SOME PROPERTIES OF AN INTEGRAL OPERATORS DEFINED BY A NEW LINEAR OPERATOR

R. Kargar

Abstract. In this paper, we define a new linear operator and two new general p-valent integral operators for certain analytic functions in the unit disk Δ. It is also shown that the first of these operators maps Ma-Minda type starlike functions into Ma-Minda type convex functions, while the convex mapping are shown to be closed under the second integral operator.

2000 Mathematics Subject Classification: 30C45.
Keywords: Ma-Minda type starlike and convex functions, subordination, integral operators, Hadamard product.

1. Introduction

Let $\mathcal{A}(p)$ denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}, \quad(p \in \mathbb{N}=\{1,2, \ldots\}), \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\Delta=\{z \in \mathbb{C}:|z|<1\}$. We write $\mathcal{A}(1)=\mathcal{A}$. A function $f \in \mathcal{A}(p)$ is said to be Ma-Minda type starlike of order $\gamma(\gamma>1)$ in Δ if

$$
\frac{1}{p} \mathfrak{R e}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\gamma, \quad z \in \Delta
$$

we denote by $\mathcal{M}_{p}(\gamma)$, the class of all such functions. A function $f \in \mathcal{A}(p)$ is said to be Ma-Minda type convex of order $\gamma(\gamma>1)$ in Δ if

$$
\frac{1}{p} \mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\gamma, \quad z \in \Delta
$$

we denote by $\mathcal{N}_{p}(\gamma)$, the class of all such functions. If f and g are analytic in Δ, we say that f is subordinate to g in Δ, written $f \prec g$, if there exists Schwarz function
ω, analytic in Δ with $\omega(0)=0$ and $|\omega(z)|<1$ in Δ such that $f(z)=g(\omega(z))$, $z \in \Delta$.

For two functions f given by (1) and g given by

$$
g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k}, \quad(p \in \mathbb{N}),
$$

their Hadamard product (or convolution) is defined by

$$
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{k}, \quad(p \in \mathbb{N})
$$

Let \mathcal{P} denote the class of functions of the form:

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} p_{n} z^{n} \tag{2}
\end{equation*}
$$

which are analytic and convex in Δ and satisfy the condition:

$$
\mathfrak{R e}(p(z))>0, \quad(z \in \Delta)
$$

For $a \in \mathbb{R}, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$, where $\mathbb{Z}_{0}^{-}:=\{\ldots,-2,-1,0\}$, we introduce a linear operator

$$
\mathcal{J}_{\mu, \nu}^{\lambda, p}(a, c): \mathcal{A}(p) \longrightarrow \mathcal{A}(p)
$$

defined by

$$
\begin{equation*}
\mathcal{J}_{\mu, \nu}^{\lambda, p}(a, c) f(z)=\phi_{\mu, \nu}^{\lambda, p}(a, c ; z) * f(z), \quad(z \in \Delta, f \in \mathcal{A}(p)) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{\mu, \nu}^{\lambda, p}(a, c ; z):=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}(p+1)_{k}(p+1-\mu+\nu)_{k}}{(c)_{k}(p+1-\mu)_{k}(p+1-\lambda+\nu)_{k}} z^{p+k} \tag{4}
\end{equation*}
$$

and where $(d)_{k}$ is the Pochhammer symbol defined by

$$
(d)_{k}:= \begin{cases}1, & k=0 \\ d(d+1)(d+2) \ldots(d+k-1), & k \in N\end{cases}
$$

Also $0 \leq \lambda<1, \mu, \nu \in \mathbb{R}$ and $\mu-\nu-p<1$. We note that:
(i) If $\lambda=\mu=0$ in (3), then we have a linear operator was introduced by Saitoh [21].
(ii) If $a=c=1$ in (3), then $\mathcal{J}_{\mu, \nu}^{\lambda, p}(a, c) f(z) \equiv \Delta_{z, p}^{\lambda, \mu, \nu} f(z)$, where $\Delta_{z, p}^{\lambda, \mu, \nu} f(z)$ is the fractional operator introduced by Choi [6]. We now introduce the following family of linear operators $\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c)$ analogous to $\mathcal{J}_{\mu, \nu}^{\lambda, p}(a, c)$:

$$
\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c): \mathcal{A}(p) \longrightarrow \mathcal{A}(p)
$$

which defined as

$$
\begin{equation*}
\mathcal{I}_{\mu \nu}^{\lambda, p, \alpha}(a, c) f(z):=\psi_{\mu, \nu}^{\lambda, p, \alpha}(a, c ; z) * f(z) \tag{5}
\end{equation*}
$$

$$
\left(a \in \mathbb{R}, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}, \alpha>-p, 0 \leq \lambda<1, \mu, \nu \in \mathbb{R}, \mu-\nu-p<1, z \in \Delta, f \in \mathcal{A}(p)\right)
$$

Where $\psi_{\mu, \nu}^{\lambda, p, \alpha}(a, c ; z)$ is the function defined in terms of the Hadamard product by the following condition:

$$
\begin{equation*}
\phi_{\mu, \nu}^{\lambda, p}(a, c ; z) * \psi_{\mu, \nu}^{\lambda, p, \alpha}(a, c ; z)=\frac{z^{p}}{(1-z)^{\alpha+p}}, \quad(\alpha>-p) . \tag{6}
\end{equation*}
$$

We can easily find from (3)-(5) that

$$
\begin{equation*}
\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(c)_{k}(p+1-\mu)_{k}(p+1-\lambda+\nu)_{k}(\alpha+p)_{k}}{(a)_{k}(p+1)_{k}(p+1-\mu+\nu)_{k} k!} a_{p+k} z^{p+k} \tag{7}
\end{equation*}
$$

By definition and specializing the parameters λ, μ, p, a, c and α, we obtain: $\mathcal{I}_{0, \nu}^{0, p, 1}(p+1,1) f(z)=f(z)$ and $\mathcal{I}_{0, \nu}^{0, p, 1}(p, 1) f(z)=\mathcal{I}_{0,0}^{1, p, 1}(p, 1) f(z)=\frac{1}{p} z f^{\prime}(z)$.
It should be remarked that the linear operator $\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)$ is a generalization of many other linear operators considered earlier. In particular, for $f \in \mathcal{A}(p)$, we have the following observations:

- $\mathcal{I}_{0, \nu}^{0, p, \alpha}(a, c) f(z) \equiv \mathcal{I}_{p}^{\alpha}(a, c) f(z)$, the Cho-Kwon-Srivastava operator [5].
- $\mathcal{I}_{0, \nu}^{0, p, \alpha}(a, a) f(z) \equiv \mathcal{D}^{\alpha+p-1} f(z)$, where $\mathcal{D}^{\alpha+p-1}$ is the Well-known Ruscheweyh derivative of $(\alpha+p-1)$-th order was studied by Goel and Sohi [9].
- $\mathcal{I}_{o, \nu}^{0, p, 1}(p+1-\lambda, 1) f(z) \equiv \Omega_{z}^{(\lambda, p)}=\frac{\Gamma(p+1-\lambda)}{\Gamma(p+1)} z^{\lambda} \mathcal{D}_{z}^{\lambda} f(z),(0 \leq \lambda<1)$, where $\Omega_{z}^{(\lambda, p)}$ is the fractional derivative operator defined by Srivastava and Aouf [22] and $\mathcal{D}_{z}^{\lambda} f(z)$ is the fractional derivative of $f(z)$ of order λ [11], [15], [19].
- $\mathcal{I}_{0, \nu}^{0,1, \alpha-1}(a, c) f(z) \equiv \mathcal{I}_{c}^{a, \alpha} f(z)$, the linear operator investigated by Hohlov [10].
- $\mathcal{I}_{0, \nu}^{0,1-\alpha, \alpha}(a, c) f(z) \equiv \mathcal{L}_{p}(a, c) f(z)$, the linear operator studied by Saitoh [21] which yields the operator $\mathcal{L}(a, c) f(z)$ introduced by Carleson and Shaffer for $p=1$ [4].
- $\mathcal{I}_{0, \nu}^{0, p, \alpha}(\alpha+p+1,1) f(z) \equiv \mathcal{F}_{\alpha, p}(f)(z)=\frac{\alpha+p}{z^{\alpha}} \int_{0}^{z} t^{\alpha-1} f(t) d t,(\alpha>-p)$, the generalized Bernardi-Libera-Livingston integral operator [7].
- $\mathcal{I}_{0, \nu}^{0,1-\alpha, \alpha}(\lambda+1, \mu) f(z) \equiv \mathcal{I}_{\lambda, \mu} f(z)(\lambda>-1, \mu>0)$, the Choi-Saigo-Srivastava operator which is closely related to the Carleson-Shaffer operator $\mathcal{L}(\mu, \lambda+1) f(z)$ [4].
- $\mathcal{I}_{0, \nu}^{0, p, 1}(p+\alpha, 1) f(z) \equiv \mathcal{I}_{\alpha, p} f(z)(\alpha \in \mathbb{Z}, \alpha>-p)$, the operator considered by Liu and Noor [12].

Now by using the linear operator $\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)$, defined by (7), we introduce the new classes $\mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$ and $\mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$ as follows:

Definition 1. A function $f \in \mathcal{A}(p)$ is said to be in the class $\mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
\frac{1}{\gamma-p}\left(\gamma-\frac{z\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)\right)^{\prime}}{\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)}\right) \prec h(z), \quad(z \in \Delta) . \tag{8}
\end{equation*}
$$

where $h \in \mathcal{P}, \gamma>p$ and $a, c, \lambda, \mu, \nu, \alpha, f, z$ are same (5).
Definition 2. A function $f \in \mathcal{A}(p)$ is said to be in the class $\mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
\frac{1}{\gamma-p}\left(\gamma-1-\frac{z\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)\right)^{\prime \prime}}{\left(\mathcal{I}_{\mu, \nu, p}^{\lambda, p, \alpha}(a, c) f(z)\right)^{\prime}}\right) \prec h(z), \quad(z \in \Delta) . \tag{9}
\end{equation*}
$$

It follows from (8) and (9) that

$$
f(z) \in \mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h) \Longleftrightarrow z f^{\prime}(z) \in \mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h) .
$$

Remark 1. It is easy to see that, if we choose

$$
\lambda=\mu=0, \alpha=c=1, a=p+1, h(z)=\frac{1+z}{1-z} \quad \text { and } \quad z \in \Delta,
$$

in the classes $\mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$ and $\mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$, then it reduces to the classes $\mathcal{M}_{p}(\gamma)$ was introduced by Polatoğlu et al [20] and $\mathcal{N}_{p}(\gamma)$, respectively. Moreover, the classes $\mathcal{M}_{1}(\gamma)=: \mathcal{M}(\gamma)$ and $\mathcal{N}_{1}(\gamma)=: \mathcal{N}(\gamma)$ was studied by Nishiwaki and Owa [14], Owa and Nishiwaki [17], Owa and Srivastava [18], Srivastava and Attiya [23], Uralegaddi and Desai [24].

Definition 3. For $r_{i} \geq 0, f_{i} \in \mathcal{A}(p)$ and $i=1,2, \ldots, n$, by using linear operator (7), define the following respective integral operators:

$$
\begin{gather*}
\mathcal{L}_{p}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)}{t^{p}}\right)^{r_{i}} d t \tag{10}\\
\mathcal{V}_{p}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)\right)^{\prime}}{p t^{p-1}}\right)^{r_{i}} d t . \tag{11}
\end{gather*}
$$

The operators $\mathcal{L}_{p}(z)$ and $\mathcal{V}_{p}(z)$ reduces to many well-known integral operators by varying the parameters $r_{i}, \lambda, \mu, \alpha, a, c$, and p. For example:

Example 1. If we take $\lambda=\mu=0, \alpha=c=1$ and $a=p+1$, then the integral operators $\mathcal{L}_{p}(z)$ and $\mathcal{V}_{p}(z)$ reduces to the operators

$$
\begin{equation*}
F_{p}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{t^{p}}\right)^{r_{i}} d t \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{p}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{f_{i}^{\prime}(t)}{p t^{p-1}}\right)^{r_{i}} d t, \tag{13}
\end{equation*}
$$

respectively, which were studied by Frasin [8].
Example 2. If we take $\lambda=\mu=0, \alpha=c=p=1$ and $a=2$, then the integral operators $\mathcal{L}_{p}(z)$, reduces to the operator

$$
\begin{equation*}
I_{n}\left(f_{i}\right)(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{t}\right)^{r_{i}} d t \tag{14}
\end{equation*}
$$

introduced and studied by Breaz and Breaz [2].
Example 3. If we take $\lambda=\mu=0, \alpha=c=p=n=r_{1}=1$ and $a=2$ in relation (10), we obtain the Alexander integral operator

$$
\begin{equation*}
I_{n}\left(f_{1}\right)(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right) d t \tag{15}
\end{equation*}
$$

introduced in [1].
Example 4. If we take $\lambda=\mu=0, \alpha=c=p=n=1, r_{1}=\beta$ and $a=2$ in relation (10), we obtain the integral operator

$$
\begin{equation*}
I_{n}\left(f_{1}\right)(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\beta} d t \tag{16}
\end{equation*}
$$

studied in [13].
Example 5. If we take $\lambda=\mu=0, \alpha=c=p=1$ and $a=2$, then the integral operators $\mathcal{V}_{p}(z)$, reduces to the operator

$$
\begin{equation*}
I_{n}\left(f_{i}\right)(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(f_{i}^{\prime}(t)\right)^{r_{i}} d t \tag{17}
\end{equation*}
$$

introduced and studied in Breaz et al [3].

2. Closure Property of the Operators $\mathcal{L}_{p}(z)$ and $\mathcal{V}_{p}(z)$

Theorem 1. For $i=1,2, \ldots, n$, let $r_{i} \geq 0, \sum_{i=1}^{n} r_{i} \leq 1$ and $h \in \mathcal{P}$. If $f_{i} \in$ $\mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$, then $\mathcal{L}_{p}(z) \in \mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$.

Proof. Since

$$
\mathcal{L}_{p}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{n}\left(\frac{\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(z)}{z^{p}}\right)^{r_{i}}
$$

it follows that

$$
\frac{z \mathcal{L}_{p}^{\prime \prime}(z)}{\mathcal{L}_{p}^{\prime}(z)}=p-1+\sum_{i=1}^{n} r_{i}\left(\frac{z\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)\right)^{\prime}}{\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)}-p\right) .
$$

The relation above is equivalent to

$$
\frac{1}{\gamma-p}\left(\gamma-1-\frac{z \mathcal{L}_{p}^{\prime \prime}(z)}{\mathcal{L}_{p}^{\prime}(z)}\right)=\sum_{i=1}^{n} r_{i} \frac{1}{\gamma-p}\left(\gamma-\frac{z\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)\right)^{\prime}}{\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)}\right)+\left(1-\sum_{i=1}^{n} r_{i}\right) .
$$

The assumption that $f_{i} \in \mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$, yields

$$
\frac{1}{\gamma-p}\left(\gamma-\frac{z\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)\right)^{\prime}}{\mathcal{I}_{\mu, p, \nu}^{\lambda, \alpha, \alpha}(a, c) f_{i}(t)}\right) \in h(\Delta),
$$

for every $z \in \Delta$. Since h is convex, the convex combination of 1 and

$$
\frac{1}{\gamma-p}\left(\gamma-\frac{z\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)\right)^{\prime}}{\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)}\right), \quad(i=1,2, \ldots, n),
$$

is again in $h(\Delta)$. This shows that

$$
\sum_{i=1}^{n} r_{i} \frac{1}{\gamma-p}\left(\gamma-\frac{z\left(\mathcal{I}_{\mu \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)\right)^{\prime}}{\mathcal{I}_{\mu, \nu, \nu}^{\lambda,, \alpha}(a, c) f_{i}(t)}\right)+\left(1-\sum_{i=1}^{n} r_{i}\right)(1) \in h(\Delta),
$$

or

$$
\frac{1}{\gamma-p}\left(\gamma-1-\frac{z \mathcal{L}_{p}^{\prime \prime}(z)}{\mathcal{L}_{p}^{\prime}(z)}\right) \prec h(z) .
$$

This completes the proof.
Corollary 2. If $f \in \mathcal{M}_{p}(\gamma)$, then the integral operators defined by (12), (14), (15) and (16) are to be in $\mathcal{N}_{p}(\gamma)$.

Corollary 3. Since $\mathcal{L}_{p}(z) \in \mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$, it follows that

$$
p z^{p} \prod_{i=1}^{n}\left(\frac{\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(z)}{z^{p}}\right)^{r_{i}} \in \mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h) .
$$

Theorem 4. For $i=1,2, \ldots, n$, let $r_{i} \geq 0, \sum_{i=1}^{n} r_{i} \leq 1$ and $h \in \mathcal{P}$. If $f_{i} \in$ $\mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$, then $\mathcal{V}_{p}(z) \in \mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$.

Proof. The proof is similar to theorem 1, and is therefore omitted.
Corollary 5. If $f_{i} \in \mathcal{N}_{p}(\gamma), i=1,2, \ldots, n, r_{i} \geq 0$ and $\sum_{i=1}^{n} r_{i} \leq 1$, then the integral operator defined by (13) and (17) are to be in $\mathcal{N}_{p}(\gamma)$.

Corollary 6. Let $i=1,2, \ldots, n, r_{i} \geq 0, \sum_{i=1}^{n} r_{i} \leq 1$ and $h \in \mathcal{P}$. If $f_{i} \in$ $\mathcal{K}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h)$, then it follows from theorem 2 that

$$
z^{p} \prod_{i=1}^{n}\left(\frac{\left(\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f_{i}(t)\right)^{\prime}}{p t^{p-1}}\right)^{r_{i}} \in \mathcal{S}_{\mu, \nu, \gamma}^{\lambda, p, \alpha}(a, c ; h) .
$$

Acknowledgements. This paper was supported by Oshnaviyeh branch, Payame Noor University.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann Math. 17 (1916), 12-22.
[2] D. Breaz and N. Breaz, Two integral operator, Studia Universitatis BabesBolyai, Mathematica, Clunj-Napoca. 3 (2002), 13-19.
[3] D. Breaz, S. Owa and S. Breaz, A new integral univalent operator, Acta Univ Apulensis Math Inf. 16 (2008), 11-16.
[4] B. C. Carlson and D. B. Shaffer, Starlike and prstarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737-745.
[5] N. E. Cho, O. H. Kwon and H. M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004), 470-483.
[6] J. H. Choi, On differential subordinations of multivalent functions involving a certain fractional derivative operator, International Journal of Mathematics and Mathematical Sciences, (2010), 1-10.
[7] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral opertaors, J. Math. Anal. Appl. 276 (2002), 432-445.
[8] B. A. Frasin, Convexity of integral operators of p-valent functions, Math. Comput. Model. 51 (2010), 601-605.
[9] R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357.
[10] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv, Vvsšh. Učebn. Zaved. Math. 10 (1987), 83-89(in Russian)
[11] V. Kumar and S. L. Shukla, Multivalent function defined by Ruscheweyh derivatives, II, Indian J. Pure Appl. Math. 15 (1984), 1228-1238.
[12] J. L. Liu and Kh. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21 (2002), 81-90.
[13] S. S. Miller, P. T. Mocanu and M. O. Read, Starlike integral operators, Pacific. J. Math. Math. Sci. 79 (1978), 157-168.
[14] J. Nishiwaki ans S. Owa, Coefficient estimates for certain analytic functions, Int. J. Math. Math. Sci., 29 (2002), 285-290.
[15] S. Owa, On certain subclass of analytic p-valent function, Math. Japan. 29 (1984), 191-198.
[16] S. Owa, On the distortion theorems, I. Kyungpook Math. J. 18 (1978), 53-59.
[17] S. Owa and J. Nishwaki, Coefficient estimates for certain classes of anaytic functions, J. Inequal. Pure Appl. Math., 3 (2002), Article 72 (electronic).
[18] S. Owa and M. Srivastava, Some generalized convolution properties associated with certin subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3 (2002), Article 42(electronic).
[19] S. Owa, H. M. Srivastava, Univalent starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
[20] Y. Polatoglu, M. Bolcal, A. Şen, E. Yavuz, An investigation on a subclzss of p-valently starlike functions in the unit disk, Turk. J. Math., 31 (2007), 221-228.
[21] H. Saitoh, A liner operator and its applications of first order deffrential subodinations, Math. Japan. 44 (1996), 31-38.
[22] H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, I, Journal of Mathematical Analysis and Applications, 171 (1992), 1-13.
[23] H. M. Srivastava and A. A. Attiya, Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 5 (2004), Article 82(electronic).
[24] B. A. Uralegaddi and A. R. Desai, Convolution of univalent functions with positive coefficients, Tamkang J. Math., 29 (1998), 279-285.
[25] B. A. Uralegaddi and S. M. Sarangi, Some classes of univalent functions with negative coefficients, An. Ştiit. Univ. Al. I. Cuza Iasi Sect. I a Mat. (N. S.) 34 (1988), 7-11

Rahim Kargar
Department of Mathematics
Payame Noor University
Iran
email: rkargar1983@gmail.com

