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Abstract. We give the Ulam-Gǎvruta stability of the pexiderized Go la̧b-
Schinzel functional equation f(x + yσ ◦ f(x)) = g(x)h(y) and the Ulam-Gǎvruta
super-stability of functional equation h(x+ yσ ◦ h(x)) = h′(x)h(y) under the condi-
tion that limt→0 h(tx) exists and is non-zero.

2000 Mathematics Subject Classification: Primary 39B82, 39B52, Secondary
39B32, 39B42.

Keywords: Go la̧b-Schinzel equation, Ulam-Gǎvruta stability, Ulam-Gǎvruta super-
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1. Introduction

Let E be a K-vector space where K is a field of real or complex numbers. The
Go la̧b-Schinzel function equation

f(x+ yf(x)) = f(x)f(y) (1)

for all x, y ∈ E, is considered one of the most intensively studied equations in terms
of solving equation and in terms of its stability. It was introduced and studied for
the first time by Golab-Schinzel [23] around 1959. It play a prominent role in the
theory of functional equations (see, [1, 2, 3, 5, 11, 29, 35]).

For more details concerning studies done on equations of that type, the interested
reader should refer to J. Brzedek ([8, 9, 10, 11, 12, 13]), N. Brillouit-Belluot and
J. Brzedek [5, 6, 7], J. Chudziak ([17, 18, 20]), J. Chudziak and J. Tabor [19], E.
Jablonska ([27, 28, 29]), A.Murenko ([31, 32, 33]), A. Charifi, B. Bouikhalane, S.
Kabbaj, J. M. Rassias ([14, 15]).

In [4, 13, 14, 16, 18, 19, 22], the stability problem was considered under various
classes of functions for following equations

f(x+ y) = f(x)f(y), (2)
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f(x+ yf(x)) = λf(x)f(y), λ ∈ K \ {0}, (3)

f(0)f(x+ yσ ◦ f(x)) = f(x)f(y), (4)

f(x+ yfn(x)) = λf(x)f(y), λ ∈ K \ {0}, n ∈ N, (5)

f(x+ yf(x)) = g(x)h(y), (6)

for all x, y ∈ E, where f, g, h : E → K, and σ : K→ K are functions.
The purpose of the present paper is to study the stability of the pexiderized

Go la̧b-Schinzel equation

f(x+ yσ ◦ f(x)) = g(x)h(y), x, y ∈ E (7)

in the class of function which satisfy conditions (C1) and (C3) defined in the following
section.

Of course, equations (1), (3), (4), (5) and (6) are particular cases of (7). Unlike
equations (2), (3), (4), in general equations (5) and (6) are not super-stable ([14],
Remark 3.4). The present paper is a continuation of a previous work by A. Charifi
et al. [14].

It is organized as follows: in the second section after this introduction we give
some notations and conditions that will be used throughout the rest. In the third
section, we obtain preliminary results of the proof of main results. In the fourth
section we investigate the stability of equation (7), in the fifth section we derive the
Hyers-Ulam-Gǎvruta super-stability of equation (4). In the final section, we give
some applications of this work.

2. Notations

Throughout this paper we use the following notations.
• K is R or C.
• E is a K -vector space.
• For a mapping h : E → K we note:

S0
h = {x ∈ E : h(x) 6= 0} and if 0 ∈ S0

h, h
′(x) =

h(x)

h(0)
.

The following conditions will be used later.
• (C1) For all x ∈ E, limt→0 h(tx) exists and is non-zero.
• (C2) ϕ : E2 → R+ be a function satisfying limt→0 ϕ(x, ty) exists for all x, y ∈ E.
• (C3) There exists a ∈ S0

f such that f(a) = g(a)h(0).
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3. Preliminary results

In this section we establish some useful results for the proof of main theorems.

Lemma 1. Let ϕ : E2 → R+ be a function bounded with respect to the first projection
and f, g, h : E → K; σ : K→ K be functions satisfying the inequality:

| f(x+ yσ ◦ f(x))− g(x)h(y) |≤ ϕ(x, y), x, y ∈ E. (8)

Then we have:
(I) If f is unbounded, then for every sequence (xn)n∈N in E,

lim
n→+∞

|f(xn)| = +∞ if only if lim
n→+∞

|g(xn)| = +∞.

(II) The following proprieties are equivalents.

(i) f is unbounded.

(ii) g is unbounded and h(0) 6= 0.

(iii) There exist a sequence (xn)n∈N in E such that
limn→+∞ |f(xn)| = limn→+∞ |g(xn)| = +∞ and f(xn)g(xn) 6= 0, n ∈ N.

(III) If h and f are unbounded then

(i) σ ◦ f |S0
g
6= 0,

(ii) there exist a sequence (xn)n∈N in E such that limn→+∞ |f(xn)| = +∞ and
σ ◦ f(xn) 6= 0, for all n ∈ N.

Proof. (I) and (II) follow immediately from the fact that, ϕ is bounded with respect
to x, and taking y = 0 in (8), we get

| f(x)− g(x)h(0) |≤ ϕ(x, 0), x ∈ E. (9)

(III) The functions h and f are unbounded. By (II) iii), there exist a sequence
(xn)n∈N in E such that limn→+∞ | f(xn) |= limn→+∞ | g(xn) |= +∞ and f(xn)g(xn) 6=
0, n ∈ N. Suppose that for all sub-sequence (xn)n∈N, σ ◦ f(xn) = 0, n ∈ N. In view
of (8) we get

| f(xn)− g(xn)h(y) |≤ ϕ(xn, y), n ∈ N, y ∈ E.

By passing to the limit, h is a constant. This yields a contradiction. Then, i) and
ii) are fulfilled.

57



A. Charifi, Iz. El-Fassi, B. Bouikhalene, S. Kabbaj – Go la̧b-Schinzel equation . . .

Theorem 2. Let σ : K → K be a multiplicative continuous function and f, g, h :
E → K, ϕ : E2 → R+ be functions satisfying (8). Assume that ϕ is bounded
with respect to the first projection, f, h are unbounded, conditions (C1) and (C2)
hold.Then

h′(x+ yσ ◦ h′(x)) = h′(x)h′(y) (10)

and
σ ◦ h′(x+ yσ ◦ h′(x)) = σ ◦ h′(x)σ ◦ h′(y) (11)

for all x, y ∈ E.

Proof. Since f is unbounded, by Lemma 1 (II), iii) there exist a sequence (xn)n∈N
in E such that limn→+∞ | f(xn) |= limn→+∞ | g(xn) |= +∞ and f(xn)g(xn) 6= 0.
Now, for x, y ∈ E and n ∈ N we consider

an = xn+xσ ◦f(xn), bn = an+yσ ◦f(an) and cn = xn+ (x+yσ ◦h′(x))σ ◦f(xn).

Without loss of generality, we can assume that either bn = cn, n ∈ N or bn 6= cn, n ∈
N. The proof of the theorem is the same for both cases, the only difference is that
in the case bn = cn, n ∈ N, we have h( cn−bn

σ◦f(cn)) = h(0). That is why we are going to
demonstrate the theorem just in the case bn 6= cn, n ∈ N.
1) Assume that x ∈ S0

h, in view of (8) and the choice of (xn), we get

lim
n→+∞

f(cn)

g(xn)
= h(x+ yσ ◦ h′(x)) and lim

n→+∞

f(an)

g(xn)
= h(x).

First case: y ∈ S0
h. According to Lemma 1 (II), iii) and (III), ii) we can assume that

f(xn)f(an)f(bn)f(cn)σ◦f(xn)σ◦f(an)σ◦f(bn)σ◦f(cn)g(xn)g(an)g(bn) 6= 0, n ∈ N.

Thus, by Lemma 1 (I), (II) we can write

lim
n→+∞

f(bn)

g(xn)
= lim

n→+∞

f(bn)

g(an)

g(an)

f(an)

f(an)

g(xn)
= h(x)h′(y).

Putting αn = cn−bn
σ◦f(bn) which can be written in the form

αn = y
σ ◦ h′(x)σ ◦ f(xn)− σ ◦ f(an)

σ ◦ f(bn)

= y[σ ◦ h′(x)− σ ◦ f(an)

σ ◦ f(xn)
]× σ ◦ f(xn)

σ ◦ f(bn)
.

Thus, we can easily seen that

lim
n→+∞

σ ◦ h′(x)σ ◦ f(xn)− σ ◦ f(an)

σ ◦ f(bn)
= 0.

58



A. Charifi, Iz. El-Fassi, B. Bouikhalene, S. Kabbaj – Go la̧b-Schinzel equation . . .

From (8), we get

| f(cn)− g(bn)h(αn) |≤ ϕ(bn, αn), n ∈ N.

Thus, limn→+∞
f(cn)
g(xn)

= limn→+∞
g(bn)
g(xn)

h(αn)

lim
n→+∞

f(cn)

g(xn)
= lim

n→+∞

g(bn)

g(xn)
h(αn)

= lim
n→+∞

g(bn)

g(xn)
l(y)

= lim
n→+∞

g(bn)

f(bn)

f(bn)

g(an)

g(an)

f(an)

f(bn)

g(xn)
l(y),

which gives h(x + yσ ◦ h′(x)) = h′(x)h′(y)l(y). So, taking x = 0, we deduce that
l(y) = h(0) and consequently h(x+ yσ ◦ h′(x)) = h(x)h′(y).
Second Case: y 6∈ S0

h. We are going to show that the previous equality is valid. In
fact, suppose that h(x+ yσ ◦ h′(x)) 6= h(x)h′(y). By (8), we have

| f(bn)− g(cn)h(−αn
σ ◦ f(bn)

σ ◦ f(cn)
) |≤ ϕ(cn,−αn

σ ◦ f(bn)

σ ◦ f(cn)
), n ∈ N.

Thus,

lim
n→+∞

f(bn)

g(xn)
= lim

n→+∞

g(cn)

g(xn)
h(−αn

σ ◦ f(bn)

σ ◦ f(cn)
)

= lim
n→+∞

g(cn)

g(xn)
l(y)

= lim
n→+∞

g(cn)

f(cn)

f(cn)

g(xn)
l(y),

So, we obtain h′(x+yσ◦h′(x))l(y) = h(x)h′(y). Whence, we get h(x+yσ◦h′(x)) = 0,
which yields a contradiction.
2) Assume now that x 6∈ S0

h. In this case, clearly that the sought equality is verified,
h′(x + yσ ◦ h′(x)) = h′(x)h′(y). So, this gives (10) and Consequently by the fact
that σ is a multiplication application, we get (11). This completes the proof of
theorem.

Corollary 3. Let σ : K→ K be a multiplicative continuous function and f, h : E →
K, ϕ : E2 → R+ be functions satisfying

| f(x+ yσ ◦ f(x))− f(x)h(y) |≤ ϕ(x, y). (12)
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Assume that f, h are unbounded, ϕ is bounded with respect to the first projection,
conditions (C1) and (C2) hold.Then

h(x+ yσ ◦ h(x)) = h(x)h(y) (13)

and
σ ◦ h(x+ yσ ◦ h(x)) = σ ◦ h(x)σ ◦ h(y)

for all x, y ∈ E.

Proof. Just take y = 0 in (12), we get that h(0) = 1 and consequently Theorem 2
gives the result.

4. stability of eq (7)

In this part we investigate the stability of equation (7).

Theorem 4. Let σ : K → K be a multiplicative continuous function and f, g, h :
E → K, ϕ : E2 → R+ be functions satisfying (8). Assume that f, h are unbounded,
ϕ is bounded with respect to the first projection, conditions (C1), (C2) and (C3) hold.
Then there exists a unique pair of functions F,G : E → K such that F (a) = f(a),

F (x+ yσ ◦ F (x)) = G(x)h(y), x, y ∈ E, (14)

| F (x)− f(x) |≤ ϕ(a,
x− a
σ ◦ f(a)

), x ∈ E, (15)

and

| G(x)− g(x) |≤ 1

| h(0) |
{ϕ(a,

x− a
σ ◦ f(a)

) + ϕ(x, 0)}, x ∈ E. (16)

Proof. By (C3), g(a) 6= 0. Considering in (8), x = a and y = z−a
σ◦f(a) , z ∈ E, we

obtain

| f(z)− g(a)h(
z − a
σ ◦ f(a)

) |≤ ϕ(a,
z − a
σ ◦ f(a)

), z ∈ E.

Thus, taking

F (x) = g(a)h(
x− a
σ ◦ f(a)

),

we get (15), secondly taking y = 0 in (8) we obtain

| F (x)− g(x)h(0) | =| F (x)− f(x) + f(x)− g(x)h(0) |
≤| F (x)− f(x) | + | f(x)− g(x)h(0) |

≤ ϕ(a,
x− a
σ ◦ f(a)

) + ϕ(x, 0).
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Thus, taking G(x) = 1
h(0)g(a)h( x−a

σ◦f(a)) we get (16). Furthermore, from Theorem 2,
we have

h′(x+ yσ ◦ h′(x)) = h′(x)h′(y),

σ ◦ h′(x+ yσ ◦ h′(x)) = σ ◦ h′(x)σ ◦ h′(y)

and

F (x+ yσ ◦ F (x)) = g(a)h(
x+ yσ ◦ F (x)− a

σ ◦ f(a)
)

= g(a)h(
x− a
σ ◦ f(a)

+ yσ(
F (x)

f(a)
))

= g(a)h(
x− a
σ ◦ f(a)

+ yσ(
g(a)h( x−a

σ◦f(a))

f(a)
))

= g(a)h(
x− a
σ ◦ f(a)

)h′(y)

= G(x)h(y),

for all x, y ∈ E.
The uniqueness is given by the fact that F (x) = G(a)h( x−a

σ◦f(a)) and G(a) = g(a) =
f(a)
h(0) . Indeed, suppose that there exist other functions F ′, G′ : E → K such that

F ′(x+ yσ ◦ F ′(x)) = G′(x)h(y), x, y ∈ E

and F ′(a) = G′(a)h(0) = f(a) we get

F ′(x) = G′(a)h(
x− a

σ ◦ F ′(a)
)

= g(a)h(
x− a
σ ◦ f(a)

)

= F (x)

for all x ∈ E. Thus F ′ = F and G′ = G.

Remark 1. The condition (C3) is not necessary when, ϕ is also bounded with respect
the second projection ([14], Theorem 3.2) or when g = λf.

Corollary 5. Let δ be a positive number, σ : K→ K be a multiplicative continuous
function and f, g, h : E → K, φ : E → R+ be functions satisfying the following
inequality

|f(x+ yσ ◦ f(y))− g(x)h(y)| ≤ δ + φ(y), x, y ∈ E.
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Assume that f, h are unbounded, conditions (C1), (C2) and (C3) hold. Then there
exists a unique pair of functions F,G : E → K such that F (a) = f(a),

F (x+ yσ ◦ F (x)) = G(x)h(y), x, y ∈ E, (17)

| F (x)− f(x) |≤ δ + φ(
x− a
σ ◦ f(a)

), x ∈ E (18)

and

| G(x)− g(x) |≤ δ

h(0)
+

1

| h(0) |
{φ(

x− a
σ ◦ f(a)

) + φ(0)}, x ∈ E. (19)

5. Super-stability of eq (4)

Theorem 6. Let σ : K→ K be a multiplicative continuous function and f : E → K,
ϕ : E2 → R+ be functions satisfying the following inequality

|f(x+ yσ ◦ f(x)− f ′(x)f(y)| ≤ ϕ(x, y), x, y ∈ E. (20)

Assume that f is unbounded, ϕ is bounded with respect to x, conditions (C1) and
(C2) hold. Then

f(x+ yσ ◦ f(x)) = f ′(x)f(y), x, y ∈ E. (21)

Proof. By Theorem 2 and the condition (20) we get

|f ′(x)f(y)− f ′(x)f(yσ ◦ f(0))| ≤ ϕ(x, y), x, y ∈ E.

Indeed, we have

|f ′(x)[f(y)− f(yσ ◦ f(0))]|
= |f ′(x)f(y)− f ′(x)f(yσ ◦ f(0))|
= |f ′(x)f(y)− f(x+ yσ ◦ f(x)) + f(x+ yσ ◦ f(x))− f ′(x)f(yσ ◦ f(0))|
≤ ϕ(x, y), x, y ∈ E.

Thus, f(y) = f(yσ ◦ f(0)), y ∈ E which gives the sought result.

Corollary 7. Let σ : K→ K be a multiplicative continuous function and f : E → K,
φ : E → R+ be functions satisfying the following inequality

|f(x+ yσ ◦ f(x)− f ′(x)f(y)| ≤ δ + φ(y), x, y ∈ E. (22)

Assume that f is unbounded, conditions (C1) and (C2) hold. Then

f(x+ yσ ◦ f(x)) = f ′(x)f(y), x, y ∈ E. (23)
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6. Applications

Corollary 8. Let δ be a positive number and let f : E → K, ϕ : E2 → R+ be
functions satisfying

|f(x+ yf(x))− f(x)f ′(y)| ≤ δ + ϕ(x, y), x, y ∈ E. (24)

Assume that ϕ is bounded with respect to the first projection, f is unbounded, con-
ditions (C1) and (C2) hold. Then we have

f(x+ yf(x)) = f(x)f ′(y), x, y ∈ E.

Corollary 9. Let δ be a positive number, λ a non null scalar, n ∈ Q+\{0} and let
f : E → K, φ : E → R+ be functions satisfying

|f(x+ yfn(x))− λf(x)f(y)| ≤ δ + φ(y), x, y ∈ E. (25)

Assume that f is unbounded, conditions (C1) and (C2) hold. Then we have

f(x+ yfn(x)) = λf(x)f(y), x, y ∈ E.

Corollary 10. Let σ : K→ K be a multiplicative continuous function, δ a positive
number, λ a non null scalar, f : E → K and φ : E → R+ be functions satisfying

|f(x+ yσ ◦ f(x))− λf(x)f(y)| ≤ δ + φ(y), x, y ∈ E. (26)

Assume that f is unbounded, conditions (C1) and (C2) hold. Then we have

f(x+ yσ ◦ f(x)) = λf(x)f(y), x, y ∈ E.

Corollary 11. Let σ : K→ K be a multiplicative continuous function, δ a positive
number, λ a non null scalar and f : E → K, φ : E → R+ be functions satisfying

|f(x+yσ ◦f(x) + zσ ◦f(x)σ ◦f(y))−λf(x)f(y)f(z)| ≤ δ+φ(y), x, y, z ∈ E. (27)

Assume that f is unbounded, conditions (C1) and (C2) hold. Then we have

f(x+ yσ ◦ f(x) + zσ ◦ f(x)σ ◦ f(y)) = λf(x)f(y)f(z), x, y, z ∈ E.
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