COEFFICIENT BOUNDS FOR NEW SUBCLASSES OF BI-UNIVALENT FUNCTIONS USING HADAMARD PRODUCT

A. G. Alamoush and M. Darus

Abstract. The aim of the present paper is to introduce a new subclass of bi-univalent functions defined in the open unit disc using Hadamard product. We obtain estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions of this class. Some results related to this work will also be pointed out.

2000 Mathematics Subject Classification: 30C45.

Keywords: Analytic and univalent functions, Bi-univalent functions, Starlike and convex functions, Coefficients bounds.

1. Introduction

Let A denote the class of the functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z \in C:|z|<1\}$ and satisfy the normalization condition $f(0)=f^{\prime}(0)=0$. Let S be the subclass of A consisting of functions of the form (1) which are also univalent in U. For $n \in N_{0}$, we introduce the subclass $Q(n, \delta, \beta, \lambda)$ of S of functions f of the form (1), satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(1-\lambda) D_{n, \delta}^{k} f(z)+\lambda D_{n, \delta}^{k+1} f(z)}{z}\right\}>\beta, z \in U, \tag{2}
\end{equation*}
$$

where $D_{n, \delta}^{k}$ is the differential operator given by Hadamard product between Salagean and Ruscheweyh operators, such as

$$
D_{n, \delta}^{k} f(z)=z+\sum_{n=2}^{\infty} C(\delta, n) n^{k} a_{n} z^{n} .
$$

For $k=\delta=0$, it reduces to the class $Q_{\lambda}(\beta)$ studied by Ding et al. [3], (see also [4-7]).
Now by having

$$
f^{-1} f(z)=z,(z \in U),
$$

and

$$
f^{-1} f(w)=w,\left(|w|<r_{0}, f(z) \geq \frac{1}{4}\right)
$$

where $f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{2}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots$, we say that a function $f(z) \in A$ is bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U.

Let Σ denote the class of bi-univalent functions in U given by (1). For a brief history and interesting examples in the class Σ, see [8]. In fact, Brannan and Taha [9] (see also [11]) introduced certain subclasses of the bi-univalent functions similar to the familiar subclasses $S^{*}(\alpha)$ and $K(\alpha)$ of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$, respectively (see [10]). Following the same manner of Brannan and Taha [9] (see also [11]), a function $f \in A$ is in the class of strongly bi-Starlike functions of order $\alpha(0<\alpha \leq 1)$ if each of the following conditions is satisfied: For $f \in \Sigma$,

$$
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\pi \alpha}{2}, \alpha(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left\{\frac{w g^{\prime}(w)}{g(w)}\right\}\right|<\frac{\pi \alpha}{2}, \alpha(0<\alpha \leq 1, w \in U),
$$

where g is the extension of $f^{-1}(z)$ to U. Similarly, a function $f \in A$ is in the class $K_{\Sigma}(\alpha)$ of strongly bi-convex functions of order α if each of the following conditions are satisfied: For $f \in \Sigma$,

$$
\left|\arg \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\frac{\pi \alpha}{2}, \alpha(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left\{1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right\}\right|<\frac{\pi \alpha}{2}, \alpha(0<\alpha \leq 1, w \in U)
$$

where g is the extension of to U. The classes $S_{\Sigma}^{*}(\alpha)$ and $K_{\Sigma}(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α, corresponding (respectively) to the classes of $S^{*}(\alpha)$ and $K(\alpha)$ were also introduced analogously. For each of the classes $S_{\Sigma}^{*}(\alpha)$ and $K_{\Sigma}(\alpha)$, it was noted that the estimates obtained for the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are not sharp (for details, see $[9,11]$).

The object of the paper is to introduce two new subclasses of the function class Σ and to find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ using the same techniques given earlier by Srivastava et al. [8], Frasin and Aouf [12], and Porwal and Darus [2]. In order to prove our main results, we need the following lemma due to [15].

Lemma 1. If $h \in p$ then $\left|c_{k}\right|<1$, for each k, where p is the family of all functions h analytic in U for which $\operatorname{Re}\{h(z)\}>0$, then

$$
h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots, z \in U .
$$

2. Coefficient bounds for the function class $Q_{\Sigma}(n, \delta, \alpha, \lambda)$

Definition 1. A function $f(z)$ given by (1) is said to be in the class $Q_{\Sigma}(n, \delta, \alpha, \lambda)$ if the following conditions are satisfied: For $f \in \Sigma$,

$$
\begin{equation*}
\left|\arg \frac{(1-\lambda) D_{n, \delta}^{k} f(z)+\lambda D_{n, \delta}^{k+1} f(z)}{z}\right|<\frac{\pi \alpha}{2}, \alpha(0<\alpha \leq 1, \lambda \geq 1, z \in U), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \frac{(1-\lambda) D_{n, \delta}^{k} g(w)+\lambda D_{n, \delta}^{k+1} g(w)}{w}\right|<\frac{\pi \alpha}{2}, \alpha(0<\alpha \leq 1, \lambda \geq 1, w \in U) \tag{4}
\end{equation*}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{2}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots . . \tag{5}
\end{equation*}
$$

We note that for $k=\delta=0, \lambda=1$, the class $Q_{\Sigma}(n, \delta, \alpha, \lambda)$ reduces to the class H_{Σ}^{α} introduced and studied by Srivastava et al [8], for $k=\delta=0$, the class reduces to $Q_{\Sigma}(\alpha, \lambda)$ introduced and studied by Frasin and Aouf [12]. Also for $\delta=0$, the class $Q_{\Sigma}(n, \delta, \alpha, \lambda)$ reduces to $Q_{\Sigma}(n, \alpha, \lambda)$ studied by Porwal and Darus [2]. We begin by finding the estimates of the coefficients for functions in the class $Q_{\Sigma}(n, \delta, \alpha, \lambda)$.

Theorem 2. Let the function $f(z)$ given by (1) be in the class $Q_{\Sigma}(n, \delta, \alpha, \lambda)$, $n \in N_{0}, 0 \leq \beta<1, \lambda \geq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq 4 \alpha\left|\frac{\Gamma(\delta+1)}{\Gamma(\delta+2)}\right|\left[\frac{1}{\sqrt{4^{k}(1+\lambda)^{2}+\alpha\left[2.3^{k}(1+\lambda)-4^{k}(1+\lambda)^{2}\right]}}\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq 12 \alpha \frac{\Gamma(\delta+1)}{\Gamma(\delta+3)}\left[\frac{1}{(1-\lambda) 3^{k}+\lambda 3^{k}(1+\lambda)}+\frac{2 \alpha}{\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2}}\right] \tag{7}
\end{equation*}
$$

Proof. From (3) and (4), we can write

$$
\begin{equation*}
\frac{(1-\lambda) D_{n, \delta}^{k} f(z)+\lambda D_{n, \delta}^{k+1} f(z)}{z}=[p(z)]^{\alpha}, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) D_{n, \delta}^{k} g(w)+\lambda D_{n, \delta}^{k+1} g(w)}{w}=[q(w)]^{\alpha}, \tag{9}
\end{equation*}
$$

respectively, where $p(z)$ and $q(w)$ are in p and have the form

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+p_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots . \tag{11}
\end{equation*}
$$

Now, equating the coefficients in (8) and (9), we obtain

$$
\begin{gather*}
{\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right] C(\delta, 2) a_{2}=\alpha p_{1},} \tag{12}\\
{\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] C(\delta, 3) a_{3}=\frac{1}{2}\left[2 \alpha p_{2}+\alpha(\alpha-1) p_{1}^{2}\right],} \tag{13}\\
-\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right] C(\delta, 2) a_{2}=\alpha q_{1}, \tag{14}\\
{\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right]\left(2[C(\delta, 2)]^{2} a_{2}^{2}-C(\delta, 3) a_{3}\right)=\frac{1}{2}\left[2 \alpha q_{2}+\alpha(\alpha-1) q_{1}^{2}\right] .} \tag{15}
\end{gather*}
$$

From (12) and (14), we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2}[C(\delta, 2)]^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{17}
\end{equation*}
$$

Now from (13), (15) and (17), we obtain

$$
\begin{gathered}
2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right][C(\delta, 2)]^{2} a_{2}^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{1}{2}\left[\alpha(\alpha-1)\left(p_{1}^{2}+q_{1}^{2}\right)\right] \\
=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2} \cdot \frac{2\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2}[C(\delta, 2)]^{2} a_{2}^{2}}{\alpha^{2}} .
\end{gathered}
$$

Therefore we have

$$
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{\left.\left[4^{k}(1+\lambda)^{2}+\alpha\left[2.3^{k}(1+\lambda)\right]-4^{k}(1+\lambda)^{2}\right]\right] C[(\delta, 2)]^{2}} .
$$

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we immediately have

$$
\left|a_{2}\right| \leq 4 \alpha\left|\frac{\Gamma(\delta+1)}{\Gamma(\delta+2)}\right|\left[\frac{1}{\sqrt{4^{k}(1+\lambda)^{2}+\alpha\left[2.3^{k}(1+\lambda)-4^{k}(1+\lambda)^{2}\right]}}\right]
$$

This gives the bound as asserted in (6).
Next, in order to find the bound on $\left|a_{3}\right|$, we subtract (13) from (15) and obtain

$$
\begin{aligned}
& 2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right]\left(C(\delta, 3) a_{3}-C[(\delta, 2)]^{2} a_{2}^{2}\right) \\
&=\frac{1}{2}\left(2 \alpha\left(p_{2}-q_{2}\right)+\alpha(\alpha-1)\left(p_{1}^{2}-q_{1}^{2}\right)\right), \\
& a_{3}= \frac{\alpha\left(p_{2}-q_{2}\right)}{2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right](C \delta, 3)}+\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2}(C \delta, 3)}, \\
& a_{3}= \frac{6 \alpha\left(p_{2}-q_{2}\right) \Gamma(\delta+1)}{2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] \Gamma(\delta+3)}+\frac{6 \Gamma(\delta+1)\left(\alpha^{2}\right)\left(p_{1}^{2}+q_{1}^{2}\right)}{2\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2} \Gamma(\delta+3)} .
\end{aligned}
$$

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we immediately have

$$
\left|a_{3}\right| \leq \frac{12 \alpha \Gamma(\delta+1)}{\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] \Gamma(\delta+3)}+\frac{24 \Gamma(\delta+1) \alpha^{2}}{\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2} \Gamma(\delta+3)},
$$

i.e.

$$
\left|a_{3}\right| \leq 12 \alpha \frac{\Gamma(\delta+1)}{\Gamma(\delta+3)}\left[\frac{1}{(1-\lambda) 3^{k}+\lambda 3^{k}(1+\lambda)}+\frac{2 \alpha}{\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2}}\right] .
$$

This completes the proof of Theorem 2.
Putting $\lambda=1, k=\delta=0$, in Theorem 2, we have
Corollary 3. Let $f(z)$ given by (1) be in the class $H_{\Sigma}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{2+\alpha}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha(2+3 \alpha)}{3} .
$$

3. Coefficient bounds for the function class $H_{\Sigma}(n, \delta, \beta, \lambda)$

Definition 2. A function $f(z)$ given by (1) is said to be in the class $H_{\Sigma}(n, \delta, \beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(1-\lambda) D_{n, \delta}^{k} f(z)+\lambda D_{n, \delta}^{k+1} f(z)}{z}\right\}>\beta, z \in U, n \in N_{0}, 0 \leq \beta<1, \lambda \geq 1 . \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(1-\lambda) D_{n, \delta}^{k} g(w)+\lambda D_{n, \delta}^{k+1} g(w)}{w}\right\}>\beta, w \in U, n \in N_{0}, 0 \leq \beta<1, \lambda \geq 1 \tag{19}
\end{equation*}
$$

where the function g is defined by (5).
We note that for $k=\delta=0$, and $\lambda=1, H_{\Sigma}(n, \delta, \beta, \lambda)$ the class reduced to the classes $H_{\Sigma}(\beta)$ studied by Srivastava et al.[8], and for $k=\delta=0$, the class reduced to the classes $H_{\Sigma}(\beta, \lambda)$ studied by Frasin and Aouf [12].

Theorem 4. Let the function $f(z)$ given by (1) be in the class $H_{\Sigma}(n, \delta, \beta, \lambda)$, $n \in N_{0}, 0 \leq \beta<1, \lambda \geq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq 2\left|\frac{\Gamma(\delta+1)}{\Gamma(\delta+2)}\right| \sqrt{\frac{2(1-\beta)}{(1-\lambda) 3^{k}+\lambda 3^{k+1}}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{12(1-\beta) \Gamma(\delta+1)}{\Gamma(\delta+3)}\left[\frac{2(1-\beta)}{\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2}}+\frac{1}{(1-\lambda) 3^{k}+\lambda 3^{k+1}}\right] . \tag{2}
\end{equation*}
$$

Proof. It follows from (18) and (19) that there exists $p, q \in P$ such that

$$
\begin{equation*}
\frac{(1-\lambda) D_{n, \delta}^{k} f(z)+\lambda D_{n, \delta}^{k+1} f(z)}{z}=\beta+(1-\beta) p(z), \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) D_{n, \delta}^{k} g(w)+\lambda D_{n, \delta}^{k+1} g(w)}{w}=\beta+(1-\beta) q(w), \tag{23}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (10) and (11), respectively. Equating coefficients in (22) and (23) yields

$$
\begin{align*}
& {\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right] C(\delta, 2) a_{2}=(1-\beta) p_{1},} \tag{24}\\
& {\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] C(\delta, 3) a_{3}=(1-\beta) p_{2},} \tag{25}
\end{align*}
$$

$$
\begin{equation*}
-\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right] C(\delta, 2) a_{2}=(1-\beta) q_{1} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right]\left(2[C(\delta, 2)]^{2} a_{2}^{2}-C(\delta, 3) a_{3}\right)=(1-\beta) q_{2} . \tag{27}
\end{equation*}
$$

From (24) and (26), we have

$$
\begin{equation*}
-p_{1}=q_{1} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2} C[(\delta, 2)]^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{29}
\end{equation*}
$$

Also, from (25) and (27), we find that

$$
\begin{gather*}
2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] C[(\delta, 2)]^{2} a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right), \tag{30}\\
\left|a_{2}^{2}\right| \leq \frac{(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] C[(\delta, 2)]^{2}}, \tag{31}
\end{gather*}
$$

i.e.

$$
\begin{equation*}
\left|a_{2}\right| \leq 2\left|\frac{\Gamma(\delta+1)}{\Gamma(\delta+2)}\right| \sqrt{\frac{2(1-\beta)}{(1-\lambda) 3^{k}+\lambda 3^{k+1}}} \tag{32}
\end{equation*}
$$

which is the bound on $\left|a_{2}\right|$ as given in (20).
Next, in order to find the bound on $\left|a_{3}\right|$ by subtracting (27) from (25), we obtain

$$
\begin{gathered}
2 C(\delta, 3)\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] a_{3}= \\
2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right][C(\delta, 2)]^{2} a_{2}^{2}+(1-\beta)\left(p_{2}-q_{2}\right)
\end{gathered}
$$

or, equivalently

$$
a_{3}=\frac{2\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right][C(\delta, 2)]^{2} a_{2}^{2}}{2 C(\delta, 3)\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right]}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2 C(\delta, 3)\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right]}
$$

Upon substituting the value of a_{2}^{2} from (29), we obtain

$$
\begin{equation*}
a_{3}=\frac{3(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \Gamma(\delta+1)}{\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2} \Gamma(\delta+3)}+\frac{3(1-\beta)\left(p_{2}-q_{2}\right) \Gamma(\delta+1)}{\left[(1-\lambda) 3^{k}+\lambda 3^{k+1}\right] \Gamma(\delta+3)} . \tag{33}
\end{equation*}
$$

Applying Lemma 1 for the coefficients p_{1}, p_{2}, q_{1} and q_{2} we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{12(1-\beta) \Gamma(\delta+1)}{\Gamma(\delta+3)}\left[\frac{2(1-\beta)}{\left[(1-\lambda) 2^{k}+\lambda 2^{k+1}\right]^{2}}+\frac{1}{(1-\lambda) 3^{k}+\lambda 3^{k+1}}\right] \tag{34}
\end{equation*}
$$

which is the bound on $\left|a_{3}\right|$ as asserted in (21).

Putting $\lambda=1, k=\delta=0$, in Theorem 4, we have the following corollary.
Corollary 5. Let $f z)$ given by (1) be in the class $H_{\Sigma}(n, \delta, \beta, \lambda),(0 \leq \beta<1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3} \tag{36}
\end{equation*}
$$

Remark 1. If we put $\delta=k=0$, in Theorems 2 and 3, we obtain the corresponding results due to Frasin and Aouf [12].

Remark 2. If we put $\delta=0$, in Theorems 2 and 3, we obtain the corresponding results due to Porwal and Darus [2].

Remark 3. If we put $\delta=k=0, \lambda=1$, in Theorems 2 and 3, we obtain the corresponding results due to Srivastava et al [8].
Remark 4. Similarly, just as stated in [2], it would be nice to find estimates for $\left|a_{n}\right|, n \geq 4$ (not necessarily sharp) for the class of functions defined in this work.

Acknowledgement: The work here is partially supported by UKM's grant: GUP-2013-004.

References

[1] G.S. Salagean, Subclasses of univalent functions, in: Complex Analysis - Fifth Romanian Finish Seminar, Bucharest, vol. 1, 1983, pp. 362-372
[2] S. Porwal, M. Darus, On a new subclass of bi-univalent functions, Journal of the Egyptian Mathematical Society, 21 (2013), 190-193.
[3] S.S. Ding, Y. Ling, G.J. Bao, Some properties of a class of analytic functions, J. Math. Anal. Appl., 195 (1) (1995), 71-81.
[4] M. Chen, On the functions satisfying $\operatorname{Re}\left(\frac{f(z)}{z}\right)>\alpha$, Bull. Inst. Math. Acad. Sincia, 3 (1975), 65-70.
[5] P.N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62 (1977), 37-43.
[6] T.H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. ath. Soc. 104 (1962), 532-537.
[7] N. Tuneski, Some simple sufficient conditions for starlikeness and convexity, Appl. Math. Lett. 22 (2009), 693-697.
[8] H.M. Srivastava, A.K. Mishra, P.Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[9] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui and N.S. Faour(Eds.), Mathematical Analysis and its Applications, Kuwait; Februar 18-21, 1985, KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60; see also Studia Univ. Babes-Bolyai Math. 31 (2) (1986) 70-77.
[10] D.A. Brannan, J. Clunie, W.E. Kirwan, Coefficient estimates for a class of starlike functions, Canada J. Math. 22 (1970), 476-485.
[11] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[12] B.A. Frasin, M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.
[13] Q.-H. Xu, Y.-C. Gui, H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (6) (2012) 990-994.
[14] Q.-H. Xu, Y.-C. Gui, H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (23) (2012) 11461-11465.
[15] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Go ttingen, 1975.

[^0]
[^0]: ${ }^{1}$ Adnan G. Alamoush and ${ }^{2}$ Maslina Darus
 1,2 School of Mathematical Sciences
 Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, malaysia email: ${ }^{1}$ adnan-omoush@yahoo.com, ${ }^{2}$ maslina@ukm.my

