UNIFICATION OF π -GENERALIZED CLOSED SETS BY HEREDITARY CLASSES IN GENERALIZED TOPOLOGICAL SPACES

A. Caksu Guler and S. Sahan

ABSTRACT. In this paper, we introduce the notions of $\pi g \mu^*$ -closed and $\pi g \mu^*$ open sets by using the notion of π -open sets. We generalize many concepts which is defined in ideal topological spaces and topological spaces by using these new notions. Also we study quasi $\mu_{\mathcal{H}^-}$ normality and characterizations of quasi $\mu_{\mathcal{H}^-}$ normal spaces are obtained. Several preservation theorems for quasi $\mu_{\mathcal{H}^-}$ normal spaces are given.

2000 Mathematics Subject Classification: 54A05, 54C05

Keywords: generalized topology, hereditary class, $\pi g \mu^*$ -closed, quasi μ_g - \mathcal{H} -normal space.

1. INTRODUCTION AND PRELIMINARIES

The idea of generalized topology and hereditary classes was introduced and studied by Császár [5, 6]. He generalized ideal topology on a set by using these structures. In this paper, we introduce the notions of $\pi g \mu^*$ -closed and $\pi g \mu^*$ -open sets by using the notion of π -open sets. We generalize many concepts which is defined in ideal topological spaces and topological spaces by using these new notions.

Let A be a subset of a topological space X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be regular open [24](resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The finite union of regular open sets is said to be π -open [28] in (X, τ) . The complement of a π -open set is π -closed. A subset A of a topological space (X, τ) said to be semi-open [12] (resp. α -open [16], pre-open [14], b-open [2], β -open [1]) if A \subset Cl(Int(A)) (resp. A \subset Int(Cl(Int(A))), A \subset Int(Cl(A)), A \subset Int(Cl(A)) \cup Cl(Int(A)), A \subset Cl(Int(Cl(A)))). The family of all semi-open (resp. α -open, pre-open, b-open, β -open) sets in $(X, \tau) \rightarrow (Y, \sigma)$ is said to be m- π -closed [9]

if f(V) is π -closed in (Y, σ) for every π -closed in (X, τ) . A function $f:(X, \tau) \to (Y, \sigma)$ is said π -continuous [8] if $f^{-1}(V)$ is π -closed in (X, τ) for every closed set in (Y, σ) .

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) . $A^*(I) = \{x \in X \mid U \cap A \notin I \text{ for each open}$ neighborhood U of x $\}$ is called the local function of A with respect to I and τ [11]. When there is no chance for confusion $A^*(I)$ is denoted by A^* . For every ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ . Observe additionally that $Cl^*(A) = A^* \cup A$ defines a Kuratowski closure operator for $\tau^*(I)$ [27]. A subset A of an ideal topological space (X, τ, I) is said to be semi*-I-open [10] if $A \subset Cl(Int^*(A))$. The family of all semi*-I-open sets in (X, τ, I) is denoted by $S^*IO(X)$.

Let X be a non-empty set and exp X denote the power set of X. We call a class $\mu \subset \exp X$ a generalized topology [5] (briefly, GT) if $\emptyset \in \mu$ and the union of elements of μ belongs to μ . And let us say that a hereditary class \mathcal{H} [6] on X is a class $\emptyset \neq \mathcal{H} \subset X$ satisfying $A \subset B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}$. If μ is a GT on X and $A \subset X$, $x \in X$ then $x \in A^*_{\mu}$ [6] iff $x \in M \in \mu \Rightarrow M \cap A \notin \mathcal{H}$. There is a GT μ^* [6] such that $c^*_{\mu}(A) = A \cup A^*_{\mu}$ is intersection of all μ^* -closed supersets of A; $M \in \mu^*$ iff X - M = $c^*_{\mu}(X - M)$.

If one takes $\mathcal{H} = \emptyset$, then c_{μ^*} becomes c_{μ} . If one takes τ as GT and $\mathcal{H} = \emptyset$, then c_{μ^*} becomes the usual closure operator. Similarly c_{μ^*} becomes scl (resp. pcl, bcl, β cl) if μ^* stands for SO(X) (resp. PO(X), BO(X), β O(X)). Likewise, if one takes τ as GT and $\mathcal{H} = I$, then c_{μ^*} becomes closure operator for $\tau^*(I)$. Likewise, c_{μ^*} becomes s^{*}cl if μ stands for S^{*}IO(X).

Given a topological space (X, τ) and a GT μ on X, (X, τ) is said to be μ_g -normal [18] if for any two disjoint closed sets A and B there exist two disjoint μ -open sets U and V such that $A \subset U$ and $B \subset V$.

2. $\pi G \mu^*$ -closed sets

Definition 1. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . A subset A of X is called a π generalized μ^* -closed set (or simply $\pi g\mu^*$ -closed) if $c_{\mu^*}(A) \subset U$ whenever $A \subset U$ and U is π -open.

The complement of a $\pi g \mu^*$ -closed set is said to be $\pi g \mu^*$ -open.

Remark 1. (a) Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on topological space (X, τ) . Then every $\pi g \mu^*$ -closed set reduces to πg -closed [8] (resp., πgs -closed [3], πgp -closed [19], πgb -closed [22], $\pi g\beta$ -closed [25]) if μ is taken to be τ (resp., SO(X), PO(X), BO(X), $\beta O(X)$) and $\mathcal{H} = \emptyset$.

(b) Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on X. Then every $\pi g \mu^*$ -closed

set reduces to $I_{\pi g}$ -closed [20] ($I_{\pi gs^{\star}}$ -closed [10]) if μ^{\star} is taken to be τ^{\star} ($S^{\star}IO(X)$) and $\mathcal{H}=I$.

Theorem 1. Every g_{μ} -closed set is $\pi g \mu^*$ -closed.

Proof. It is obvious that every π -open set is open.

Remark 2. The following example shows that the reverse of Theorem 2.1 is not true.

Example 1. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}\}$, $\mathcal{H} = \{\emptyset, \{c\}\}$ and $\mu = \{X, \emptyset, \{a, c\}, \{b, d\}\}$. Then the set $\{a, d\}$ is $\pi g \mu^*$ -closed but not g_{μ} -closed.

Remark 3. Finite intersection (union) of $\pi g\mu^*$ -closed sets need not to be $\pi g\mu^*$ -closed by the following examples.

Example 2. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a, c\}, \{b, d\}\}$, $\mathcal{H} = \{\emptyset, \{a\}\}$ and $\mu = \{X, \emptyset, \{a, b\}, \{a, c\}\}$. $A = \{b, c\}$ and $B = \{c, d\}$. Clearly A and B are $\pi g\mu^*$ -closed sets but $A \cap B$ is not $\pi g\mu^*$ -closed.

Example 3. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$, $\mathcal{H} = \{\emptyset, \{a\}\}$ and $\mu = \{X, \emptyset, \{a, d\}\}$. $A = \{a, c\}$ and $B = \{b\}$. Clearly A and B are $\pi g \mu^*$ -closed sets but $A \cup B$ is not $\pi g \mu^*$ -closed.

Theorem 1. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . If A is $\pi g\mu^*$ -closed, B is π -closed and μ^* -closed then $A \cap B$ is $\pi g\mu^*$ -closed.

Proof. Let U be π -open such that $A \cap B \subset U$. Then $A \subset U \cup (X \setminus B)$. Since A is $\pi g \mu^*$ -closed and B is π -closed then $c_{\mu^*}(A) \subset (U \cup (X \setminus B))$. Hence $c_{\mu^*}(A \cap B) \subset (U \cup (X \setminus B))$. Since B is μ^* -closed, $c_{\mu^*}(A \cap B) \subset U$. Hence $A \cap B$ is $\pi g \mu^*$ -closed.

Theorem 2. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . For every $A \in \mathcal{H}$, A is $\pi g \mu^*$ -closed.

Proof. Let $A \subset U$ where U is π -open. Since $A^*_{\mu} = \emptyset$ for every $A \in \mathcal{H}$, $c_{\mu^*}(A) = A \cup A^*_{\mu} = A \subset U$. Therefore A is $\pi g \mu^*$ -closed.

Theorem 3. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . For every subset A of X, A^*_{μ} is $\pi g \mu^*$ -closed.

Proof. Let $A^{\star}_{\mu} \subset U$ where U is π -open. Since $(A^{\star}_{\mu})^{\star}_{\mu} \subseteq A^{\star}_{\mu}$, we have $c_{\mu^{\star}}(A^{\star}_{\mu}) \subset U$. Hence A^{\star}_{μ} is $\pi g \mu^{\star}$ -closed.

Theorem 4. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . If A is $\pi g \mu^*$ -closed, then $c_{\mu^*}(A) \setminus A$ does not contain any nonempty π -closed set.

Proof. Let F be π -closed subset of X, such that $F \subset c_{\mu^*}(A) \setminus A$ where A is $\pi g \mu^*$ closed. Then $c_{\mu^*}(A) \subset (X \setminus F)$. Thus $F \subset (X \setminus c_{\mu^*}(A)) \cap c_{\mu^*}(A)$ and hence $F = \emptyset$.

Theorem 5. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) and $A \subset B \subset c_{\mu^*}(A)$, where A is $\pi g \mu^*$ -closed. Then B is $\pi g \mu^*$ -closed.

Proof. Let $B \subset U$ and U is π -open. Since A is $\pi g\mu^*$ -closed and $B \subset U$, then $c_{\mu^*}(A) \subset U$. Now, $A \subset B \subset c_{\mu^*}(A)$, $c_{\mu^*}(A) = c_{\mu^*}(B)$ and hence $c_{\mu^*}(B) \subset U$. Thus B is $\pi g\mu^*$ -closed.

Theorem 6. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . Every π -open set is μ^* -closed set if and only if every subset of X is $\pi g \mu^*$ -closed.

Proof. Suppose every π -open set is μ -*-closed. Let A be a subset of X. If U is π -open such that $A \subset U$, then $A^*_{\mu} \subset U^*_{\mu} \subset U$ and $c_{\mu^*}(A) \subset U$. So A is $\pi g \mu^*$ -closed.

Conversely, suppose that every subset of X is $\pi g \mu^*$ -closed. If U is π -open then by hypothesis, U is $\pi g \mu^*$ -closed and so $c_{\mu^*}(U) \subset U$. Thus, $U^*_{\mu} \subset U$ and so U is μ^* -closed.

Theorem 7. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . For each $x \in X$, either $\{x\}$ is π -closed or $\{x\}^c$ is $\pi g \mu^*$ -closed.

Proof. Suppose that $\{x\}$ is not π -closed, then $\{x\}^c$ is not π -open and only π -open set containing $\{x\}^c$ is set X itself. So $\{x\}^c$ is $\pi g \mu^*$ -closed.

Theorem 8. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . If A is $\pi g \mu^*$ -closed in X, such that $A \subset Y \subset X$, then A is $\pi g \mu^*$ -closed in Y.

Proof. Let U be a π -open set in Y such that $A \subset U$, then $A \subset U = V \cap Y$ where V is π -open in X. Since A is $\pi g \mu^*$ -closed in X, $c_{\mu^*}(A) \subset V$. Therefore $c_{\mu^*_Y}(A) \subset U$. Then A is $\pi g \mu^*$ -closed in Y.

Theorem 9. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . A subset A of X is $\pi g \mu^*$ -open if and only if $F \subset int_{\mu^*}(A)$ whenever $F \subset A$ and F is π -closed.

Proof. Let $F \subset A$ and F be π -closed. Then $(X \setminus A) \subset (X \setminus F)$ and $X \setminus F \pi$ -open. Since $X \setminus A$ is $\pi g\mu^*$ -closed $(c_{\mu^*}(X \setminus A)) \subset (X \setminus F)$. So $F \subset int_{\mu^*}(A)$. Conversely suppose that $F \subset int_{\mu^*}(A)$ whenever $F \subset A$ and F is π -closed. Let $X \setminus A \subset U$ where U is π -open. Then $X \setminus U \subset A$. Then by hypothesis $X \setminus U \subset int_{\mu^*}(A)$ and hence $c_{\mu^*}(X \setminus A) \subset U$. Therefore A is $\pi g\mu^*$ -open.

Theorem 10. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . If a subset of X is $\pi g\mu^*$ -open then U = X whenever U is π -open and $int_{\mu^*}(A) \cup (X \setminus A) \subset U$.

Proof. Let U be π -open and $int_{\mu^*}(A) \cup (X \setminus A) \subset U$ for $\pi g\mu^*$ -open A. Then $X \setminus U \subset (X \setminus int_{\mu^*}(A)) \cap A$. Since $X \setminus A$ is $\pi g\mu^*$ -closed and by the Theorem 2.5 $X \setminus U = \emptyset$, hence X = U.

3. Quasi μ_a - \mathcal{H} -Normal Spaces

Definition 2. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . A topological space is called a quasi μ_g - \mathcal{H} -normal space if for every pair of disjoint π -closed sets A and B of X, there exist disjoint μ -open sets U and V such that $A \setminus U \in \mathcal{H}$ and $B \setminus V \in \mathcal{H}$.

Remark 4. Let μ be a GT and $\mathcal{H} = \{\emptyset\}$ on a topological space (X, τ) . Then every quasi μ_g - \mathcal{H} -normal space reduces to be quasi-normal [8](resp., quasi-s-normal [4], quasi-p-normal [26]) space if μ is taken to be τ (resp., SO(X), PO(X)).

Theorem 11. Every μ_q -normal space is a quasi μ_q - \mathcal{H} -normal space.

Proof. It is obvious by every μ -open set is μ^* -open.

The following example shows that the reverse of Theorem 3.1 is not true.

Example 4. Observe that the Countable Extension Topological space [Example 63, [23]] in which X is real line, and if τ_1 is the Euclidean topology on X and τ_2 is the topology of countable complements on X, we define τ to be the smallest topology generated by $\tau_1 \cup \tau_2$. Let $\mu = \{\emptyset\} \cup \{[n, \infty) | n \in N\} \cup \{(-\infty, n] | n \in N\}$ be generalized topology on (X, τ) and $\mathcal{H} = \{H | H \subseteq [a, b]\}$ be hereditary on X. Then X is a quasi μ_q - \mathcal{H} -normal space but not μ_q -normal space.

Theorem 12. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a topological space (X, τ) . Then the followings are equivalent:

(a) X is a quasi μ_q - \mathcal{H} -normal space.

(b) For every π -closed set F and π -open set G containing F, there exists a μ -open set V such that $F \setminus V \in \mathcal{H}$ and $c_{\mu^*}(V) \setminus G \in \mathcal{H}$.

(c) For each pair of disjoint π -closed sets A and B, there exists an μ -open set U such that $A \setminus U \in \mathcal{H}$ and $c_{\mu^*}(U) \cap B \in \mathcal{H}$.

Proof. (a) \Rightarrow (b) Let F be a π -closed and G be a π -open subset of X. Since X \G is π -closed and F \subset G, F \cap (X\G)= \emptyset . X is a quasi μ_g - \mathcal{H} -normal space, so there

exist disjoint μ -open sets U and V such that $F \setminus V \in \mathcal{H}$ and $(X \setminus G) \setminus U \in \mathcal{H}$. Then $c_{\mu^*}(V) \subset X \setminus U$ and $(X \setminus G) \cap c_{\mu^*}(V) \subset (X \setminus G) \cap (X \setminus U)$. Hence $c_{\mu^*}(V) \setminus G \in \mathcal{H}$. (b) \Rightarrow (c) Obvious by the hypothesis.

(c) \Rightarrow (a) Let A and B be disjoint π -closed sets. By the hypothesis there exists a μ -open set U such that $A \setminus U \in \mathcal{H}$ and $c_{\mu^*}(U) \cap B \in \mathcal{H}$. Let $V = X \setminus c_{\mu^*}(U)$. Since V is μ -open and $U \cap V = \emptyset$, X is a quasi $\mu_q - \mathcal{H}$ -normal space.

Theorem 13. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on (X,τ) topological space. If X is a quasi μ_g - \mathcal{H} - normal space then for every pair of disjoint π -closed sets A and B of X, there exist disjoint $\pi g\mu^*$ -open sets U and V such that $A \setminus U \in \mathcal{H}$ and $B \setminus V \in \mathcal{H}$.

Proof. It is obvious by every μ -open set is $\pi g \mu^*$ -open.

Theorem 14. Let μ be a GT and $\mathcal{H} = \{\emptyset\}$ be a hereditary class on a (X, τ) topological space. Then the following are equivalent.

(a) X is a quasi μ_q -H-normal space

(b) If for every pair of disjoint π -closed sets A and B of X, there exist disjoint $\pi g\mu^*$ -open sets U and V such that $A \setminus U \in \mathcal{H}$ and $B \setminus V \in \mathcal{H}$.

Proof. (a) \Rightarrow (b) It is obvious by the previous theorem.

(b) \Rightarrow (a) Let A and B be disjoint π -closed. By the hypothesis there exist U and V are disjoint $\pi g\mu^*$ -open subsets of X such that A \U= \emptyset B \V= \emptyset . Then A \subset U. Since U is $\pi g\mu^*$ -open, A $\subset int_{\mu^*}(U)$ by Theorem 2.10. Similarly B $\subset int_{\mu^*}(V)$. Finally, since $int_{\mu^*}(U)$ and $int_{\mu^*}(V)$ are μ -open sets and $\mathcal{H} = \{\emptyset\}$, X is a quasi μ_g - \mathcal{H} - normal space.

Definition 3 ([13]). Let (X,μ) and (Y,λ) be GTSs, then a function $f: X \to Y$ is called (μ,λ) -open if $f(G) \in \lambda$ for each $G \in \mu$.

Lemma 1. If $\mathcal{H} \neq \emptyset$ is a hereditary class on X and f : X \rightarrow Y is a function, then $f(\mathcal{H}) = \{f(H) | H \in \mathcal{H}\}$ is a hereditary class on Y.

Theorem 15. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a $(X,\tau),\lambda$ be a GT on (Y,σ) and $f:X \to Y$ is a bijection, π -continuous and (μ, λ) -open. If X is a quasi μ_q - \mathcal{H} - normal space, then Y is a quasi λ_q - $f(\mathcal{H})$ -normal space.

Proof. Let A and B be disjoint π -closed subsets of Y, since f is π -continuous function $f^{-1}(A)$, $f^{-1}(B)$ are π -closed subsets of X. Since X is quasi μ_g - \mathcal{H} - normal space, there exist disjoint μ -open sets U and V in X such that $f^{-1}(A) \setminus U \in \mathcal{H}$ and $f^{-1}(B) \setminus V \in \mathcal{H}$. Then $f(f^{-1}(A) \setminus U) \in f(\mathcal{H})$ and $f(f^{-1}(A)) \setminus f(U) \in f(\mathcal{H})$. Because of the hereditary of \mathcal{H} , $A \setminus f(U) \in f(\mathcal{H})$. Similarly, $B \setminus f(U) \in f(\mathcal{H})$. Since f(U) and f(V) are disjoint λ -open subsets of Y, it follows that Y is a quasi λ_g -f(\mathcal{H})- normal space.

Definition 4 ([5]). Let (X,μ) and (Y,λ) be GTSs, then a function $f: X \to Y$ is called (μ,λ) -continuous if $f^{-1}(G) \in \mu$ for each $G \in \lambda$.

Lemma 2. If $\mathcal{H} \neq \emptyset$ is a hereditary class on Y and f : X \rightarrow Y is a function, then f $^{-1}(\mathcal{H}) = \{f^{-1}(\mathcal{H}) | \mathcal{H} \in \mathcal{H}\}$ is a hereditary class on X.

Theorem 16. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on $(X,\tau),\lambda$ be a GT on (Y,σ) and $f:X \to Y$ is an injection, m- π -closed and (μ,λ) -continuous. If Y is a quasi λ_q - \mathcal{H} -normal space, then X is a quasi μ_q - $f^{-1}(\mathcal{H})$ -normal space.

Proof. Let A and B be disjoint π -closed subsets of X, since f is m- π -closed injection, f(A) and f(B) are disjoint π -closed subset of Y. Since Y is quasi $\lambda_{\mathcal{H}^-}$ normal space, there exist disjoint λ -open U and V such in Y that f(A) $\setminus U \in \mathcal{H}$ and f(B) $\setminus V \in$ \mathcal{H} . Then f⁻¹(f(A) $\setminus U \in f^{-1}(\mathcal{H})$ and f⁻¹(f(A)) $\setminus f^{-1}(U) \in f^{-1}(\mathcal{H})$. Then A $\setminus f^{-1}(U) \in$ f⁻¹(\mathcal{H})). Similarly, B $\setminus f^{-1}(V) \in f^{-1}(\mathcal{H})$). Since f is (μ, λ) -continuous, f⁻¹(U) and f⁻¹(V) are disjoint μ -open subsets of X. It follows that X is a quasi μ_g -f⁻¹(\mathcal{H})normal space.

Lemma 3. If $\mathcal{H} \neq \emptyset$ is a hereditary class on X and Y is a subset of X, then $\mathcal{H}_Y = \{Y \cap H | H \in \mathcal{H}\} = \{H \in \mathcal{H} | H \subset Y\}$ is a hereditary class on Y.

Theorem 17. Let μ be a GT and $\mathcal{H} \neq \emptyset$ be a hereditary class on a (X,τ) topological space. If X is a quasi μ_g - \mathcal{H} - normal space and $Y \subset X$ is π -closed, then Y is a quasi μ_g - \mathcal{H}_Y - normal space.

Proof. Let A and B be disjoint π -closed subsets of Y. Since Y is π -closed A and B are disjoint π -closed subsets of X. By hypothesis, there exist disjoint open sets U and V such that $A \setminus U \in \mathcal{H}$ and $B \setminus V \in \mathcal{H}$. If $A \setminus U = H \in \mathcal{H}$ and $B \setminus V = G \in \mathcal{H}$, then $A \subset U \cup H$ and $B \subset V \cup G$. Since $A \subset Y$, $A \subset Y \cap (U \cup H)$ and so $A \subset (Y \cap H) \cup (Y \cap U)$. Therefore $A \setminus (Y \cap U) \subset (Y \cap H) \in \mathcal{H}_Y$. Similarly, $B \setminus (Y \cap V) \subset (Y \cap G) \in \mathcal{H}_Y$. If $U_1 = Y \cap U$ and $V_1 = Y \cap V$, then U_1 and V_1 are disjoint μ_Y -open sets such that $A \setminus U_1 \in \mathcal{H}_Y$ and $B \setminus V_1 \in \mathcal{H}_Y$. Hence Y is a quasi $\mu_g - \mathcal{H}_Y$ - normal space.

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90.

[2] D. Andrijević, On b-open sets, Math. Vesnik 48 (1996), 59-64.

[3] G. Aslim, A. Caksu Guler and T. Noiri, On πgs -closed sets in topological spaces, Acta Math. Hungar. 112 4 (2006), 275-283.

[4] A. Caksu Guler, G. Aslim and T. Noiri, Quasi-s-normal spaces and pre πgs closed functions, The Arabian Journal for Science and Engineering, 34 (2009), 161-166.

[5] A. Császár, Generalized topology, generalized continity, Acta Math. Hungar.
96 (2002), 351-357.

[6] Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), 29-36.

[7] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon. 49 (1999), 395-401.

[8] J. Dontchev and T. Noiri, Quasi-Normal spaces and πg -closed sets, Acta Math. Hungar. 89 3 (2000), 211-219.

[9] E. Ekici and C. W. Baker, On πg -closed sets and continuity, Kochi J. Math. 2 (2007), 35-42.

[10] S. Guler and A. Caksu Guler $I_{\pi gs^*}$ -closed sets in ideal topological spaces, Journal of Advanced Research Pure Math. 3 4 (2011), 120-127.

[11] K. Kuratowski, Topology Vol. I, Academic Press, New York, 1966.

[12] N. Levine, Semi-open sets and semi-continuity in topological spaces, American Math. Monthly 70 (1963), 36-41.

[13] W. K. Min, Some results on generalized topological spaces and generalized systems, Acta Math. Hungar. 108 (2005), 171-181.

[14] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt 53 (1982) 47-53.

[15] M. Navaneethakrishnan and J. Paulraj Joseph, *g-closed set in ideal topological spaces*, Acta Math. Hungar. 119, 4 (2008), 365-371.

[16] O. Njåstad, On some classes of nearly open sets, Pacific J. Math 15 (1965), 961-970.

[17] T. Noiri, *Mildly normal spaces and some functions*, Kyungpook Math. J. 36 (1996), 183-190.

[18] T. Noiri and B. Roy, Unification of generalized open sets on topological spaces, Acta Math. Hungar. 130, 4 (2011), 349-357.

[19] J. H. Park On πgp -closed sets in topological spaces, Indian J. Pure Appl, 130, 4 (2004), 358-362.

[20] M. Rajamani, V. Inthumathi and S. Krishnaprakash, $I_{\pi g}$ -closed sets and $I_{\pi g}$ continuity, Journal of Advanced Research Pure Math., (2010), 1-10.

[21] V. Renukadevi, D. Sivaraj and T. Tamizh Chelvam, *Properties of topological ideals and Banach category theorem*, Kyungpook Math. J., 45 (2005), 199-209.

[22] D. Sreeja and C. Janak, On πgb -closed sets in topological spaces, Int. Journal of Mathematica Archive, 2, 8 (2011), 1314-1320.

[23] L. A. Steen and J. Arthur Seebach Jr, *Counterexamples in Topology*, Holt, Rinehart and Winston, New York, 1970.

[24] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.

[25] S. Tahiliani, On $\pi g\beta$ -closed sets in topological spaces, Nove di Mathematica, 30, 1 (2010), 49-55.

[26] S. A. S. Thabit and H. Kamarulhaili, On quasi p-normal spaces, Int. Journal of Mathematica Analysis, 6 (2012), 1301-1311.

[27] R. Vaidyananathhaswany, Set topology, Chelsea Publishing Company, (1946).

[28] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk. SSSR, 178 (1968), 778-779.

Aysegul Caksu Guler Department of Mathematics, Faculty of Science, University of Ege, Bornova-Izmir, Turkey email: aysegul.caksu.guler@ege.edu.tr, aysegulcaksu@gmail.com

Sahika Sahan 314 Rolla Building Missouri University of Science and Technology Rolla, MO 65409-0020 (573) 341-6211 email: ssxx4@mst.edu, sahikasahan@gmail.com