PROPERTIES OF *B*-*θ*-COMPACT SPACES

N. GOWRISANKAR, N. RAJESH

ABSTRACT. In this paper, we present and study the notion of firm b- θ -continuity to investigate b- θ -compactness. We also present some properties of b- θ -compactness in terms of nets and ultranets.

2000 Mathematics Subject Classification: 54A05, 54D10

Keywords: Topological spaces, b-open sets, $b-\theta$ -open sets, $b-\theta$ -compact.

1. INTRODUCTION AND PRELIMINARIES

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the variously modified forms of continuity, separation axioms etc. by utilizing generalized open sets. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure of A and the interior of A, respectively. A set A is called b-open [1] (= γ -open [2]) if $A \subset$ $Int(Cl(A)) \cup Cl(Int(A))$. The complement of b-open set is called b-closed. The intersection of b-closed sets of X containing A is called the b-closure [1] of A and is denoted by $b \operatorname{Cl}(A)$. A set A is b-closed if and only if $A = b \operatorname{Cl}(A)$. The b- θ -closure [3], denoted by $b\operatorname{Cl}_{\theta}(A)$, is the set of all $x \in X$ such that $b\operatorname{Cl}(U) \cap A \neq \emptyset$ for every b-open set U containing x. A subset A is called b- θ -closed [3] if $A = b \operatorname{Cl}_{\theta}(A)$. By [3], it is proved that, for a subset A, $b \operatorname{Cl}_{\theta}(A)$ is the intersection of all b- θ -closed sets containing A. The complement of a b- θ -closed set is called b- θ -open. The family of all b- θ -open (resp. b- θ -closed) sets of (X, τ) is denoted by $B\theta O(X, \tau)$ (resp. $B\theta C(X,\tau)$). In this paper, we present and study the notion of firm b- θ -continuity to investigate b- θ -compactness. We also present some properties of b- θ -compactness in terms of nets and ultranets. Moreover, we introduce and investigate some basic properties of $b - \theta - (m, n)$ -compact spaces.

2. Characterization of b- θ -compact spaces

Definition 1. A subset K of a nonempty set X is said to be b- θ -compact relative to (X, τ) if every cover of K by b- θ -open sets of X has a finite subcover. We say that (X, τ) is b- θ -compact if X is b- θ -compact.

Definition 2. A function $f : X \to Y$ is said to have property \mathcal{P} if for every b- θ -open cover ∇ of Y there exists a finite cover (the members of which need not be necessarily b- θ -open) $\{A_1, A_2, ..., A_n\}$ of X such that for each $i \in \{1, 2, ..., n\}$, there exists $U_i \in \nabla$ such that $f(A_i) \subset U_i$.

Recall that a function $f: X \to Y$ is said to be quasi-*b*- θ -continuous if $f^{-1}(V)$ is *b*- θ -open in X for every *b*- θ -open set V of Y.

Theorem 1. A topological space X is b- θ -compact if and only if for every topological space Y and every quasi-b- θ -continuous function $f: X \to Y$, f has the property \mathcal{P} .

Proof. Let the topological space X be b- θ -compact and the function $f : X \to Y$ be quasi-b- θ -continuous. Suppose that Ω be a b- θ -open cover of Y. The set f(X) is b- θ -compact relative to Y. This means that there exists a finite sub-family $\{U_1, U_2, ..., U_n\}$ of Ω which cover f(X). Then the sets $A_1 = f^{-1}(U_1)$, $A_2 = f^{-1}(U_2), ..., A_n = f^{-1}(U_n)$ form a cover of X such that $f(A_i) \subset U_i$ for each $i \in \{1, 2, ..., n\}$. Conversely, suppose that X is a topological space such that for every topological space Y and every quasi b- θ -continuous function $f : X \to Y$, f has property \mathcal{P} . It follows that the identity function $id_X : X \to X$ has the property \mathcal{P} . Hence, for every b- θ -open cover Ω of X, there exists a finite cover $A_1, A_2, ..., A_n$ of X such that for each $i \in \{1, 2, ..., n\}$ there exists a set $U_i \in \Omega$ such that $A_i = id_X(A_i) \subset U_i$. Then $U_1, U_2, ..., U_n$ are finite b- θ -subcover of Ω . Since Ω was an arbitrary b- θ -open cover of X, the space X is b- θ -compact.

Definition 3. A function $f : X \to Y$ is called firmly b- θ -continuous if for every b- θ -open cover ∇ of Y there exists a finite b- θ -open cover Ω of X such that for every $U \in \Theta$, there exists a set $G \in \Omega$ such that $f(U) \subset G$.

Remark 1. It should be noted that if the topological space, then every quasi b- θ -continuous function $f: X \to Y$ is firmly b- θ -continuous.

Lemma 2. Let X, Y, Z and W be topological spaces. Let $g : X \to Y$ and $h : Z \to W$ be quasi b- θ -continuous functions and let $f : Y \to Z$ be firmly b- θ -continuous. Then the functions $f \circ g : X \to Z$ and $h \circ f : Y \to W$ are firmly b- θ -continuous.

Lemma 3. Let X and Y be topological spaces. Suppose that $f : X \to Y$ is a quasi b- θ -continuous function which has the property \mathcal{P} . Then f is firmly b- θ -continuous.

Theorem 4. The following statements are equivalent for a topological space (X, τ) : (i) X is b- θ -compact.

(ii) The identity function $id_X : X \to X$ is firmly b- θ -continuous;

(iii) Every quasi b- θ -continuous function from X to X is firmly b- θ -continuous;

(iv) Every quasi b- θ -continuous function from X to a topological space Y is firmly b- θ -continuous;

(v) Every quasi b- θ -continuous function from X to a topological space Y has the property \mathcal{P} ;

(vi) For each topological space Y and each quasi b- θ -continuous function $f: Y \to X$, f is firmly b- θ -continuous.

Proof. $(i) \Rightarrow (ii)$: Let X be a b- θ -compact space. The identity function $id_X : X \to X$ is quasi b- θ -continuous and by Remark 1 id_X is firmly b- θ -continuous.

 $(ii) \Rightarrow (iii)$: Let $f: X \to X$ is any quasi b- θ -continuous function. By (ii), the identity function $id_X: X \to X$ is firmly b- θ -continuous. Therefore by Lemma 2 $f = id_X: X \to X$ is firmly b- θ -continuous.

 $(iii) \Rightarrow (iv)$: Suppose that $f: X \to Y$ is any quasi *b*- θ -continuous function. The identity function $id_X: X \to X$ is firmly *b*- θ -continuous and by (iii) id_X is firmly *b*- θ -continuous. As a consequence of Lemma 2, we have that $f = f \circ id_X: X \to Y$ is firmly *b*- θ -continuous.

 $(iv) \Rightarrow (v)$: Obvious.

 $(v) \Rightarrow (i)$: This is an immediate consequence of Lemma 1.

 $(vi) \Rightarrow (ii)$: Suppose that $id_X : X \to X$ is the identity function. Then id_X is quasi b- θ -continuous and by (vi) id_X is firmly b- θ -continuous.

 $(i) \Rightarrow (vi)$: Suppose that ∇ is a *b*- θ -open cover of *X*. Since *X* is *b*- θ -compact, then there is a finite *b*- θ -subcover $U_1, U_2, ..., U_n$ of ∇ . Let $A_i = f^{-1}(U_i)$ for $i \in \{1, 2, ..., n\}$. We have that $f(A_i) \subset U_i$ for every $i \in \{1, 2, ..., n\}$. Therefore, *f* is firmly *b*- θ -continuous.

Definition 4. A topological space (X, τ) is said to be $b \cdot \theta \cdot T_1$ if for each pair of distinct points x and y of X, there exist $b \cdot \theta \cdot open$ sets U and V of X such that $x \in U$ and $y \notin U$, and $y \in V$ and $x \notin V$.

Theorem 5. If $f : X \to Y$ is a firmly b- θ -continuous function, where X is a topological space and Y is a b- θ -T₁ space, then f is quasi b- θ -continuous.

Proof. Let x be an arbitrary point of X and V be a b- θ -open set of Y containing f(x). We define a b- θ -open cover Ω of Y such that $\Omega = \{V, Y \setminus f(x)\}$. Since f is firmly b- θ -continuous, it follows that there exists a finite b- θ -open cover $\{P_1, P_2, ..., P_n\}$ of X such that $f(P_i) \subset V$ or $f(P_i) \subset Y \setminus f(x)$ for every $i \in \{1, 2, ..., n\}$. Let $x \in P_j$ for some index j. Since $f(P_j)$ contains f(x), so it follows that $f(P_j) \subset V$. This shows that f is quasi b- θ -continuous.

3. Properties of b- θ -compact spaces in terms of nets and ultranets

Definition 5. Let (X, τ) be a topological space, $x \in X$ and $\{x_{\ell}, \ell \in L\}$ be a net of X. We say that a net $\{x_{\ell}, \ell \in L\}$ b- θ -converges to x if for each b- θ -open set U containing x, there exists an element $\ell_0 \in L$ such that $\ell \geq \ell_0$ implies $x_{\ell} \in U$.

Definition 6. Let (X, τ) be a topological space, $G = \{F_i : i \in I\}$ be a filterbase of X and $x \in X$. A filterbase G is said to be b- θ -converge to x if there exists a member $F_i \in G$ such that $F_i \subseteq U$ for each b- θ -open set containing x.

Theorem 6. If $x \in U$ and $U \in B\theta C(X, \tau)$, then there exists a net $\{x_i\}_{i \in I}$ that b- θ -converges to x and $x_i \in U$ for each $i \in I$.

Proof. Suppose that $x \in U$ and $U \in B\theta C(X, \tau)$ which means $U = b \operatorname{Cl}_{\theta}(U)$. This means that if $x \in N$ and $N \in B\theta O(X, \tau)$ then $N \cap U \neq \emptyset$. It follows that there exists an element $x_N \in N \cap U$. This implies that $\{x_N\}_{N \in I} b \cdot \theta$ -converges to x.

Theorem 7. Let $\{x_i\}_{i \in I}$ be a net in (X, τ) and $U \in B\theta C(X, \tau)$, where $x_i \in U$ for each $i \in I$. If $\{x_i\}_{i \in I}$ b- θ -converges to x, then $x \in U$.

Proof. Assume that $\{x_i\}_{i\in I}$ b- θ -converges to x, then $x \notin U$. Then there exists a b- θ -open set N such that $x \in N$ and $N \cap U = \emptyset$. This means that there exists $i_0 \in I$ such that $x_i \in N$ for each $i \geq i_0$. Then x_i is not an element of U for each $i \geq i_0$. But this is a contradiction and hence the result.

Definition 7. A point y is a b- θ -cluster point of $\{x_i\}_{i \in I}$ if for each $i_0 \in I$ and $U \in B\theta O(X, \tau)$ such that $y \in U$, there exists an $i_1 \ge i_0$ such that $x_{i_1} \in U$.

Theorem 8. Let $(\ell_i)_{i \in I}$ be an ultranet and y be a b- θ -cluster point of the net. Then the ultranet $(\ell_i)_{i \in I}$ b- θ -converges to y.

Proof. Suppose that $(\ell_i)_{i \in I}$ is an ultranet in a topological space (X, τ) and y be a b- θ -cluster point of the net, $(\ell_i)_{i \in I}$. Suppose that, $(\ell_i)_{i \in I}$ does not b- θ -converge to y. This means that there exists $U \in B\theta O(X, \tau)$ such that $y \in U$ and ℓ_i is not an element of U for any $i \in I$. So y is not a b- θ -cluster point of $(\ell_i)_{i \in I}$.

Theorem 9. Let $(\ell_i)_{i \in I}$ be a net in a topological space (X, τ) . Then $y \in X$ is a b- θ -cluster point of $(\ell_i)_{i \in I}$, if and only if a subnet of $(\ell_i)_{i \in I}$ b- θ -converges to y.

Proof. Let $(\ell_i)_{i\in I}$ have a subnet $(\ell_{k_j})_{j\in J}$ that *b*- θ -converges to *y* and *J* be a directed set. Now suppose that $y \in X$ is not a *b*- θ -cluster point of $(\ell_i)_{i\in I}$. This means that there exists $U \in B\theta O(X, \tau)$ and $i_o \in I$ such that, s_{i_1} is not an element of *U* for every $i_1 \geq i_0$. Then $(\ell_{k_j})_{j\in J}$ does not *b*- θ -converge to *y*. Conversely, assume that *y* is a *b*- θ -cluster point of $(\ell_i)_{i\in I}$. $J = \{(i, U) : i \in I, y \in U, U \in B\theta O(X, \tau) \text{ and } i_{i\in I}\}$

 $\ell_i \in U$ is a partially ordered set where $(i, U) \leq (i_1, V)$, if $i \leq i_1$ and $V \subset U$. (i) $(i, U) \leq (i, U)$ for every $(i, U) \in J$. Because, $i \leq i$ and $U \subset U$ for every $i \in I$ and $U \in B\theta O(X,\tau)$. (ii) Let $(i,U) \leq (i_1,V)$ and $(i_1,V) \leq (i,U)$. Then, $i \leq i_1, V \subset U$ and $i_1 \leq i, U \subset V$. This follows that $i = i_1, V = U$. Then, $(i_1, V) = (i, U)$. (iii) Let $(i, U), (i_1, V)$ and $(i_2, W) \in J$ such that $(i, U) \leq (i_1, V)$ and $(i_1, V) \leq (i_2, W)$. Since I is a directed set, $i \leq i_2$ where $i \leq i_1$ and $i_1 \leq i_2$. Also, we know that $W \subset U$ where $V \subset U$ and $W \subset V$. Then, $(i, U) \leq (i_2, W)$ where $i \leq i_2$ and $W \subset U$. Consequently, J is a partially ordered set. Now let $(i, U), (i_1, V) \in J$. Then $U \cap V \in B\theta O(X, \tau)$. We know that $U \cap V \subset U$ and $U \cap V \subset V$ and $y \in U \cap V$. Since y is a b- θ -cluster point of $(\ell_i)_{i \in I}$, there exists $i_2 \in I$ such that $i \leq i_2, i_1 \leq i_2$ and $s_{i_2} \in U \cap V$. Then $(i_1, V) \leq (i_2, U \cap V)$ and $(i, U) \leq (i_2, U \cap V)$. This means that J is a directed set. Define $k: J \to I$ by k(i, A) = i. (a) $(i, U) \leq (i_1, V)$ means that $i \leq i_1$. Then $k(i, U) \leq k(i_1, V)$. (b) Let $i, i_1 \in I$ and $U \in B\theta O(X, \tau)$ which contains y. Then there exists $i_2 \in I$ such that $i \leq i_2, i_1 \leq i_2$ and $\ell_{i_2} \in U$. This means that $(i_2, U) \in J$, $i \leq k(i_2, U)$ and $i_1 \leq k(i_1, U)$. This follows that $\{\ell_{k(i,U)}\}_{i \in I}$. Consider the set $U \in B\theta O(X, \tau)$ which contains y. There exists $i_0 \in I$ such that $\ell_{i_0} \in U$. Then $(i_o, U) \in J$. For every $(i, V) \in J$ that $(i_0, U) \leq (i, V), V \subset U$ and $\ell_i \in V$. This follows that $\ell_{k(i,V)} \in U$ for every $(i_0,U) \leq (i,V)$. So the subnet, $\{\ell_{k(i,U)}\}_{(i,U)\in J}, b-\theta$ -converges to y.

Theorem 10. Let (X, τ) be topological space. Then the following statements are equivalent:

(i) (X, τ) is b- θ -compact.

(ii) For any family Ψ of b- θ -closed subsets of X such that $\cap_{K \in \Psi} K = \emptyset$, there exists a finite subfamily $\Phi \subset \Psi$ such that $\cap_{L \in \Phi} L = \emptyset$.

(iii) $\cap_{K \in \Psi} K \neq \emptyset$ for any family Ψ of b- θ -closed subsets of X such that $\cap_{L \in \Phi} L \neq \emptyset$ where $\Phi \subset \Psi$ is a finite subfamily.

Proof. $(i) \Rightarrow (ii)$: Let (X, τ) be *b*- θ -compact and Ψ be a family of *b*- θ -closed subsets such that $\cap_{K \in \Psi} K = \emptyset$. Then $[\cap_{K \in \Psi} K]^c = [\emptyset]^c$. This means that $\cup_{K \in \Psi} K^c = X$. There exists a finite subfamily $\Phi \subset \Psi$ such that $\cap_{L \in \Phi} L = \emptyset$.

 $(ii) \Rightarrow (iii)$: Let Ψ be a family of b- θ -closed subsets of X. From the assumption if $\cap_{K \in \Psi} K \neq \emptyset$, then there exists a finite subfamily $\Phi \subset \Psi$ such that $\cap_{L \in \Phi} L = \emptyset$. This means that if Ψ does not have any finite subfamily Φ such that $\cap_{L \in \Phi} L = \emptyset$, then $\cap_{K \in \Psi} K = \emptyset$.

 $(iii) \Rightarrow (ii)$: Let Ψ be a family of $b \cdot \theta$ -closed subsets of X. From the assumption if $\cap_{L \in \Phi} L \neq \emptyset$ for any subfamily $\Phi \subset \Psi$, then $\cap_{K \in \Psi} K \neq \emptyset$. This means that, if $\cap_{K \in \Psi} K = \emptyset$, then there exists at least one subfamily $\Phi \subset \Psi$ such that $\cap_{L \in \Phi} L = \emptyset$. $(ii) \Rightarrow (i)$: Let $\{U_i\}_{i \in I}$ be a $b \cdot \theta$ -open cover of X. Then, $\bigcup_{i \in I} U_i = X$. This means that $\cap_{i \in I} U_i^c = \emptyset$ and $U_i^c \in B\theta C(X, \tau)$ for each $i \in I$. It follows from the assumption

that there exists a finite subfamily $J \subset I$ such that $\bigcap_{j \in J} U_j^c = \emptyset$. So $\bigcup_{j \in J} U_j = X$. Therefore (X, τ) is b- θ -compact.

Theorem 11. A topological space (X, τ) is b- θ -compact if and only if every net has at least one b- θ -cluster point in the topological space.

Proof. Let (X, τ) be b- θ -compact and $\{x_i\}_{i \in I}$ be any net in this space. Let as consider a family $b\operatorname{Cl}_{\theta}(B_j)$ of subsets, where $B_j = \{x_i : j \leq i\}$. Then, $b\operatorname{Cl}_{\theta}(B_j) \in$ $B\theta C(X,\tau)$ for any $j \in I$ and the intersection of finitely many of $b\operatorname{Cl}_{\theta}(B_j)$ is nonempty. It follows from theorem 10 that $\bigcap_{i \in J} b \operatorname{Cl}_{\theta}(B_i) \neq \emptyset$ for (X, τ) is b- θ compact. Let $y \in \bigcap_{i \in J} b \operatorname{Cl}_{\theta}(B_i)$. Then $y \in b \operatorname{Cl}_{\theta}(B_i)$ for any $j \in I$. Consider $y \in U, U \in B\theta O(X, \tau)$ and $r \in I$. Then $U \cap B_r \neq \emptyset$. So $U \cap B_k \neq \emptyset$ for any $k \in I$ such that $k \geq r$. Consequently y is a b- θ -cluster point of $\{x_i\}_{i \in I}$. Now suppose that every net in (X, τ) has at least one b- θ -cluster point. Let $\{F_i\}_{i \in I}$ be a family of b- θ -closed sets where intersection of finitely many of F_i 's is nonempty. Consider the set $J = \{ \cap_{j=1}^{n} G_{i_j} : \{G_{i_j}\}_{j=1}^{n} \subset \{F_i\}_{i \in I} \}$ and the relation " \leq ", where $A \leq B$ whenver $B \subset A$ and $A, B \in J$. (i) $A \subset A$ for every set $A \in J$. This means that $A \leq A$ for every set $A \in J$. (ii) We know that if $A \supset B$ and $B \supset A$, then A = B. So $A \leq B$ and $B \leq A$ then A = B. (iii) We know that if $C \supset B$ and $B \supset A$, then $C \supset A$. So, if $C \leq B$ and $B \leq A$, then $C \leq A$. This means that (J, \leq) is a directed set and partially ordered. Let us consider the function $\ell: J \to X$ such that $\ell(A) \in A$ for every $A \in J$. Then $\{\ell_A\}_{A \in J}$ is a net in X and by the assumption has a b- θ -cluster point. Let y be the b- θ -cluster point of $\{\ell_A\}_{A \in J}$. We know that if $A \in J$ and $F_k \leq A$, then $A \subset F_k$, where $F_k \in \{F_i\}_{i \in I}$. So $\ell_B \in F_k$ whenever $A \leq B$. Then, $\{\ell_A\}_{A\in J}$ is residually in F_k . By theorem 9, since y is a b- θ -cluster point of $\{l_A\}_{A\in J}$, a subnet of $\{l_A\}_{A \in J}b - \theta$ -converges to y. Since $\{l_A\}_{A \in J}$ is residually in F_k for each k, such a subnet would be residually in F_k for each k. By theorem 7, $y \in F_k$ for each k. So $\cap_{i \in I} F_i \neq \emptyset$. By theorem 10, (X, τ) is b- θ -compact.

Theorem 12. A topological space (X, τ) is b- θ -compact if and only if every ultranet in it is b- θ -convergent.

Proof. Suppose (X, τ) is b- θ -compact and $\{\ell_i\}_{i \in I}$ is an ultranet in (X, τ) . By theorem 11, $\{\ell_i\}_{i \in I}$ has atleast one b- θ -cluster point. From theorem 8, $\{\ell_i\}_{i \in I}$ b- θ converges to its b- θ -cluster point. Hence, $\{\ell_i\}_{i \in I}$ is b- θ -convergent. Conversely, assume that every ultra net in (X, τ) is b- θ -convergent. Let $\{\ell_i\}_{i \in I}$ be a net in (X, τ) . Since every net has a subnet which is an ultranet, so there exists a subnet of $\{\ell_i\}_{i \in I}$ which is an ultranet. This ultrane b- θ -converges to a point which is b- θ -cluster point of $\{\ell_i\}_{i \in I}$.

4. b- θ -(m, n)-compact spaces

Definition 8. A space (X, τ) is said to be b- θ -(m, n)-compact if from every b- θ -open covering $\{U_i : i \in I\}$ of X whose cardinality I, denoted by card I, is at most n, one can selecet a subcovering $\{U_i : j \in J\}$ of X whose card J is at most m.

Definition 9. A subset A of a space (X, τ) is said to be a b- θ -(m, n)-compact subspace if the subspace A is b- θ -(m, n)-compact.

Definition 10. A space (X, τ) is said to be a completely $b \cdot \theta \cdot (m, n)$ -compact if every subspace X is $b \cdot \theta \cdot (m, n)$ -compact.

Remark 2. It should be noted that a b- θ -(1, n)-compact space is a b- θ -n-compact space and b- θ - $(1, \infty)$ -compact space is the usual b- θ -compact space. A b- θ - (ω, ∞) -compact space is a b- θ -Lindeloff space.

Definition 11. A family $\{U_i : i \in I\}$ of subsets of a set X is said to have the *m*-intersection property if every subfinily of cardinality at most m has a non-void intersection.

Theorem 13. A space (X, τ) is $b \cdot \theta \cdot (m, n)$ -compact if and only if every family $\{P_i\}$ of $b \cdot \theta$ -closed sets $P_i \subseteq X$ having the m-intersection property also has the n-intersection property.

Proof. The proof is a consequence of the following equivalent statements: (i) X is $b \cdot \theta \cdot (m, n)$ -compact. (ii) If $\{U_i : i \in I\}$ is a $b \cdot \theta$ -open cover of X such that card $I \leq n$, then there is a subcover $\{U_{i_j} : j \in J\}$ of X such that card $J \leq m$. (iii) If $\{U_i : i \in I\}$ is a $b \cdot \theta$ -open sets such that card $I \leq n$ and every subfamily $\{U_{i_j}\}$ of card $J \leq m$ has the property $X \setminus (\bigcup_i U_{i_j}) \neq \emptyset$, then $X \setminus (\bigcup_{i \in I} U_{i_j}) \neq \emptyset$. (iv) If $\{U_i : i \in I\}$ is a family of $b \cdot \theta$ -open sets such that $X \setminus (\bigcup_{j \in J} U_{i_j}) \neq \emptyset$ whenever card $J \leq m$, then $X \setminus (\bigcup_{j \in J} U_{i_j}) \neq \emptyset$ whenever card $J \leq n$. (v) If $\{P_i : i \in I\}$ is a family of $b \cdot \theta$ -closed sets having the *m*-intersection property, then $\{P_i\}$ has also the *n*-intersection property.

Theorem 14. If a space X is $b \cdot \theta \cdot (m, n)$ -compact and if Y is a $b \cdot \theta$ -closed subset of X, then Y is a $b \cdot \theta \cdot (m, n)$ -compact subspace of X.

Proof. Suppose that $\{U_i : i \in I\}$ is a *b*- θ -open cover of *Y* such that card $I \leq n$. By adding $U_j = X \setminus Y$, we obtain a *b*- θ -open cover of *X* with cardinality at most *n*. By eliminating U_j , we have a subcover of $\{U_i\}$ whose cardinality is at most *m*.

Theorem 15. If X is a space such that every b- θ -open subset of X is a b- θ -(m, n)-compact subspace of X, then X is completely b- θ -(m, n)-compact.

Proof. Let $Y \subset X$ and $\{U_i : i \in I\}$ be a *b*- θ -open cover of Y such that card $I \leq n$. Then the family $\{U_i : i \in I\}$ is a *b*- θ -open cover of the *b*- θ -open set $\cup_i U_i$. Then there is a subfamily $\{U_{i_j} : j \in J\}$ of card $J \leq m$ which covers $\cup_i U_i$. This subfamily also covers the set Y and therefore Y is *b*- θ -(m, n)-compact.

Theorem 16. Let X be a topological space and $\{Y_k : k \in K\}$ be a family of subsets of X. If every Y_k is $b \cdot \theta \cdot (m, n)$ -compact for some $m \ge cardK$, then $U_{k \in K} Y_k$ is a $b \cdot \theta \cdot (m, n)$ -compact subspace of X.

Proof. If $\{U_i : i \in I\}$ is a *b*- θ -open cover of $Y = \bigcup_K Y_k$, then it is a *b*- θ -open cover of Y_k for every $k \in K$. If card $I \leq n$, then $\{U_i\}$ contains a subfamily $\{U_{i_{j_k}} : j_k \in J_k\}$ for which card $J_k \leq m$ and is a covering of Y_k . The union of these families is a *b*- θ -open subfamily of $\{U_i\}$ which covers Y and its cardinality is at most m.

Definition 12. A point $x \in X$ is said to be an m-b- θ -accumulation point of a set S in X if for every b- θ -open set U_x containing x, we have card $(U_x \cap S) > m$. It shouled be noted that if m = 0, 1 or ω , then the relation card $(U_x \cap S) > m$ means that $U_x \cap S \neq \emptyset$, not finite or not countable.

Theorem 17. Let X be a topological space and $S \subset X$ and card S > m. If X is b- θ -(m, n)-compact for some n > m, then S has a b- θ -accumulation point in X. If X is b- θ - (m, ∞) -compact, then S has an m-b- θ -accumulation point in X

Proof. Let $S \subset X$ and S be the cardinality at most n which has no b- θ -accumulation points in X. Then for each $x \in X$, there is a b-open set U_x such that at most one point of S belongs to U_x . Suppose U is the union of all sets U_x which contain no points of S. Let U_s denote the union of all sets U_x which contain the point $s \in S$. Then U and U_s are b- θ -open sets. Therefore $\{U, U_s\}$ is a b- θ -open cover of X of cardinality at most n. If X is b- θ -(m, n)-compact, then this cover contains a subcover of cardinality at most m. But this subcover must contain every U_s since $s \in S$ is covered only by U_s . Hence card $S \leq m$. If the cardinality of a set S is greater than m, then S has at least one b- θ -accumulation point in X. The two other cases can be proved similarly with a little modification.

References

[1] D. Andrijevic, On b-open sets, Mat. Vesnik, 48(1996), 59-64.

[2] A. A. El-Atik, A study of some types of mappings on topological spaces, Master's Thesis, Facutly of Science, Tanta University, Tanta, Egypt (1997).

[3] J. H. Park, Strongly b-θ-continuous functions, Acta. Math. Hungar., 110(4), 2006, 347-359.

N. Gowrisankar
70/232 Kollupettai Street,
M. Chavady, Thanjavur-613001,
Tamilnadu, India.
email: gowrisankartnj@gmail.com

N. Rajesh Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India. email: nrajesh_topology@yahoo.co.in