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ADOMIAN-TAU OPERATIONAL METHOD FOR SOLVING
NON-LINEAR FREDHOLM INTEGRO-DIFFERENTIAL

EQUATIONS WITH PADE APPROXIMANT

A. Khani

Abstract. In this paper we develop a new method to find numerical solu-
tion for the Non Linear Fredholm Integro-Differential Equations with pade approx-
imant (NFIDEP). To this end, we present our method based on the matrix form of
NFIDEP. The corresponding unknown coefficients of the approximate solution will
be determined by using computational aspects of some special matrices. Finally
we illustrate accuracy and convergence of the presented method by presenting some
numerical examples.
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1. Introduction

Recently Adomian decomposition method and operational approach of the tau method
have been developed for solving various types of differential, integral and integro
differential equations [8,10]. The Tau method developed in [2-4] for the numerical
solution of linear Fredholm and Volterra integral and integro-differential equations.
The object of this paper is to present a similar operational approach for the nu-
merical solution of non-linear Fredholm integro-differential equations of the second
kind with initial conditions. This method leads to an algorithm with remarkable
simplicity, while retaining the accuracy of results.

2. Non-linear Fredholm integro-differential equations

Consider a non-linear Fredholm integro-differential equation of the form

Dy(x)− λ
∫ a

0
k(x, t)F (y(t))dt = f(x), x ∈ [0, a] (1)
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with the given initial conditions

y(j)(0) = dj , j = 0, 1, · · · , nd − 1 (2)

where D is a linear differential operator of order nd with polynomial coefficients
pi(x), that is

D =

nd∑
i=0

pi(x)
di

dxi
, pi(x) =

αi∑
j=0

pijx
j . (3)

Assume that f(x) and k(x, t) in (1) are polynomials, otherwise they can be approxi-
mated by polynomials to any degree of accuracy (by Lagrange interpolation, Taylor
series or any other suitable method). Moreover, suppose that yn(x) be the Tau
method approximation of degree n for y(x). Then we can write

pi(x) =

αi∑
j=0

pijx
j = p

i
X

f(x) =
n∑
j=0

fjx
j = fX

k(x, t) =
n∑
i=0

n∑
j=0

kijx
itj

yn(x) =
n∑
j=0

ajx
j = anX (4)

where p
i

= [pi0, · · · , pi,αi , 0, · · · ], f = [f0, · · · , fn, 0, · · · ], an = [a0, · · · , an, 0, · · · ]
and X = [1, x, x2, · · · ]T are respectively the coefficients vectors of pi(x), right-hand
side of equation (1), unknown coefficients vector and the basis vector. Without loss
of generality we have taken all polynomials of degree n, because if f(x), k(x, t),
and yn(x) are respectively of different degrees nf , (nx,nt) and ny then we can set
n = max{nf , nx, nt, ny}.

3. Matrix representation for Dy(x)

The effect of differentiation or shifting on the coefficients an = [a0, a1, · · · , an, 0, · · · ]
of a polynomial yn(x) = anX is the same as that of post-multiplication of an by
either the matrix η or the matrix µ defined by
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µ =


0 1 0 0

0 1 0
0 1

...
0

. . .
. . .

 and η =


0
1 0
0 2 0

...
0 0 3 0

. . .
. . .

.

Lemma 1. Let yn(x) be a polynomial of the following form:

yn(x) =

n∑
i=0

aix
i =

∞∑
i=0

aix
i.

Then we have
i) dr

dxr yn(x) = anη
rX , r = 1, 2, 3, · · ·

ii) xryn(x) = anµ
rX , r = 1, 2, 3, · · ·

where an = [a0, a1, . . . , an, 0, . . .].

The proof follows immediately by induction.�

With the above notations we state the following theorem.

Theorem 2. If the operator D and the polynomial yn(x) are of the forms (3),(4)
then Dyn(x) = anΠX, where

Π =

nd∑
i=0

ηipi(µ).

Proof. See [11].
The structure of the matrix Π is as follows

Π =



π1,1 π1,2 π1,3 · · · π1,m1 0

...
...

. . .

πnd+1,1 πnd+1,2 πnd+1,3 · · · πnd+1,mnd+1 0

0 πnd+2,2 πnd+2,3 · · · πnd+2,mnd+2 0

. . .
. . .


where

mi =

{
max{α0 + i, α1 + i− 1, · · · , αi−1 + 1} if i = 1, 2, · · · , nd + 1
mnd+1 + i− nd + 1 if i = nd + 2, nd + 3, · · ·
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and

πi,j =
i−1∑
k=0

(i− 1)!

(i− 1− k)!
p̂k,j−i+k i = 1, 2, · · · j = 1, 2, · · · ,mi

p̂i,j =

{
pi,j if j = 0, 1, · · · , αi
0 if j < 0 or j > αi.

4. Matrix representation for the Fredholm integral term

If we replace y(x) in (1) by yn(x) =

n∑
i=0

aix
i, we will have:

Dyn(x)− λ
∫ a

0
k(x, t)F (yn(t))dt = f(x), x ∈ [0, a]. (5)

Now, we expand F (yn(x)) around a0, since a0 is determined from (5), whenever it
is an integral equation and from (2) (for j = 0) whenever it is an integro-differential
equation.

F (yn(x)) =

∞∑
l=0

F (l)(a0)

l!
(

n∑
j=1

ajx
j)l

= F (a0) +

∞∑
l=1

(

l∑
k=1

(
∑ aj11 a

j2
2 a

j3
3 · · ·

j1!j2!j3! · · ·
)F (k)(a0))xl

j1 + j2 + j3 + · · · = k
j1 + 2j2 + 3j3 + · · · = l

= {F (a0)}+ {a1F
′
(a0)}x+ {a2F

′
(a0) +

a21
2!
F

′′
(a0)}x2

+{a3F
′
(a0) + a1a2F

′′
(a0) +

a31
3!
F

′′′
(a0)}x3

+{a4F
′
(a0) + (a1a3 +

a22
2!

)F
′′
(a0) +

a21a2
2!

F
′′′

(a0) +
a41
4!
F (4)(a0)}x4 + · · ·

= FX
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where
F = [F0,F1, · · · ] and Fj = F(a0, a1, · · · , aj). Therefore∫ a

0
k(x, t)F (yn(t))dt = FnKX (6)

where

(K)i,j =

∞∑
q=0

kiq
aj+q+1

j + q + 1
i, j = 0, 1, 2, · · · .

So that, the unknown coefficients are determined as follows.
From (2) we obtain:

aj =
dj
j!

j = 0, 1, · · · , nd − 1.

Other coefficients are determined by using theorem (2), equation (1) and solving
the following system of non-linear equations

anΠ− λFnK = f. (7)

5. Padé approximants

A Padé approximant is the ratio of two polynomials constructed from the coefficients
of the Taylor series expansion of a function u(x). The [L/M ] Padé approximant to
a function y(x) are given by [1]. [

L

M

]
=

PL(x)

QM (x)
, (8)

Where PL(x) is polynomial of degree at most L, and QM (x) is a polynomial of degree
at most M . The formal power series

y(x) =

∞∑
i=1

aix
i,

y(x)− PL(x)

QM (x)
= O(xL+M+1),

determine the coefficients of PL(x) and QM (x) by the equating.
Since we can clearly multiply the numerator and denominator by a constant and
leave [L/M ] unchanged, we imposed the normalization condition

QM (0) = 1. (9)
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Finally, we require that PL(x) and QM (x) have noncommon factors. If we write the
coefficient of PL(x) and QM (x) as:

P
L

(x) = p
0

+ p
1
x+ · · ·+ p

L
xL,

Q
M

(x) = q
0

+ q
1
x+ · · ·+ q

M
xM ,

(10)

Then by Eqs. (9) and (10), we may multiply Eq. (8) by QM (x), which linearizes
the coefficient equations. We can write out Eq. (5) in more details as:

aL+1 +aLq1 + · · ·+ aL−M+1qM = 0,
aL+2 +aL+1q1 + · · ·+ aL−M+2qM = 0,
...
aL+M +aL+M−1q1 + · · ·+ aLqM = 0,

(11)


a0 = p0 ,
a1 +a0q1 = p1 ,
...
aL +aL−1q1 + · · ·+ a0qL = pL ,

(12)

To solve these equations, we start with Eq.(11), which is a set of linear equations
for all the unknown q,s. Once the q,s are known, then Eq.(12) gives an explicit
formula for the unknown p,s, which complete the solution. If Eqs.(11) and (12) are
nonsingular, then we can solve them directly and obtain Eq.(12), where Eq.(12)
holds, and if the lower index on a sum exceeds the upper, the sum is replaced by
zero:

[
L

M

]
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

aL−M+1 · · · aL+1

...
. . .

...
aL · · · aL+M

L∑
j=M

aj−Mx
j · · ·

L∑
j=0

ajx
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
aL−M+1 aL−M+2 · · · aL+1

...
...

. . .
...

aL aL+1 · · · aL+M

xM xM−1 · · · 1

∣∣∣∣∣∣∣∣∣∣

.

Theorem 3. The [L/M ] Padé approximant to any formal power series y(x) is
unique.

Proof. See [1].
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In the Tau-Padé method we use the method of Padé approximation after-treatment
method to the solution obtained by the Tau method. This after-treatment method
improves the proposed method.

6. Estimation of error function

In this section, an error function is obtained for the approximate solution of Eqs.(1)
and (2). Let en(x) = y(x)−yn(x) be called the error function of Tau approximation
yn(x) to y(x) where y(x) is the exact solution. Hence yn(x) satisfies the following
problem:

Dyn(x)− λ
∫ a

0
k(x, t)F (yn(t))dt = f(x) +Hn(x), x ∈ [0, a] (13)

with
y(j)n (0) = dj , j = 0, 1, · · · , nd − 1. (14)

The function Hn(x) is the perturbation term associated with yn(x). Hence

Hn(x) = Dyn(x)− λ
∫ a

0
k(x, t)F (yn(t))dt− f(x).

We proceed to find an approximation en,N (x) to the error function en(x) in the same
way as we did before for the solution of problems in Eqs.(1) and (2). Subtracting
Eqs. (13) and (14) from Eqs. (1) and (2) respectively, and taking a term of expansion
F (y(x)) around yn(x), the error function en(x) satisfies the problem:

Den(x)−
∫ a

0
k(x, t)

(
en(t)F

′
(yn(t)) +

1

2
e2n(t)F

′′
(yn(t))

)
dt = −Hn(x), x ∈ [0, a]

with:
y(j)n (0) = 0, j = 0, 1, · · · , nd − 1.

It should be noted that in order to construct the approximation en,N (x) to en(x),
only the right hand side of system (7) needs to be recomputed.

7. Error bound and convergence

In this section, we obtain an error bound for the approximate solution, which implies
convergence of the presented method.
Let us define the error function as:

en(x) = y(x)− yn(x)
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where y(x) and yn(x) are the exact and approximate solutions of Eq. (1), respec-
tively. Then for the analytic function, y(x), it is evident that:

|en(x)| = |y(x)− yn(x)| ≤M |x|n+1

(n+ 1)!
,

where M = max{y(n+1)(x), x ∈ [0, a]}, and so en(x)→ 0 as n→∞.

8. Numerical examples

The following examples are given to clarify accuracy of the presented method. Note
that all of the presented results obtained by programming in maple 8.

Example 1.

xy′(x)− y(x) +

∫ 1

0
xe−2ty2(t)dt = (x− 1)ex + x, 0 ≤ x ≤ 1,

y(0) = 1.

The exact solution is y(x) = ex. For the numerical results with n = 5, 7 see Table
1,2.

Example 2.

y
′′
(x)− y(x) +

∫ 1

0
sin(x)e3ty3(t)dt = sin(x), 0 ≤ x ≤ 1,

y(0) = 1, y′(0) = 1.

The exact solution is y(x) = e−x. For the numerical results with n = 5, 7 see Table
3,4.

In figures 1-2 the absolute errors are compared for the Adomian- Tau and pade
approximates.

Remark 1. Note that in the tables 1-4 and figures 1-2, the notations Exacty, App.y
and A.T.Err., Est. Err., pade and Pade Err., denote respectively the exact and
approximate solution of the Adomian Tau method, absolute error and absolute esti-
mation error of the Adomian- Tau method, pade approximate solution and absolute
error of the pade approximation.

Remark 2. Note that the reported results in tables 1-4 show that, by increasing
the values of n, the approximate solution is improved and converges to the exact
solution which confirm the subject of section 7. The figures 1-2 show that the pade
approximation has superiority with respect to the Tau approximation in most cases.
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9. Conclusion

In this paper, we solved a problem in general form which is important in practice
and involves general forms of linear and non-linear initial and boundary value prob-
lems, general forms of linear and non-linear Volterra integral and integro-differential
equations and finally general forms of linear and non-linear Fredholm integral and
integro-differential equations. We also designed a remarkably simple algorithm by
combining the operation approach of the Tau method and the ADM, which has high
accuracy for solving the above mentioned problems and we clarified the accuracy by
solving numerical examples (see tables 1-4). Note that the factors that affect the
error of this method, may be considered as follows:
1) The number of terms that we use to the approximate solution, which depend on
the smoothness of the functions F, K and f.
2) The length of the interval [a,b].
3) The number of digits that we use in computing the numerical results.

Table 1: Example 1

n x Exacty App.y A.T.Err. Est.Err. pade[3, 2] PadeErr.

0.00 1.000000 0.999964 3.578163e− 05 3.578163e− 05 0.999995 4.810606e− 06
0.20 1.221403 1.221399 3.559890e− 06 1.669428e− 06 1.221401 2.090922e− 06
0.40 1.491825 1.491825 1.186132e− 07 2.290024e− 09 1.491825 1.206588e− 07

5 0.60 1.822119 1.822122 3.607015e− 06 2.290024e− 09 1.822122 3.609088e− 06
0.80 2.225541 2.225548 6.647873e− 06 1.669428e− 06 2.225549 8.175592e− 06
1.00 2.718282 2.718258 2.405492e− 05 3.578163e− 05 2.718291 8.947726e− 06

Table 2: Example 1

n x Exacty App.y A.T.Err. Est.Err. pade[4, 3] PadeErr.

0.00 1.000000 1.000000 1.597301e− 07 1.597301e− 07 1.000000 5.477186e− 09
0.20 1.221403 1.221403 9.393339e− 09 2.682853e− 09 1.221403 6.738161e− 09
0.40 1.491825 1.491825 7.614197e− 10 4.089092e− 13 1.491825 7.618349e− 10

7 0.60 1.822119 1.822119 1.341060e− 08 4.089092e− 13 1.822119 1.341103e− 08
0.80 2.225541 2.225541 2.796576e− 08 2.682853e− 09 2.225541 3.084066e− 08
1.00 2.718282 2.718282 1.163730e− 07 1.597301e− 07 2.718282 5.981338e− 08

Table 3: Example 2

n x Exacty App.y A.T.Err. Est.Err. pade[3, 2] PadeErr.

0.00 1.000000 0.999987 1.280141e− 05 1.280141e− 05 0.999999 6.513576e− 07
0.20 0.818731 0.818728 2.977666e− 06 5.972626e− 07 0.818728 2.415279e− 06
0.40 0.670320 0.670314 6.036808e− 06 8.192903e− 10 0.670314 6.036045e− 06

5 0.60 0.548812 0.548802 9.736524e− 06 8.192903e− 10 0.548802 9.735771e− 06
0.80 0.449329 0.449315 1.402418e− 05 5.972626e− 07 0.449315 1.348352e− 05
1.00 0.367879 0.367850 2.941320e− 05 1.280141e− 05 0.367861 1.801470e− 05
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A.T.Err
Pade Err.
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Figure 1: A. T. Err. and pade Err. of example(1) with n=5.

Table 4: Example 2

n x Exacty App.y A.T.Err. Est.Err. pade[5, 2] PadeErr.

0.00 1.000000 1.000000 5.755095e− 08 5.755095e− 08 1.000000 8.052138e− 10
0.20 0.818731 0.818731 1.268779e− 08 9.666350e− 10 0.818731 1.172365e− 08
0.40 0.670320 0.670320 2.797994e− 08 1.473304e− 13 0.670320 2.797979e− 08

7 0.60 0.548812 0.548812 4.429280e− 08 1.473304e− 13 0.548812 4.429266e− 08
0.80 0.449329 0.449329 6.156055e− 08 9.666350e− 10 0.449329 6.064465e− 08
1.00 0.367879 0.367879 1.325714e− 07 5.755095e− 08 0.367879 7.898585e− 08

Acknowledgement: The authors thank so much the referees for their useful
suggestions and comments on this paper which made it complete.
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A.T.Err
Pade Err.
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Figure 2: A. T. Err. and pade Err. of example(2) with n=5.
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