LINEAR QUASI-MCCOY RINGS

M.J. Nikmehr, M. Deldar, H. Daneshmand

Abstract. In this paper, we introduce linear quasi-McCoy rings which are a generalization of weak quasi-Armendariz rings. It is shown, for a semiprime ring R, $\frac{R[x]}{\left(x^{n}\right)}$ and $R[x]$ are linear quasi-McCoy. Also, it is shown $M_{n}(R)$ is linear quasi-McCoy if R is linear quasi McCoy ring. Various properties of linear quasi-McCoy rings are also observed.

2000 Mathematics Subject Classification: 16S50, 16S99.
Keywords: McCoy rings, linear quasi-McCoy rings, semicommutative rings.

1. Introduction

Throughout this paper R denote an associative ring with identity. Given a ring R, the polynomial ring with an indeterminate x over R is denoted by $R[x]$. Rege and Chhawchharia [18] introduced the notion of an Armendariz ring. A ring R is an Armendariz if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=$ $b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for all i, j. The name Armendariz ring was chosen because Armendariz (1974) had shown that a reduced ring (i. e., a ring without nonzero nilpotent elements) satisfies this condition. Some properties of Armendariz rings have been studied in [1, 2, 9, 18, 16, 17]. According to Hirano [4], a ring is called quasi-Armendariz if whenever polynomials $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) R[x] g(x)=0$, then $a_{i} R b_{j}=0$ for all i, j.

Recall that a ring R is called reversible if $a b=0$ implies $b a=0$, for all $a, b \in R$. R is called semicommutative if for all $a, b \in R, a b=0$ implies $a R b=0$. In [15] has shown reduced rings are reversible and reversible rings are semicommutative, but the converse is not true in general. According to Nielsen [15], a ring R is called right McCoy (resp., left McCoy) if for any polynomials $f(x), g(x) \in R[x] \backslash\{0\}$, $f(x) g(x)=0$ implies $f(x) r=0$ (resp., $s g(x)=0$) for some $0 \neq r \in R$ (resp., for some $0 \neq s \in R$).

A ring is called $M c C o y$ if it is both left and right McCoy. By McCoy [14], commutative rings are McCoy rings. Reduced rings are Armendariz and Armendariz rings are McCoy. In [3] Baser and Kaynarca studied a generalization of quasi Armendariz rings, which is called weak quasi Armendariz.

A ring R is called weak quasi Armendariz if for $f(x)=a_{0}+a_{1} x, g(x)=b_{0}+b_{1} x \in$ $R[x], f(x) R[x] g(x)=0$ implies $a_{i} R b_{j}=0$ for all $0 \leq i, j \leq 1$. They showed $M_{n}(R), T_{n}(R)$ and $R[x]$ over a weak quasi-Armendariz ring are too. Motivated by the above results, we investigate a generalization of weak quasi-Armendariz rings which we call a linear quasi-McCoy ring and study several results.

2. Linear Quasi-McCoy Rings

We begin this section by the following definition and also we study properties of linear quasi-McCoy rings.

Definition 1. A ring R is called a right linear quasi-McCoy ring if for $f(x)=$ $a_{0}+a_{1} x$ and $g(x)=b_{0}+b_{1} x$ in $R[x], f(x) R[x] g(x)=0$ implies $f(x) R s=0$ for some nonzero $s \in R$. (i. e. $a_{i} R s=0$ for $0 \leq i \leq 1$). Left linear quasi McCoy rings are defined analogously.

The following lemma will be used very frequently in this paper.
Lemma 1. [4, Lemma 2.1] Let $f(x)$ and $g(x)$ be two elements of $R[x]$. Then $f(x) R[x] g(x)=0$ if and only if $f(x) R g(x)=0$.

Clearly, any weak quasi-Armendariz ring is linear quasi-McCoy. In the following, we will see that the converse is not true.

Recall that for a ring R and an (R, R)-bimodule M, the trivial extention of R by M is the $\operatorname{ring} T(R, M)=R \oplus M$ with the usual addition and the multiplication $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)$. This is isomorphic to the ring of all matrices $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$, where $r \in R, m \in M$ and the usual matrix operations are used.

Example 1. The commutative rings are linear quasi-McCoy but need not be weak quasi Armendariz. Consider the polynomial $f(x)=(\overline{4}, \overline{0})+(\overline{4}, \overline{1}) x$ over the ring $\frac{\mathbb{Z}}{8 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{8 \mathbb{Z}}$. The square of this polynomial is zero but the product $(\overline{4}, \overline{0})(\overline{4}, \overline{1})=(\overline{0}, \overline{4})$ is not zero.

By [3, Theorem 2.7], if R is a semiprime ring, then $R, R[x], S_{n}(R), R[x], \frac{R[x]}{\left(x^{n}\right)}$ and $V_{n}(R)$ (for $n \geq 2$) are weak quasi-Armendariz rings, and so linear quasi-McCoy rings.

Proposition 1. Let R be a ring and Δ be a multiplicative closed subset of R consisting of central regular elements. Then R is linear quasi-McCoy if and only if $\Delta^{-1} R$ is linear quasi-McCoy.

Proof. Let $S=\Delta^{-1} R$. Assume that S is linear quasi-McCoy. Let $f(x)=a_{0}+a_{1} x$ and $g(x)=b_{0}+b_{1} x \in R[x]$ such that $f(x) R g(x)=0$. For any $r \in R$ with $w \in \Delta$, $0=w^{-1} f(x) r g(x)=f(x)\left(w^{-1} r\right) g(x)$. So we have $f(x) S g(x)=0$. Since S is linear quasi-McCoy, $a_{i} S u^{-1} c=0$ for some nonzero $u^{-1} c \in S(0 \leq i \leq 1)$, and so $a_{i} R c=0$. Therefore, R is linear quasi-McCoy.

Conversely, suppose that R is linear quasi-McCoy. Let $F(x)=\alpha_{0}+\alpha_{1} x$ and $G(x)=\beta_{0}+\beta_{1} x \in S[x]$ such that $F(x) S G(x)=0$, where $\alpha_{i}=u^{-1} a_{i}$ and $\beta_{j}=v^{-1} b_{j}$ with $a_{i}, b_{j} \in R$ and regular elements $u, v \in R$. Since Δ is contained in the center of R and $F(x) S G(x)=0$, for any $w^{-1} r \in S$, we have

$$
0=u^{-1}\left(a_{0}+a_{1} x\right)\left(w^{-1} r\right) v^{-1}\left(b_{0}+b_{1} x\right)=(u v w)^{-1}\left(a_{0}+a_{1} x\right) r\left(b_{0}+b_{1} x\right)
$$

Let $f(x)=a_{0}+a_{1} x$ and $g(x)=b_{0}+b_{1} x$. Then $f(x), g(x) \in R[x]$ with $f(x) R g(x)=$ 0 . Since R is linear quasi-McCoy, $a_{i} R c=0$ for some nonzero $c \in R(0 \leq i \leq 1)$.

This shows that $\alpha_{i} S v^{-1} c=0(0 \leq i \leq 1)$. Therefore, S is linear quasi-McCoy.
Corollary 2. Let R be a ring. Then $R[x]$ is linear quasi-McCoy if and only if $R\left[x ; x^{-1}\right]$ is linear quasi-McCoy.

Proof. It follows directly from since $\Delta=\left\{1, x, x^{2}, \ldots\right\}$ is clearly a multiplicatively closed subset of $R[x]$ and $R\left[x, x^{-1}\right]=\Delta^{-1} R[x]$.

Proposition 2. Let e be a central idempotent of a ring R. If $e R$ and $(1-e) R$ are linear quasi-McCoy, then R is linear quasi-McCoy.

Proof. Suppose that both $e R$ and $(1-e) R$ are linear quasi-McCoy. Let $f(x)=$ $a_{0}+a_{1} x$ and $g(x)=b_{0}+b_{1} x \in R[x]$ with $f(x) R[x] g(x)=0$. Then for any $r \in$ $R, 0=e(f(x) r g(x))=e f(x)(e r) e g(x),(e f(x)=f(x), g(x) e=g(x))$ and $(1-$ e) $f(x)((1-e) r)(1-e) g(x)=0$, and so $e f(x)(e R)[x] e g(x)=0$ and $(1-e) f(x)((1-$ e) $R)[x](1-e) g(x)=0$.

Since $e R$ and $(1-e) R$ are linear quasi-McCoy, for all i we have $e a_{i}(e R) e c=0$ and $(1-e) a_{i}((1-e) R)(1-e) t=0$ for some $s, t \in R$. Thus, $e\left(a_{i} R c\right)=0$ and $(1-e)\left(a_{i} R t\right)=0$ for all i, and hence $a_{i} R c t=(1-e) a_{i} R c t+e\left(a_{i} R c t\right)=0$. Therefore, R is linear quasi -McCoy .

For a nonempty subset S of a ring R, we write $r_{R}(S)=\{c \in R \mid S c=0\}$ and $\ell_{R}(S)=\{c \in R \mid c S=0\}$, which are called the right and left annihilators of S in R, respectively.

Proposition 3. If R is a linear quasi-McCoy and the one-sided annihilator A of a nonempty subset in R is a two-sided ideal of R, then R / A is linear quasi-McCoy.

Proof. Let $A=r_{R}(S)$ be a two -sided ideal of a linear quasi-McCoy ring R for $\emptyset \neq S \subseteq R$. Let $\bar{a}=a+A$ for $a \in R$. Suppose $f(x)=\overline{a_{o}}+\overline{a_{1}} x$ and $g(x)=$ $\overline{b_{0}}+\overline{b_{1}} x \in(R / A)[x]$ with $f(x)(R / A)[x] g(x)=\overline{0}$. From $f(x)(R / A)[x] g(x)=\overline{0}$, we get $f(x) \bar{r} g(x)=\overline{0}$ for any $\bar{r} \in R / A$. Hence, $a_{0} r b_{0}, a_{0} r b_{1}+a_{1} r b_{0}, a_{1} r b_{1} \in A$, and so $s a_{0} r b_{0}=0, s\left(a_{0} r b_{1}+a_{1} r b_{0}\right)=0$ and $s a_{1} r b_{1}=0$ for any $r \in R$ and $s \in S$. Thus, $\left(s a_{0}+s a_{1} x\right) R[x]\left(b_{0}+b_{1} x\right)=0$. Since R is linear quasi-McCoy, we have $s\left(a_{i} R t\right)=0$ for some $t \in R$, for any i and $s \in S$, and hence $a_{i} R t \subseteq A$. Thus $\overline{a_{i}}(R / A) \bar{t}=\overline{0}$ for any i, and therefore R / A is linear quasi-McCoy.

In the following we will show that $M_{n}(R)$ and $T_{n}(R)$ over a linear quasi-McCoy ring R are linear quasi-McCoy.

Proposition 4. For a ring R, we consider the following conditions:

1. R is linear quasi-McCoy.
2. $M_{n}(R)$ is linear quasi-McCoy for any $n \geq 1$.
3. $M_{n}(R)$ is linear quasi-McCoy for some $n \geq 1$.

Then $(1) \Rightarrow(2) \Rightarrow(3)$.
Proof. (1) \Rightarrow (2) Let R be a linear quasi-McCoy ring. Note that $M_{n}(R)[x] \cong$ $M_{n}(R[x])$. We let $f(x)=\sum_{i=0}^{1} A_{i} x^{i}, g(x)=\sum_{i=0}^{1} B_{j} x^{j} \in M_{n}(R[x])$ with $A_{i}=\left(a_{s t}^{i}\right)$ and $B_{j}=\left(b_{v w}^{j}\right)$. We write $f(x)=\left(f_{s t}\right), g(x)=\left(g_{v w}\right) \in M_{n}(R[x])$ with $f_{s t}=$ $\sum_{i=0}^{1} a_{s t}^{i} x^{i}$ and $g_{v w}=\sum_{i=0}^{1} b_{v w}^{j} x^{j}$. Put $f(x) M_{n}(R)[x] g(x)=0$, then equivalently, $f(x) M_{n}(R[x]) g(x)=0$. Let $E_{i j}$ denote the matrix unit with (i, j)-entry 1 and zero elsewhere. From $f(x)\left(R E_{h k}\right) g(x)=0$, we get $f_{\alpha h} R g_{k \beta}=0$ for all $1 \leq \alpha, \beta \leq n$. Since R is linear quasi-McCoy, we have $a_{s t}^{i} R c_{s t}=0$ for some $c_{s t} \in R$ and for all i and $1 \leq s, t \leq n$. Let

$$
S=\left(\begin{array}{cccc}
\prod_{i=1}^{n} c_{1 i} & 0 & \cdots & 0 \\
0 & \prod_{i=1}^{n} c_{2 i} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \prod_{i=1}^{n} c_{n i}
\end{array}\right)
$$

It then follows that $A_{i} M_{n}(R) S=0$ for all i, concluding that $M_{n}(R)$ is linear quasiMcCoy.
$(2) \Rightarrow(3)$ is obvious.

Corollary 3. Let R be a ring. If R is linear quasi-McCoy then $T_{n}(R)$ is linear quasi McCoy.

Proposition 5. Finite direct product of linear quasi-McCoy rings is linear quasiMcCoy.

Proof. Let $R_{1}, R_{2}, \ldots, R_{n}$ be linear quasi McCoy rings and $R=\prod_{k=1}^{n} R_{k}$. Suppose that $f(x)=\sum_{i=0}^{1} a_{i} x^{i}, g(x)=\sum_{j=0}^{1} b_{j} x^{j} \in R[x] \backslash\{0\}$, such that $f(x) R[x] g(x)=0$, where $a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right), b_{j}=\left(b_{j 1}, b_{j 2}, \ldots, b_{j n}\right) \in R$. Set

$$
f_{k}(x)=\sum_{i=0}^{1} a_{i k} x^{i}, g_{k}(x)=\sum_{j=0}^{1} b_{j k} x^{j}
$$

for each $1 \leq k \leq n$. Since $f_{k}(x) R[x] g_{k}(x)=0$ and R_{k} is linear quasi-McCoy, there exists $s_{k} \in R_{k}$ such that $a_{i k} R s_{k}=0$. Let $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ then $a_{i} R s=0$. Therefore R is linear quasi-McCoy.

Acknowledgments. The authors would like to thank the anonymous referee for his/her helpful comments that have improved the presentation of results in this article.

References

[1] D. D. Anderson. V. Camilo, Armendariz rings and Gaussian rings, Comm. Algebra 26, 7 (1998), 2265-2272.
[2] E. P. Armendariz, A note on extensions of Baer and p.p-ring, J. Austral. Math. Soc. 18 (1974), 470-473.
[3] M. Baser, T. K. Kwak, Y. Lee, F. Kaynarca, Weak Quasi -Armendariz Rings, Algebra Colloquium 18, 4 (2011), 541-552.
[4] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168, 1 (2002), 25-42.
[5] C. Y. Hong, N. K. Kim, T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31, 1 (2003), 103-122.
[6] C. Y. Hong, N. K. Kim, T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.
[7] C. Y. Hong, T. K. Kwak. S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloquium 13, 2 (2006), 253-266.
[8] I. Kaplansky, Rings of Operators, New York: Benjamin (1965).
[9] N. K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223, 2 (2000), 477-488.
[10] N. K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185, 1-3 (2003), 207-223.
[11] J. Krempa, Some examples of reduced rings, Algebra Colloquium 3, 4 (1996), 289-300.
[12] T. K. Lee, Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32, 6 (2004), 2287-2299.
[13] Z. K. Liu, R. Y. Zhao, On weak Armendariz rings, Comm. Algebra 34, 7 (2006), 2607-2616.
[14] N. H. McCoy, Remarks on divisors of zero, Amer. Math. monthly. 49 (1942), 286-295.
[15] P. P. Nielsen, Semicommutativity and the McCoy condition, J. Algebra 298 (2006), 134-141.
[16] M. J. Nikmehr, F. Fatahi and H. Amraei, Nil-Armendariz Rings with Applications to a Monoid, World Applied Sciences J. 13, 12 (2011), 2509-2514.
[17] M. J. Nikmehr, A. Nejati and M. Deldar, Weak α-skew MacCoy rings, Publications de L'Institut Mathematique 95, 109 (2014), 221-228.
[18] M. B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. 73, A (1997), 14-17.
[19] C. Zhang, J. Chen, Weak α-skew Armendariz rings, J. Korean Math. Soc. 47, 3 (2010), 455-466.

Mohammad Javad Nikmehr
Department of Mathematics, K. N. Toosi University of Technology,
P.O. Box 16315 - 1618, Tehran, Iran
email: nikmehr@kntu.ac.ir
Mansoureh Deldar
Department of Mathematics, Islamic Azad University, Central Tehran Branch, Iran
email: Man.Deldar@iauctb.ac.ir

Hosein Daneshmand
Shamsipour Technical College,
Technical and Vocational University, Tehran, Iran

