NOTE ON SOME APPLICATIONS OF SRIVASTAVA-ATTIYA OPERATOR TO P-VALENT STARLIKE FUNCTIONS. II

M. K. Aouf and R. M. El-Ashwah

Abstract. In this note we re-proof Theorems 2.3 and 2.5 in [1], considering the generalized Srivastava-Attiya operator $J_{s, b}(f)(z)$ with $b \in \mathbb{C} \backslash \mathbb{Z}^{-}=\{-1,-2, \ldots\}$; $s \in \mathbb{C} ; p \in \mathbb{N}$.

1. Introduction

Let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p -valent in the unit disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$. In [1] the authors used the generalized Srivastava-Attiya operator $J_{s, p} f(z)$ defined by Liu (see [2]) as follows:
$J_{s, b}(f)(z)=z^{p}+\sum_{n=1}^{\infty}\left(\frac{1+b}{n+1+b}\right)^{s} a_{n+p} z^{n+p}\left(b \in \mathbb{C} \backslash Z^{-}=\{-1,-2, \ldots\} ; s \in \mathbb{C} ; p \in \mathbb{N} ; z \in U\right)$,
to introduce the following classes:

$$
\begin{aligned}
& S_{p, s, b}^{*}(\gamma)=\left\{f: f \in A(p) \text { and } J_{s, b}(f)(z) \in S_{p}^{*}(\gamma), 0 \leq \gamma<p, p \in \mathbb{N}\right\}, \\
& C_{p, s, b}(\gamma)=\left\{f: f \in A(p) \text { and } J_{s, b}(f)(z) \in C_{p}(\gamma), 0 \leq \gamma<p, p \in \mathbb{N}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& K_{p, s, b}(\beta, \gamma)=\left\{f: f \in A(p) \text { and } J_{s, b}(f)(z) \in K_{p}(\beta, \gamma), 0 \leq \beta, \gamma<p, p \in \mathbb{N}\right\}, \\
& K_{p, s, b}^{*}(\beta, \gamma)=\left\{f: f \in A(p) \text { and } J_{s, b}(f)(z) \in K_{p}^{*}(\beta, \gamma), 0 \leq \beta, \gamma<p, p \in \mathbb{N}\right\},
\end{aligned}
$$

where the classes $S_{p}^{*}(\gamma), C_{p}(\gamma), K_{p}(\beta, \gamma)$ and $K_{p}^{*}(\beta, \gamma)$ are, respectively, p -valent starlike of order γ, p-valent convex of order γ, p -valent close-to-convex of order β and type γ and p -valent quasi-convex of order β and type γ.

In this note we re-proof Theorems 2.3 and 2.5 in [1], considering the generalized Srivastava-Attiya operator $J_{s, b}(f)(z)$ with $b \in \mathbb{C} \backslash \mathbb{Z}^{-}=\{-1,-2, \ldots\} ; s \in \mathbb{C} ; p \in \mathbb{N}$.

2. Main Results

To prove our main results we shall need the following lemma.
Lemma 1. [3]. Let $\theta(u, v)$ be a complex-valued function such that

$$
\theta: D \rightarrow \mathbb{C}, D \subset \mathbb{C} \times \mathbb{C} \quad(\mathbb{C} \text { is the complex plane })
$$

and let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$. Suppose that $\theta(u, v)$ satisfies the following conditions :
(i) $\theta(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\Re\{\theta(1,0)\}>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that

$$
v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right) \quad, \quad \Re\left\{\theta\left(i u_{2}, v_{1}\right)\right\} \leq 0 .
$$

Let

$$
q(z)=1+q_{1} z+q_{2} z^{2}+\ldots
$$

be analytic in U such that $\left(q(z), z q^{\prime}(z)\right) \in D(z \in U)$. If

$$
\Re\left\{\theta\left(q(z), z q^{\prime}(z)\right)\right\}>0 \quad(z \in U)
$$

then

$$
\Re\{q(z)\}>0 \quad(z \in U) .
$$

Theorem 2. $S_{p, s, b}^{*}(\gamma) \subset S_{p, s+1, b}^{*}(\gamma)$ for $s, b \in \mathbb{C}$ and b satisfying $\Re\{b\}=b_{1}>$ $p-\gamma-1$.
Proof. Let $f(z) \in S_{p, s, b}^{*}(\gamma)$ and set

$$
\begin{equation*}
\frac{z\left(J_{s+1, b} f(z)\right)^{\prime}}{J_{s+1, b} f(z)}=\gamma+(p-\gamma) h(z) \tag{2.1}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$. By using the identity:

$$
\begin{equation*}
z\left(J_{s+1, b} f(z)\right)^{\prime}=[p-(1+b)] J_{s+1, b} f(z)+(1+b) J_{s, b} f(z), \tag{2.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{J_{s, b} f(z)}{J_{s+1, b} f(z)}=\frac{1}{(b+1)}\{\gamma+(p-\gamma) h(z)-[p-(1+b)]\} \tag{2.3}
\end{equation*}
$$

Differentiating (2.3) logarithmically with respect to z, we obtain

$$
\begin{equation*}
\frac{z\left(J_{s, b} f(z)\right)^{\prime}}{J_{s, b} f(z)}-\gamma=(p-\gamma) h(z)+\frac{(p-\gamma) z h^{\prime}(z)}{(p-\gamma) h(z)+\gamma-p+b+1} . \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\theta(u, v)=(p-\gamma) u-\frac{(p-\gamma) v}{(p-\gamma) u+\gamma-p+b+1} \tag{2.5}
\end{equation*}
$$

with $u=h(z)=u_{1}+i u_{2}, v=z h^{\prime}(z)=v_{1}+i v_{2}$ and $b=b_{1}+i b_{2}$. Then
(i) $\theta(u, v)$ is continuous in $D=\left(\mathbb{C} \backslash\left\{\frac{\gamma-p+b+1}{\gamma-p}\right\}\right) \times \mathbb{C}$;
(ii) $(1,0) \in D$ with $\{\theta(1,0)\}=p-\gamma>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$ we have

$$
\begin{align*}
\Re\left\{\theta\left(i u_{2}, v_{1}\right)\right\} & =\Re\left\{\frac{(p-\gamma) v}{(p-\gamma) i u_{2}+\gamma-p+b+1}\right\} \\
& =\frac{(p-\gamma)\left[\gamma-p+b_{1}+1\right] v_{1}}{\left((p-\gamma) u_{2}+b_{2}\right)^{2}+\left(\gamma-p+b_{1}+1\right)^{2}} \\
& \leq-\frac{(p-\gamma)\left(1+u_{2}^{2}\right)\left(\gamma-p+b_{1}+1\right)}{2\left(\left[(p-\gamma) u_{2}+b_{2}\right]^{2}+\left(\gamma-p+b_{1}+1\right)^{2}\right)} \\
& <0 \tag{2.6}
\end{align*}
$$

which shows that $\theta(u, v)$ satisfies the hypotheses of Lemma 1. Consequently, we have, $f(z) \in S_{p, s+1, b}^{*}(\gamma)$. This completes the proof of Theorem 1.
Theorem 3. $K_{p, s, b}(\beta, \gamma) \subset K_{p, s+1, b}(\beta, \gamma)$ for $s, b \in \mathbb{C}$ and b satisfying $\Re\{b+(p-\gamma) H(z)\}>$ $p-\gamma-1$ and $\Re\{H(z)\}>0(z \in U)$.

Proof. Let $f(z) \in K_{p, s, b}(\beta, \gamma)$. Then there exists a function $g(z) \in S_{p}^{*}(\gamma)$ such that

$$
\begin{equation*}
\Re\left(\frac{z\left(J_{s, b} f(z)\right)^{\prime}}{g(z)}\right)>\beta \quad(z \in U) . \tag{2.7}
\end{equation*}
$$

We put

$$
J_{s, b} k(z)=g(z),
$$

so that we have

$$
\Re\left(\frac{z\left(J_{s, b} f(z)\right)^{\prime}}{J_{s, b} k(z)}\right)>\beta \quad(z \in U) .
$$

We next put

$$
\begin{equation*}
\frac{z\left(J_{s+1, b} f(z)\right)^{\prime}}{J_{s+1, b} k(z)}=\beta+(p-\beta) h(z), \tag{2.7}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$. Thus, by using the identity (2.2), we obtain

$$
\begin{align*}
\frac{z\left(J_{s, b} f(z)\right)^{\prime}}{J_{s, b} k(z)} & =\frac{\left(J_{s, b}\left(z f^{\prime}(z)\right)\right.}{J_{s, b} k(z)} \\
& =\frac{z\left[J_{s+1, b}\left(z f^{\prime}(z)\right)\right]^{\prime}-(p-1-b) J_{s+1, b}\left(z f^{\prime}(z)\right)}{z\left(J_{s+1, b} k(z)\right)^{\prime}-(p-1-b) J_{s+1, b} k(z)} \\
& =\frac{\frac{z\left[J_{s+1, b}\left(z f^{\prime}(z)\right)\right]^{\prime}}{J_{s+1, b} k(z)}-(p-1-b) \frac{J_{s+1, b}\left(z f^{\prime}(z)\right)}{J_{s+1, b} k(z)}}{\frac{z\left(J_{s+1, k} k(z)\right)^{\prime}}{J_{s+1, b} k(z)}-(p-1-b)} \tag{2.8}
\end{align*}
$$

Since $k(z) \in S_{p, s, b}^{*}(\gamma)$ then, by using Theorem 1, we can put

$$
\frac{z\left(J_{s+1, b} k(z)\right)^{\prime}}{J_{s+1, b} k(z)}=\gamma+(p-\gamma) H(z)
$$

where,
$H(z)=h_{1}(x, y)+i h_{2}(x, y)$ and $\Re\left((H(z))=h_{1}(x, y)>0 \quad(z \in U)\right.$.
Then

$$
\begin{equation*}
\frac{z\left(J_{s, b} f(z)\right)^{\prime}}{J_{s, b} k(z)}=\frac{\frac{z\left[J_{s+1, b}\left(z f^{\prime}(z)\right)\right]^{\prime}}{J_{s+1, b} k(z)}-(p-1-b)[\beta+(p-\beta) h(z)]}{(p-\gamma) H(z)+\gamma-(p-1-b)} . \tag{2.9}
\end{equation*}
$$

We thus find from (2.8) that

$$
\begin{equation*}
z\left(J_{s+1, b} f(z)\right)^{\prime}=J_{s+1, b} k(z)[\beta+(p-\beta) h(z)] . \tag{2.10}
\end{equation*}
$$

Differentiating both sides of (2.11) with respect to z, and multiplying by z, we obtain

$$
\begin{equation*}
\frac{z\left[J_{s+1, b}\left(z f^{\prime}(z)\right)\right]^{\prime}}{J_{s+1, b} k(z)}=(p-\beta) z h^{\prime}(z)+[\beta+(p-\beta) h(z)][\gamma+(p-\gamma) H(z)] . \tag{2.11}
\end{equation*}
$$

By substituting (2.12) into (2.10), we have

$$
\frac{z\left(J_{s, b} f(z)\right)^{\prime}}{J_{s, b} k(z)}-\beta=\left\{(p-\beta) h(z)+\frac{(p-\beta) z h^{\prime}(z)}{(p-\gamma) H(z)+\gamma-(p-1-b)}\right\} .
$$

Taking $u=h(z)=u_{1}+i u, v=z h^{\prime}(z)=v_{1}+i v_{2}$ and $b=b_{1}+i b_{2}$, we define the function $\Phi(u, v)$ by

$$
\begin{equation*}
\Phi(u, v)=(p-\beta) u+\frac{(p-\beta) v}{(p-\gamma) H(z)+\gamma-(p-1-b)} \tag{2.12}
\end{equation*}
$$

where $(u, v) \in D=\mathbb{C} \times \mathbb{C}$ and
Then it follows from (2.13) that
(i) $\Phi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\Re\{\Phi(1,0)\}=p-\beta>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we have

$$
\begin{aligned}
\Re\left\{\Phi\left(i u_{2}, v_{1}\right)\right\} & =\Re\left\{\frac{(p-\beta) v}{(p-\gamma) H(z)+\gamma-(p-1-b)}\right\} \\
& =\frac{(p-\beta) v_{1}\left[(p-\gamma) h_{1}(x, y)+\gamma-\left(p-1-b_{1}\right)\right]}{\left[(p-\gamma) h_{1}(x, y)+\gamma-\left(p-1-b_{1}\right)\right]^{2}+\left[(p-\gamma) h_{2}(x, y)+b_{2}\right]^{2}} \\
& \leq-\frac{(p-\beta)\left(1+u_{2}^{2}\right)\left[(p-\gamma) h_{1}(x, y)+\gamma-\left(p-1-b_{1}\right)\right]}{2\left(\left[(p-\gamma) h_{1}(x, y)+\gamma-\left(p-1-b_{1}\right)\right]^{2}+\left[(p-\gamma) h_{2}(x, y)+b_{2}\right]^{2}\right)} \\
& <0,
\end{aligned}
$$

which shows that $\Phi(u, v)$ satisfies the hypotheses of Lemma 1. Consequently, we have, $f(z) \in K_{p, s+1, b}(\gamma)$. This completes the proof of Theorem 2.

References

[1] E. A. Elrifai, H. E. Darwish and A. R. Ahmed, Some applications of SrivastavaAttiya operator to p-valent starlike functions, J. Inequal. Appl. Vol. 2010, Art. ID 790730, 1-11.
[2] J.-L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator, Integral Transforms and Special Functions, 19(2008), no. 11-12, 893-901.
[3] S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(1978), 289-305.

M. K. Aouf

Department of Mathematics, Faculty of Science, Mansoura university,

New Mansoura 35516, Egypt
email: mkaouf127@yahoo.com
R. M. El-Ashwah

Department of Mathematics, Faculty of Science, Damietta university,
New Damietta 34517, Egypt
email: r_elashwah@yahoo.com

