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NEW RESULTS RELATED TO STARLIKENESS AND CONVEXITY
OF THE BERNARDI INTEGRAL OPERATOR

G. Oros, D. Breaz, N. Breaz, M. Acu

Abstract. In this paper we extend some known results related to starlikeness
and convexity of the Bernardi integral operator given by

Lβ[f ](z) =
β + 1

zβ

z∫
0

f(t)tβ−1dt (1)

.
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1. Introduction and preliminaries

LetH(U) denote the set of holomorphic functions in the open disc U = {z ∈ C : |z| < 1}
and let

An =
{
f ∈ H(U) : f(z) = z + an+1z

n+1 + ...
}

with A1 = A. Also, for a positive integer n and a ∈ C, let

H[a, n] = {f ∈ H(U , f(z) = a+ anz
n + ..., z ∈ U}

and S = {f ∈ A : f is univalent in U}.
Let

K (α) =

{
f ∈ A : Re

zf ′′(z)

f ′(z)
+ 1 > α, z ∈ U

}
denote the class of normalized convex functions of order α, where α ∈ R, α < 1. For
α = 0, K(0) = K denote de class of normalized convex functions in U .
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S∗(α) =

{
f ∈ A : Re

zf ′(z)

f(z)
> α, z ∈ U

}
denote de class of starlike function of order α, with α ∈ R, α < 1. For α = 0,
S∗(0) = S∗ denote the class of starlike functions in U .

Theorem 1. [2][10]([7] Theorem 9.5.5., p. 218) If Lγ : A → A is the integral
operator defined by Lγ [f ] = F , where F is given by

Lγ [f ](z) = F (z) =
γ + 1

zγ

z∫
0

f(t)tγ−1dt,

and Reγ ≥ 0, z ∈ U , then it is well known that:
(i) Lγ(S∗) ⊂ S∗;
(ii) Lγ(K) ⊂ K.

Theorem 2. ([8], Theorem 1) Let f ∈ A, β ≥ 1 and let

F (z) = Lβ(z) =
β + 1

zβ

z∫
0

f(t)tβ−1dt, z ∈ U ,

If

Re

[
zf ′′(z)

f ′(z)
+ 1

]
> − 1

2β
, z ∈ U ,

then the function F is convex.

Theorem 3. ([9], Theorem 1) Let f ∈ A, z ∈ U , β ≥ 1 and

F (z) = Lβ[f ](z) =
β + 1

zβ

z∫
0

f(t)tβ−1dt, z ∈ U ,

then the function F is starlike.

2. Main Results

In [9], Georgia Irina Oros was proved that if f ∈ S∗
(
− 1

2β

)
, β ≥ 1, then F given by

(1) is starlike. We will extend this result from the next theorem:
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Theorem 4. Let β ≥ 1, f ∈ An, F (z) = Lβ[f ](z) where Lβ is given by (1).
If

Re
zf ′(z)

f(z)
> −β

2
, z ∈ U (2)

then

Re
zF ′(z)

F (z)
> −β, z ∈ U .

Proof. Since f ∈ An, we have F (z) = z + bn+1z
n+1 + ..., F (0) = 0, F ′(0) = 1.

From (1) we have

zβ · F (z) = (β + 1)

z∫
0

f(t)tβ−1dt, z ∈ U . (3)

By differentiating (3) and by a simple calculation we obtain

F (z)

[
β +

zF ′(z)

F (z)

]
= (β + 1)f(z), z ∈ U . (4)

We let

p(z) =
1

β + 1

[
zF ′(z)

F (z)
+ β

]
= 1 + cnz

n + ..., p(0) = 1, p ∈ H[1, n]. (5)

Using (5), then (4) becomes

F (z) · p(z) = f(z), z ∈ U . (6)

By differentiating (6) and using (5), we obtain

(1 + β)p(z)− β +
zp′(z)

p(z)
=
zf ′(z)

f(z)
, z ∈ U . (7)

Using (2) and (7), we have

Re

[
(1 + β)p(z)− β +

zp′(z)

p(z)

]
= Re

zf ′(z)

f(z)
> −β

2

which is equivalent to

Re

[
(1 + β)p(z) +

zp′(z)

p(z)
− β

2

]
> 0, z ∈ U . (8)

We let ψ : C2 × U → C,
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ψ(p(z), zp′(z), z) = (1 + β)p(z) +
zp′(z)

p(z)
− β

2
, z ∈ U . (9)

Then (8) is equivalent to

Reψ(p(z), zp′(z), z) > 0, z ∈ U . (10)

In order to prove our theorem, we use a well known Lemma due to S.S. Miller
and P.T. Mocanu (see [3]-[6]). For that we calculate

Reψ(iρ, σ, z) = Re

[
(1 + β)iρ+

σ

iρ
− β

2

]
= −β

2
≤ 0.

Now, using the above mentioned Lemma, we get that Rep(z) > 0,
z ∈ U , i.e

Re
1

1 + β

[
zF ′(z)

F (z)
+ β

]
> 0,

which imply that

Re
zF ′(z)

F (z)
> −β, z ∈ U

hence F ∈ S∗(−β), β ≥ 0.

Remark 1. This result improves the results in Theorem 1.

Remark 2. For β = 1, Theorem 4 extend the results obtained in [7], Theorem 9.5.2,
p. 214, (R. J. Libera Theorem) for the Libera operator.

In [8], Georgia Irina Oros showed that if f ∈ K
(
− 1

2β

)
, β ≥ 1, then F ∈ K,

where F is given by (1). We will extend this result by the following theorem:

Theorem 5. If β ≥ 0, f ∈ An and satisfies

Re
zf ′′(z)

f ′(z)
+ 1 > −β

2
(11)

then Lβ[f ](z) = F (z) ∈ K(−β), where Lβ given by (1).
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Proof. By, differentiating (3), and by a simple calculation we obtain that

F ′(z)

[
β + 1 +

zF ′′(z)

F ′(z)

]
= (β + 1)f ′(z), z ∈ U . (12)

We let

(1 + β)p(z) = β + 1 +
zF ′′(z)

F ′(z)
= β + 1 + cnz

n + ..., p(0) = 1, p ∈ H[1, n]. (13)

Using (13) in (12), we have

F ′(z)p(z) = f ′(z), z ∈ U . (14)

By differentiating (14) and by a simple calculation we obtain

zF ′′(z)

F ′(z)
+ β + 1 +

zp′(z)

p(z)
=
zf ′′(z)

f ′(z)
+ 1 + β, z ∈ U . (15)

Using (13) in (15) we obtain

p(z) +
zp′(z)

p(z)
=
zf ′′(z)

f ′(z)
+ 1 + β, z ∈ U . (16)

From (11), we have:

Re

[
p(z) +

zp′(z)

p(z)
− β

2

]
> 0. (17)

We let ψ : C2 × U → C,

ψ(p(z), zp′(z), z) = p(z) +
zp′(z)

p(z)
− β

2
, z ∈ U . (18)

Then (17) becomes

Reψ(p(z), zp′(z), z) > 0, z ∈ U . (19)

In order to prove our theorem, we use a well known Lemma due to S.S. Miller
and P.T. Mocanu (see [3]-[6]). For that we calculate

Reψ(iρ, σ, z) = Re

[
iρ+

σ

iρ
− β

2

]
= −β

2
< 0.

Now, using the above mentioned Lemma, we get that Rep(z) > 0,
z ∈ U , i.e
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Re

[
zF ′′(z)

F ′(z)
+ 1

]
> −β, z ∈ U

hence F ∈ K(−β).

Remark 3. The results of this theorem extend the results obtained in Theorem 1.

Remark 4. For β = 1, the results extend the results of Th. 9.5.2, Th. 9.5.3.[7], p.
214-215.
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