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THE SHOCK PROFILE WAVE PROPAGATION OF
KURAMOTO-SIVASHINSKY EQUATION AND SOLITONIC

SOLUTIONS OF GENERALIZED KURAMOTO-SIVASHINSKY
EQUATION

M. Sajjadian

Abstract. The Application of Kuramoto-Sivashinsky (KS) equation is in com-
plicated fluid dynamics systems. Its chaotic pattern forming behavior is important.
In this paper this equation and generalized Kuramoto-Sivashinsky equation (GKS)
are solved by sinc-collocation method. A mesh free technique is applied to solve this
equation.
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1. Introduction

The appearance of shock wave or strong pressure wave is in elastic medium like
air, water or a solid substance that is produced by supersonic aircraft, explosions,
lightning or other cases that produces violent variation in pressure. The difference
between sock waves and sound wave is the propagations of shock waves. The speeds
of shock waves depends on amplitude. The amplitude of a strong shock decreases
almost as the inverse square of the distance until the wave has become so weak that
it relates the laws of acoustic waves. The application of shock waves is the study
the equation of state of any material.

A soliton is a special kind of solitary wave, which is not destroyed when it col-
lides with another wave of the same kind. The first appearance of soliton was about
2 centuries ago in August of 1834 near Edinburgh, Scotland. Scottish scientist
and engineer John Scott Russell (1808- 1882) first observed the soliton, translation
wave or the great solitary wave. Russell spent many years to study about this phe-
nomenon. The main role of solitons are studied in physics, mathematics, hydrome-
chanics, astrophysics, meteorology, oceanography and biology. Among many-faced
solitons, there are three most famous solitons: the KdV solitons (Russells solitons),
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the FK (Sine- Gordon) solitons and the envelope (group) solitons. The application
of Russell-KdV solitons is in physical systems with weakly nonlinear and weakly
dispersive waves.

Consider Kuramoto-Sivashinsky (KS) equation as

ut + uux + αuxx + uxxxx = 0, (1)

with the initial condition
u(x, 0) = f(x), (2)

and the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), t ≥ 0, (3)

where α is a constant. KS equation [1] is a canonical evolution equation which has
attracted considerable importance in last years. The linear terms describe a balance
between long-wave instability and short-wave stability, with the nonlinear term pro-
viding a mechanism foe energy transfer between wave modes. It arises in a broad
spectrum of contexts and admits various fascinating solutions like traveling waves
of permanent form and chaos. It is one of the simplest partial differential equations
which is capable of exhibiting chaotic behavior. The chaotic behavior typically oc-
curs when the equation is integrated over finite x−domain with periodic boundary
conditions. It has various applications, e.g., long waves on thin films, long waves on
the interface between two viscous fluids, unstable drift waves in plasmas, reaction
diffusion systems and flame front instability. It also describes the fluctuations of
the position of a flame front, the motion of a fluid going down a vertical wall, or a
spatially uniform oscillating chemical reaction in a homogeneous medium.

Consider generalized Kuramoto-Sivashinsky (GKS) equation as

ut + uux + uxx + σuxxx + uxxxx = 0, (4)

with the initial condition
u(x, 0) = f(x), (5)

and the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), t ≥ 0, (6)

GKS equation is an important mathematical model arising in many different phys-
ical contexts to describe many phenomena which are simultaneously involved in
nonlinearity, dissipation, dispersion and instability, especially at the description of
turbulence processes.
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Kuamoto-Sivashinsky equation has been studied by many authors. Y. Zhang et
al. [2] made bifurcation analysis by using the center manifold reduction method,
together with the eigenvalue analysis for the Kuramoto-Sivashinsky equation. S.
Dubljevic [3] has focused on the model predictive control design methodology that
successfully accounts for the state and input constraints applied in the context of
highly dissipative Kuramoto-Sivashinsky (KS) partial differential equation (PDE)
describing stability of a thin film thickness in the two-phase annular flow in vertical
pipes. Y. Bozhkov et al. [4] have conisedered group classification and conserva-
tion laws for a two-dimensional generalized Kuramoto-Sivashinsky equation. L. Bo
[5] have established a large deviation principle for the (weak) solution to a nonlo-
cal Kuramoto-Sivashinsky stochastic partial differential equation with small noise
perturbation. B. Barker et al. [6] have announced a general result resolving the
long-standing question of nonlinear modulational stability or stability with respect
to localized perturbations of periodic traveling-wave solutions of the generalized
Kuramoto-Sivashinsky equation, establishing that spectral modulational stability,
defined in the standard way, implies nonlinear modulational stability with sharp
rates of decay. D. Yang [7] has investigated the relation between the Kolmogorov
operator associated to a stochastic Kuramoto-Sivashinsky equation and the infinites-
imal generator for the corresponding transition semigroup.

2. The Sinc function

In this section the basis of sinc function is discussed [8]. The sinc function is defined
on the whole real line, −∞ < x <∞, by

sinc(x) =

{
sin(πx)
πx , x 6= 0;

1, x = 0.
(7)

For any h > 0, the translated sinc functions with evenly spaced nodes are given as

S(j, h)(z) = sinc(
z − jh
h

), j = 0,±1,±2, · · · . (8)

The sinc functions are cardinal for the interpolating points zk = kh in the sense
that

S(j, h)(kh) = δ
(0)
jk =

{
1, k = j;
0, k 6= j.

(9)

If f is defined on the real line, then for h > 0 the series

C(f, h)(z) =
∞∑

j=−∞
f(jh)sinc(

z − jh
h

), (10)
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is called the Whittaker cardinal expansion of f whenever this series converges. They
are based in the infinite strip Ds in the complex plane

Ds = {w = u+ iv : |v| < d ≤ π

2
}. (11)

Some derivatives of sinc function will be used in reduction the equation to matrix
form so,

I
(0)
ji = [S(j, h)(x)]

∣∣
x=xi

=


1, j = i;
0, j 6= i, (12)

I
(1)
ji =

d

dx
[S(j, h)(x)]

∣∣
x=xi

=
1

h


0, j = i;
(−1)(i−j)

(i−j) , j 6= i, (13)

and

I
(2)
ji =

d2

dx2
[S(j, h)(x)]

∣∣
x=xi

=
1

h2


−π2

3 , j = i;
−2(−1)(i−j)

(i−j)2 , j 6= i. (14)

I
(3)
ji =

d3

dx3
[S(j, h)(x)]

∣∣
x=xi

=
1

h3


0, j = i;
(−1)(i−j)

(i−j)3 [6− π2(i− j)2], j 6= i, (15)

I
(4)
ji =

d4

dx4
[S(j, h)(x)]

∣∣
x=xi

=
1

h4


(
π4

5

)
, j = i;

(−1)i−j

(i−j)4 (−4 + 2
3π

2(i− j)2) j 6= i, (16)

And so on, for even coefficients, where r = 1, 2, . . .

I
(2r)
ji =

d2r

dx2r
[S(j, h)(x)]

∣∣
x=xi

=


(
π
h

)2r (−1)r
2r+1 , j = i;

(−1)(i−j)

h2r(i−j)2r
∑r−1

l=0 (−1)l+1 2r!
(2l+1)!π

2l(i− j)2l, j 6= i, (17)

and for odd coefficients, where r = 1, 2, . . .
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I
(2r+1)
ji =

d2r+1

dx2r+1
[S(j, h)(x)]

∣∣
x=xi

=


0 j = i;

(−1)(j−i)

h2r+1(j−i)2r+1

∑r
l=0(−1)l (2r+1)!

(2l+1)! π
2l(i− j)2l, j 6= i. (18)

3. Structure of the method

Consider forth order partial differential equations Kuramoto-Sivashinsky (KS) equa-
tion as

ut + uux + αuxx + uxxxx = 0, (19)

with the initial condition
u(x, 0) = f(x), (20)

and the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), t ≥ 0, (21)

where α is a constant and consider forth order partial differential equation of gen-
eralized Kuramoto-Sivashinsky (GKS) equation as

ut + uux + uxx + σuxxx + uxxxx = 0, (22)

with the initial conidition
u(x, 0) = f(x), (23)

and the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), t ≥ 0. (24)

By discretizing time derivative of KS’s equation using a classic finite difference for-
mula and space derivatives by θ- weighted scheme we have

un+1 − un

δt
+ θ((uux)n+1 + (αuxx)n+1 + (uxxxx)n+1)

+(1− θ)((uux)n + (αuxx)n + (uxxxx)n) = 0, (25)

so using Taylor expansion for the term uux and considering we have

un+1 + δtθ([unun+1
x + unxu

n+1] + un+1
xx + un+1

xxxx)

= un + ((2θ − 1)(uux)n + δt(1− θ)(unxx + unxxxx), (26)
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for KS equation and with same calculation for GKS equation we have

un+1 + δtθ([unun+1
x + unxu

n+1] + un+1
xx + σun+1

xxx + un+1
xxxx)

= un + δt((2θ − 1)(uux)n − (1− θ)(unxx + σun+1
xxx + unxxxx). (27)

Now we use approximate solution as

u(x, tn) = un(x) '
N∑
j=1

unj Sj(x). (28)

where

Sj(x) = Sin(
x− (j − 1)h− a

h
). (29)

By substituting above approximate solution in Eq. (26) a matrix representation is
obtained for KS equation as

Mun+1 = R, (30)

where

Ad = [I
(0)
ij : i = 2, ..., N − 1, j = 1, ..., N, 0 elsewhere]N×N ,

Ab = [I
(0)
ij : i = 1, N, j = 1, . . . , N, 0 elsewhere]N×N ,

B = [I
(1)
ij : i = 2, . . . , N − 1, j = 1, . . . , N, 0 elsewhere]N×N ,

C = [I
(2)
ij : i = 2, . . . , N − 1, j = 1, . . . , N, 0 elsewhere]N×N ,

G = [I
(3)
ij : i = 2, . . . , N − 1, j = 1, . . . , N, 0 elsewhere]N×N ,

H = [I
(4)
ij : i = 2, . . . , N − 1, j = 1, . . . , N, 0 elsewhere]N×N ,

unx = Bun, D = unx ∗Ad, E = (un) ∗B,
Fn+1 = [ga(t

n+1), 0, . . . , 0, gb(t
n+1)]T ,

so with these definition for KS equation we have

M = [Ad +Ab + θδt(E +D + C +H)],

R = [Ad + δt{(2θ − 1)E − (1− θ)(C +H)}]un + Fn+1,

and with same substitution for GKS’s equation

M = [Ad +Ab + θδt(E +D − C + σG+H)],

R = [Ad + δt{(2θ − 1)E − (1− θ)(−C +H + σG)}]un + Fn+1.
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4. Stability Analysis

In this section stability analysis of approximate solution for linearized equation is
discussed. The error at nth time level is

en = unexact − unapproximate.

4.1. KS’s equation

By considering the obtained matrix we have

[H + δtθK]en+1 = [H − δt(1− θ)K]en, (31)

where H = [Ad +Ab]A
−1 and K = [E +D − C +H]A−1 so,

en+1 = Pen,

where P = [H + δtθK]−1[H − δt(1 − θ)K]. This method is stable [9] if ‖ P ‖2≤ 1
or ρ(P ) ≤ 1 which is spectral radius of the matrix P . The stability is assured if all
the eigenvalues of the matrix [H + δtθK]−1[H − δt(1 − θ)K] satisfy the following
condition ∣∣∣∣λH − δt(1− θ)λKλH + δtθλK

∣∣∣∣ ≤ 1, (32)

where λH and λKare eigenvalues of the matrices H and K respectively. When
θ = 0.5, the inequality (32) becomes∣∣∣∣λH − 0.5δtλK

λH + 0.5δtλK

∣∣∣∣ ≤ 1. (33)

In the case of complex eigenvalues λH = ah + ibh and λK = ak + ibk, where ah, ak,
bh and bk are any real numbers, the inequality (33) takes the following form,∣∣∣∣(ah − 0.5δtak) + i(bh − 0.5δtbk)

(ah − 0.5δtak) + i(bh − 0.5δtbk)

∣∣∣∣ ≤ 1. (34)

The inequality (34) is satisfied if ahak+bhbk ≥ 0. For real eigenvalues, the inequality
(33) holds true if either (λH ≥ 0 and λK ≥ 0) or (λH ≤ 0 and λK ≤ 0). This shows
that the scheme is unconditionally stable if ahak + bhbk ≥ 0, for complex eigenvalues
and if either (λH ≥ 0 and λK ≥ 0) or (λH ≤ 0 and λK ≤ 0), for real eigenvalues.
When θ = 0, the inequality (33) becomes∣∣∣∣1− δtλK

λH

∣∣∣∣ ≤ 1,

169



M. Sajjadian – The shock profile wave propagation of . . .

i.e.,

δt ≤ 2λH
λK

and
λH
λK
≥ 0.

Thus for θ = 0, the scheme is conditionally stable. The stability of scheme for the
other values of can be investigate in a similar manner. The stability of the scheme
and conditioning of the component matrices H, K of the matrix P depend on the
weight parameter and the minimum distance between any two collocation points h
in the domain set [a, b].

4.2. GKS’s equation

By considering the obtained matrix we have

[H + δtθK]en+1 = [H − δt(1− θ)K]en, (35)

where H = [Ad +Ab]A
−1 and K = [E + C +H + σG]A−1 so,

en+1 = Pen,

where P = [H + δtθK]−1[H − δt(1 − θ)K]. This method is stable if ‖ P ‖2≤ 1 or
ρ(P ) ≤ 1, which is spectral radius of the matrix P . The stability is assured if all
the eigenvalues of the matrix [H + δtθK]−1[H − δt(1 − θ)K] satisfy the following
condition ∣∣∣∣λH − δt(1− θ)λKλH + δtθλK

∣∣∣∣ ≤ 1, (36)

where λH and λKare eigenvalues of the matrices H and K respectively. When
θ = 0.5, the inequality (32) becomes∣∣∣∣λH − 0.5δtλK

λH + 0.5δtλK

∣∣∣∣ ≤ 1. (37)

In the case of complex eigenvalues λH = ah + ibhand λK = ak + ibk, where ah, ak,
bh and bk are any real numbers, the inequality (37) takes the following form,∣∣∣∣(ah − 0.5δtak) + i(bh − 0.5δtbk)

(ah − 0.5δtak) + i(bh − 0.5δtbk)

∣∣∣∣ ≤ 1. (38)

The inequality (38) is satisfied if ahak+bhbk ≥ 0. For real eigenvalues, the inequality
(37) holds true if either (λH ≥ 0 and λK ≥ 0) or (λH ≤ 0 and λK ≤ 0). This shows
that the scheme is unconditionally stable if ahak + bhbk ≥ 0, for complex eigenvalues
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and if either (λH ≥ 0 and λK ≥ 0) or (λH ≤ 0 and λK ≤ 0), for real eigenvalues.
When θ = 0, the inequality (37) becomes∣∣∣∣1− δtλK

λH

∣∣∣∣ ≤ 1,

i.e.,

δt ≤ 2λH
λK

and
λH
λK
≥ 0.

Thus for θ = 0, the scheme is conditionally stable. The stability of scheme for the
other values of can be investigate in a similar manner. The stability of the scheme
and conditioning of the component matrices H, K of the matrix P depend on the
weight parameter and the minimum distance between any two collocation points h
in the domain set [a, b].

5. Errors

In this section, two error norms is defined that will be used for showing the accuracy
of the method as follows

L2 =‖ u− ũ ‖2=

√√√√h
N∑
j=1

|u− ũj |2,

L∞ =‖ u− ũ ‖∞= max|uj − ũj |, 1 ≤ j ≤ N,

where u, ũ are exact and approximate solution respectively.

6. Numerical Solution

In this section L2 and L∞ are obtained and shown in Tables and approximate
solution of KS and GKS’s equation is shown in Figures.

Example 1. Consider Kuramoto-Sivashinsky (KS) equation as

ut + uux + uxx + uxxxx = 0, (39)

with the exact solution

u(x, t) = c+
15

19

√
11

19
(−9tanh(k(x− ct− x0)) + 11tanh3(k(x− ct− x0))), (40)
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and the initial condition
u(x, 0) = f(x), (41)

and the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), t ≥ 0, (42)

where c = 0.1, k = 1
2

√
11
19 , x0 = −10, n = 20, a = −30, b = 30, δt = 0.00001.

In Table 1, two kinds of error is calculated for n = 20, a = −30, b = 30, δt =
0.00001, T = 0.0001, . . . , 0.0009. Figure 1, indicates the shock profile wave propa-
gation of KS equation in different time level of T = 0, . . . , 100 for n = 200, a =
−30, b = 30, δt = 0.1.

Time L∞ L2

0.0001 2.69492×10−5 8.62302×10−5

0.0002 5.39004×10−5 1.72464×10−4

0.0003 8.08535×10−5 2.58702×10−4

0.0004 1.07809×10−4 3.44943×10−4

0.0005 1.34766×10−4 4.31187×10−4

0.0006 1.61725×10−4 5.17436×10−4

0.0007 1.88686×10−4 6.03688×10−4

0.0008 2.15649×10−4 6.89944×10−4

0.0009 2.42614×10−4 7.76203×10−4

Table1: Errors for n = 20, a = −30, b = 30, δt = 0.00001, T = 0.0001, . . . , 0.0009.

Example 2. Consider Kuramoto-Sivashinsky (KS) equation as

ut + uux − uxx + uxxxx = 0, (43)

with the exact solution

u(x, t) = c+
15

19
√

19
(−3tanh(k(x− ct− x0)) + tanh3(k(x− ct− x0))), (44)

and the initial condition
u(x, 0) = f(x), (45)

and the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), t ≥ 0, (46)
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0.4
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u

Figure 1: The shock profile wave propagation of KS equation for α = 1.

where c = 0.2, k = 1
2
√
19

, x0 = −10, n = 20, a = −10, b = 10, δt = 0.0001.

In Table 2, two kinds of error is calculated for n = 20, a = −30, b = 30, δt =
0.0001, T = 0.0001, . . . , 0.0009. Figure 2, indicates the shock profile wave propa-
gation of KS equation in different time level of T = 0, . . . , 80 for n = 100, a =
−30, b = 30, δt = 0.1.

Time L∞ L2

0.0001 1.20375×10−5 3.67788×10−5

0.0002 2.40744×10−5 7.35569×10−5

0.0003 3.61109×10−5 1.10334×10−4

0.0004 4.81470×10−5 1.47111×10−4

0.0005 6.01825×10−5 1.83886×10−4

0.0006 7.22176×10−5 2.20661×10−4

0.0007 8.42523×10−5 2.57435×10−4

0.0008 9.62864×10−5 2.94208×10−4

0.0009 1.08320×10−4 3.30981×10−4

Table2: Errors for n = 20, a = −30, b = 30, δt = 0.0001, T = 0.0001, . . . , 0.0009.
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Figure 2: The shock profile wave propagation of KS equation for α = −1.

Example 3. Consider generalized Kuramoto-Sivashinsky (GKS) equation as

ut + uux + uxx + σuxxx + uxxxx = 0, (47)

with the exact solution

u(x, t) = c+ 9 +−15(tanh(k(x− ct− x0))
+tanh2(k(x− ct− x0))− tanh3(k(x− ct− x0))), (48)

and the initial condition
u(x, 0) = f(x), (49)

and the boundary conditions

u(a, t) = ga(t), u(b, t) = gb(t), t ≥ 0, (50)

where c = 3, k = 0.5, σ = 4, x0 = −10, n = 20, a = −10, b = 10, δt = 0.00001.
In Table 3, two kinds of error is calculated for n = 20, a = −10, b = 10, δt =

0.00001, T = 0.00001, . . . , 0.00009. Figure 3, indicates solitonic solutions of GKS
equation in different time level of T = 0, . . . , 5 for n = 100, a = −20, b = 20, δt =
0.1.
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Time L∞ L2

0.00001 1.55374×10−4 2.93979×10−4

0.00002 3.10693×10−4 5.86548×10−4

0.00003 4.65958×10−4 8.79367×10−4

0.00004 6.21167×10−4 1.17221×10−3

0.00005 7.76322×10−4 1.46503×10−3

0.00006 9.31421×10−4 1.75782×10−3

0.00007 1.08647×10−3 2.05056×10−3

0.00008 1.24146×10−3 2.34326×10−3

0.00009 1.39639×10−3 2.63591×10−3

Table3: Errors n = 20, a = −10, b = 10, δt = 0.00001, T = 0.00001, . . . , 0.00009.

T = 0

T = 5

T = 4

T = 3

T = 2

T = 1

-20 -10 0 10 20
x

5

10

15

u

Figure 3: The solitonic solution of GKS equation.
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