
∑
k

|xkyk|p <∞ for every x ∈ X
}
,

Xpβ =
{

(yk) ∈ ω :
∑
k

(xkyk)
p converges for every x ∈ X

}
,

Xpγ =
{

(yk) ∈ ω : sup
M∈N

∣∣∣∣∣
M∑
k=1

(xkyk)
p

∣∣∣∣∣ <∞ for every x ∈ X
}
.

We call Xpα, Xpβ and Xpγ are the pα−, pβ− and pγ− duals of X, respectively.
For p = 1, Xα is called the Köthe−Toeplitz dual of X. It is clear that Xpα ⊂ Xpβ ⊂
Xpγ and for X ⊂ Y , Xη ⊂ Xη, where η ∈ {pα, pβ, pγ}. The concept of duality of
the sequence spaces was introduced by Köthe[14]. Furthermore, this concepts were
extended and studied by Maddox[15, 16], Kamthan and Gupta[17] , Malkowsky et
al. [11], Et and Esi [3], and many others.

Lemma 12. supk |∆ν
[k]xk| <∞ if and only if

(i) sup
k
|νkxk| <∞.

(ii) sup
k
|νkxk −

k + 1

k
νk+1xk+1| <∞.

Proof. For necessity, let supk |∆ν
[k]xk| <∞,

i.e. |kνkxk − (k + 1)νk+1xk+1| <∞, for all k = 1, 2, 3...
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Consider,

|ν1x1 − kνkxk| = |
k−1∑
i=1

(iνixi − (i+ 1)νi+1xi+1)|

≤
k−1∑
i=1

|iνixi − (i+ 1)νi+1xi+1|

< O(k)

⇒ |νkxk| < O(1), for all k = 1, 2, 3....

For the second part,∣∣∣νkxk − k + 1

k
νk+1xk+1

∣∣∣
=

1

k
|kνkxk − (k + 1)νk+1xk+1|

≤ 1

k

[
|kνkxk − (k + 1)νk+1xk+1| <∞.

For sufficiency, suppose (i) and (ii) hold, then supk≥1 |∆[k](xkνk)|pk <∞ due to the
fact that ∣∣∣νkxk − (k + 1)

k
νk+1xk+1

∣∣∣
≥ 1

k

[
|kνkxk − (k + 1)νk+1xk+1| − |νkxk|

]
.

This completes the proof.

Lemma 13. supk |∆[k]xk| <∞ if and only if

(i) sup
k
|xk| <∞.

(ii) sup
k
|xk −

k + 1

k
xk+1| <∞.

Proof. Proof is similar to that of Lemma 12.

Theorem 14. [
`∞(∆ν

[k])
]pα

=
[
c(∆ν

[k])
]pα

=
[
c0(∆ν

[k])
]pα

= D1,

where D1 =
⋂

1<N∈N

{
x = (xk) :

∑
k

Np|ν−1
k xk|p <∞

}
.
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Proof. For first inclusion, let x ∈ D1 and y ∈ `∞(∆ν
[k]). By Lemma 12, there exists

a positive integer N such that

|ykνk| < N, for all k ∈ N.

Hence,
∑
k

|xkyk|p ≤
∑
k

|xk|pNp|ν−1
k |

p ≤ Np
∑
k

|ν−1
k xk|p <∞.

Since x ∈ D1, the series on the right hand side of the above inequality is less than

∞, which implies x ∈
[
`∞(∆ν

[k])
]pα

.

For the second part, let x ∈
[
`∞(∆ν

[k])
]pα

and x /∈ D1.

Then there exists a positive integer N > 1 such that∑
k

Np|ν−1
k xk|p =∞.

Now we define a sequence y = (yk) such that

yk =
N

νk
· sgn xk; k = 1, 2, 3 . . .

Then it is easy to verify y ∈ `∞(∆ν
[k]), but

∑
k

|xkyk|p =∞.

This contradicts the assumption that x ∈
[
`∞(∆ν

[k])
]pα

. Proofs of other spaces are

similar.

Corollary 15. [
`∞(∆[k])

]α
=
[
c(∆[k])

]α
=
[
c0(∆[k])

]α
= D′1,

where D′1 =
⋂

1<N∈N

{
x = (xk) :

∑
k

N |xk| <∞
}
.

Proof. The proof of this corollary can be obtained by putting νk = 1 for all k ∈ N
and p = 1 in the Theorem 14.

Theorem 16. uppose η stands for pα−, pβ−and pγ− duals, then[
`∞(∆ν

[k])
]ηη

=
[
c(∆ν

[k])
]ηη

=
[
c0(∆ν

[k])
]ηη

= D2,

where D2 =
⋃

1<N∈N

{
x = (xk) : sup

k

|νkxk|p

Np
<∞

}
.
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Proof. For the first part, suppose x ∈ D2 and η = pα, then

|νkxk|p

Np
<∞, for all k = 1, 2, 3..

Let y ∈ D1 and by Theorem 14,∑
k

|xkyk|p ≤ sup
k

|νkxk|p

Np

∑
k

Np|ν−1
k yk|p <∞, for all k ∈ N.

which implies x ∈
[
D1

]pα
=
[[
`∞(∆ν

[k])
]pα]pα

.

For the second part, let x ∈ D1 and x /∈ D2.
Then, there exists a positive integer N > 1 such that

sup
k

|νkxk|p

Np
=∞.

Hence there exists a positive increasing sequence (k(i)) such that

|νk(i)xk(i)|p

Np
> ip+k for all k ∈ N.

Now we define a sequence y = (yk) such that

yk =

{
|xk(i)|−p k = k(i),

0 otherwise,

Now,

∑
k

Np|yk|p

|νk|p
≤
∞∑
i=1

Np|xk(i)|−p

|νk(i)|p
<
∞∑
i

i−(k+p) <∞, for all k ∈ N.

Hence, y ∈ D1, but
∑
k

|xkyk|p =∞.

This contradicts the assumption that x ∈ D1. Proofs for other spaces are obtained
by using similar techniques.

Corollary 17.[
`∞(∆[k])

]ηη
=
[
c(∆[k])

]ηη
=
[
c0(∆[k])

]ηη
= D′2,

where D′2 =
⋃

1<N∈N

{
x = (xk) : sup

k

|xk|
N

<∞
}
.
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4. [k]-statistical convergence

In this section, we give the definition of [k] -statistical convergence and establish
some relations between the spaces defined by us and othe r spaces. The notion of
statistical convergence was introduced by Fast [18] and studied by various authors
such as Fridy [19] Connor[20], Kolk[21], Et. and Nuray [4] and Mursaleen [22].
We recall some concepts connecting with statistical convergence. Let K be a subset
of N, the set of natural numbers and Kn be a set i.e.

Kn = {k ∈ K : k < n},

then the natural density of K is given by δ(K) = limn→∞
|Kn|
n , provided the limit

exists, where |Kn| denotes the number of elements in Kn. Finite subsets have natural
density zero.

Definition 2. A sequence x = (xk) is said to be statistically convergent or S-
convergent to L, if for every ε > 0

lim
m→∞

1

m
|{k < m : |xk − L| ≥ ε}| = 0.

In other words the natural density of the set {k ∈ N : |xk − L| ≥ ε} i.e.
δ({k ∈ N : |xk − L| ≥ ε}) = 0. In this case we write St. − limx = L or xk → L(S)
and

S = {x ∈ ω : St.− limx = L, for some L}.

Definition 3. A sequence x = (xk) is said to be [k]-statistically convergent or
S(∆ν

[k])-convergent to L, if for every ε > 0

lim
m→∞

1

m
|{k < m : |∆ν

[k]xk − L| ≥ ε}| = 0.

In this case we write δ({k ∈ N : |∆ν
[k]x − L| ≥ ε}) = 0, St. − limx = L or

xk → LS(∆ν
[k])

Theorem 18. Let x = (xk) be a sequence and [k]-statistically convergent to L in
S(∆ν

[k]), then L is unique.

Proof. The proof is trivial, hence omitted.

Theorem 19. Let (xk) be a sequence and (yk) be a [k]-statistically convergent se-
quence such that xk = yk almost all k, then (xk) is a [k]-statistically convergent
sequence.
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Proof. Suppose xk = yk almost all k, then δ({k ∈ N : xk 6= yk}) = 0,
Let yk → LS(∆ν

[k]), then for every ε > 0,

δ({k ∈ N : |∆ν
[k]yk − L| ≥ ε}) = 0,

Now, δ({k ∈ Im : |∆ν
[k]xk − L| ≥ ε})

≤ δ({k ∈ N : xk = yk and |∆ν
[k]xk − L| ≥ ε})

+ δ({k ∈ N : xk 6= yk and |∆ν
[k]xk − L| ≥ ε})

= δ({k ∈ N : |∆ν
[k]yk − L| ≥ ε}) + 0 = 0,

⇒ xk → LS(∆ν
[k]).

Theorem 20. (i) If xk → Lw(∆ν
[k]), then xk → LS(∆ν

[k]),

(ii) If x ∈ c(∆ν
[k]) and xk → LS(∆ν

[k]), then xk → Lw(∆ν
[k]),

(iii) S(∆ν
[k]) ∩ c(∆

ν
[k]) = w(∆ν

[k]) ∩ c(∆
ν
[k]),

where w(∆ν
[k]) =

{
x = (xk) ∈ ω :

1

m

m∑
k=1

|∆ν
[k]xk − L| = 0, for some L

}
.

Proof. (i) Let xk → Lw(∆ν
[k]), this implies for every ε > 0,

1

m

m∑
k=1

|∆ν
[k]xk − L| ≥

∑
k∈N,

|∆ν
[k]
xk−L|≥ε

|∆ν
[k]xk − L|

≥ ε|{k ∈ N : |∆ν
[k]xk − L| ≥ ε}|

Taking limit as n → ∞, |{k ∈ N : |∆ν
[k]xk − L| ≥ ε}| = 0 which implies

xk → LS(∆ν
[k]).

(ii) Suppose x ∈ (̧∆ν
[k]) and xk → LS(∆ν

[k]). i.e, for given ε > 0, |∆ν
[k]xk −L| < ε as

k →∞. Now,

1

m

m∑
k=1

|∆ν
[k]xk − L| =

1

m

∑
k∈N,

|∆ν
[k]
xk−L|≥ε

|∆ν
[k]xk − L|+

1

m

∑
k∈N,

|∆ν
[k]
xk−L|<ε

|∆ν
[k]xk − L|

≤ 1

m
|{k ∈ N : |∆ν

[k]xk − L| ≥ ε}|+ ε.
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As m→∞, the right hand side is zero, which implies that xk → Lc(∆ν
[k]).

(iii) This immediately follows from (i) and (ii).

Theorem 21. If lim infm
λm
m > 0, then S(Â,∆r

ν) ⊂ Sλ(Â,∆r
ν).

Proof. Given ε > 0, we have

{k ∈ Im : |∆r
νBkn(x)− L| ≥ ε} ⊂ {k ≤ m : |∆r

νBkn(x)− L| ≥ ε}

Therefore,
1

m
|{k ≤ m : |∆r

νBkn(x)− L| ≥ ε}| ≥ 1

m
|{k ∈ Im : |∆r

νBkn(x)− L| ≥ ε}|

=
λm
m
.

1

λm
|{k ∈ Im : |∆r

νBkn(x)− L| ≥ ε}|

Taking the limit as m→∞ we get xk → LS(Â,∆r
ν) ⇒ xk → LSλ(Â,∆r

ν).

5. Matrix transformations

Let X and Y be any two subspaces of ω. By (X,Y ), we denote all the matrix
transformations from X to Y . Let A = (ank) be an infinite matrix of complex
numbers ank such that A : X → Y , defined by

An(x) =
∞∑
k=1

ankxk, (n ∈ N) (5)

where x ∈ X and A(x) denotes the sequence (A(x))n provided the sum in (5) is
convergent. Before proceed to the main theorems, first we give some known results
concerning matrix transformations.
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We take a list of results such as

sup
n

∞∑
k=1

|ank| <∞, (6)

lim
n→∞

ank = ak, for k ∈ N, (7)

lim
n→∞

∞∑
k=1

|ank| =
∞∑
k=1

|ak|, (8)

lim
n→∞

∞∑
k=1

|ank| = a, (9)

sup
n

∣∣∣∣∣
∞∑
k=1

ank

∣∣∣∣∣ <∞, (10)

sup
n

∞∑
k=1

|kank| <∞, (11)

sup
n,k
|ank| <∞, (12)

lim
n→∞

ank = 0, for k ∈ N, (13)

lim
n→∞

∞∑
k=1

|ank| = 0, (14)

lim
n→∞

∞∑
k=1

|kank| = 0, (15)

Lemma 22. ([23])

(a) For X = {`∞, c, c0}, A ∈ (X, `∞) if and only if condition (6) holds.

(b) A ∈ (`∞, c) if and only if conditions (7) and (8) hold.

(c) A ∈ (c, c) if and only if conditions (6), (7) and (9) hold.

(d) A ∈ (c0, c) if and only if conditions (6) and (7) hold.

(e) For X = {`∞, c, c0}, A ∈ (X, c0) if and only if conditions (13) and (14) hold.

Now we obtain necessary and sufficient conditions for the matrix transforma-
tions of `∞(∆[k]), c(∆[k]), c0(∆[k]) to `∞, c ,c0 and vice versa.

Theorem 23. (i) A ∈ (`∞(∆[k]), `∞) if and only if condition (10) holds.
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(ii) A ∈ (c(∆[k]), `∞) if and only if conditions (6) and (10) hold.

(iii) A ∈ (c0(∆[k]), `∞) if and only if conditions (6) and (10) hold.

(iv) A ∈ (`∞(∆[k]), c) if and only if condition (6) and (8) hold.

(v) A ∈ (c(∆[k]), c) if and only if conditions (6), (8) and (10) hold.

(vi) A ∈ (c0(∆[k]), c) if and only if conditions (6), (8) and (10) hold.

(vii) A ∈ (`∞(∆[k]), c0) if and only if condition (10) holds.

(viii) A ∈ (c(∆[k]), c0) if and only if conditions (10) and (12) hold.

(ix) A ∈ (c0(∆[k]), c0) if and only if conditions (10) and (12) hold.

Proof. (i) Sufficiency: Suppose x ∈ `∞(∆[k]), by Lemma 12, there exists a real M
such that sup

k
|xk| < M , for all k. Now

sup
n
|An(x)| = sup

n

∣∣∣∣∣∑
k

ankxk

∣∣∣∣∣ ≤ sup
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣ sup
k
|xk|

≤M sup
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣ <∞, by the condition (10).

Necessity: Suppose supn |An(x)| < ∞, by putting x = e = (1, 1, 1, .....), we
have

sup
n
|An(e)| = sup

n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣ <∞.
(ii) Sufficiency: Suppose x ∈ c(∆[k]), there exists a l ∈ C such that

kxk − (k + 1)xk+1 = l + εk, εk → 0 as k →∞.
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We have

x1 − kxk =
k−1∑
i=1

(l + εi) = l
k−1∑
i=1

+
k−1∑
i=1

εi

⇒ xk =
x1

k
− l (k − 1)

2
+

1

k

k−1∑
i=1

εi

Now sup
n
|An(x)| = sup

n

∣∣∣∣∣∑
k

ank

(
x1

k
− l (k − 1)

2
+

1

k

k−1∑
i=1

εi

)∣∣∣∣∣
≤ |x1| sup

n

∣∣∣∣∣∑
k

ank
k

∣∣∣∣∣+
|l|
2

sup
n

∣∣∣∣∣∑
k

ank(k − 1)

∣∣∣∣∣+
εM
2

sup
n

∣∣∣∣∣∑
k

ank(k − 1)

∣∣∣∣∣
≤
(
|x1|+

|l|
2

+
εM
2

)
sup
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣+

(
|l|
2

+
εM
2

)
sup
n

∣∣∣∣∣∑
k

kank

∣∣∣∣∣
<∞, by the conditions (10) and (11),

where εM = max(0, supk |εk|).

Necessity: Necessity of the conditions (10) and (11) can be obtained by taking
x = e and xk = k for all k, respectively in the hypothesis

sup
n
|An(x)| = sup

n

∣∣∣∣∣∑
k

ankxk

∣∣∣∣∣ <∞.
(iii) The proof is immediate by putting l = 0 in (ii).

(iv) Sufficiency: Suppose x ∈ `∞(∆[k]) and the condition (12) holds, by Lemma 12,
we have

lim
n→∞

|An(x)| = lim
n→∞

∣∣∣∣∣∑
k

ankxk

∣∣∣∣∣ ≤M lim
n→∞

∣∣∣∣∣∑
k

ank

∣∣∣∣∣ <∞.
Necessity: Suppose limn→∞ |An(x)| < ∞, by putting x = e = (1, 1, 1, .....),

we have

lim
n→∞

|An(e)| = lim
n→∞

∣∣∣∣∣∑
k

ank

∣∣∣∣∣ <∞.
(v) The proof follows from (i), (ii) and (iv).
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(vi) The proof follows from (v) and (iii).

(vii) The proof follows from Lemma 22 and (i).

(viii) The proof follows from Lemma 22, (i) and (ii).

(ix) The proof follows from (viii).
This completes the proof.
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