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Abstract. In this paper, we introduce and study a subclass of harmonic univa-
lent functions defined by convolution and integral convolution. Coefficient bounds,
extreme points, distortion bounds, convolution conditions and convex combination
are determined for functions in this family.
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1. Introduction

A continuous function f is said to be a complex-valued harmonic function in a simply
connected domain D in complex plane C if both real part of f and imaginary part
of f are real harmonic in D. Such functions can be expressed as

f = h+ ḡ (1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f . A necessary and sufficient condition for f to be locally univalent and
sense-preserving in D is that |h′(z)| > |g′(z)| for all z in D, see [3].

Every harmonic function f = h+ ḡ is uniquely determined by the coefficients of
power series expansions in the unit disk U = {z : |z| < 1} given by

h(z) = z +
∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n, z ∈ U, |b1| < 1, (2)

where an ∈ C for n = 2, 3, 4, . . . and bn ∈ C for n = 1, 2, 3, . . .. For further informa-
tion about these mappings, one may refer to [1, 3, 5, 8, 10, 11].

In 1984, Clunie and Sheil-Small [3] studied the family SH of all univalent sense-
preserving harmonic functions f of the form (1) in U , such that h and g are rep-
resented by (2). Note that SH reduces to the well-known family S, the class of all
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normalized analytic univalent functions h given in (2), whenever the co-analytic part
g of f is zero. Let K and KH denote the respective subclasses of S and SH where
the images of f(U) are convex.

The convolution of two functions of the form

Φ(z) = z +
∞∑
n=2

µnz
n and Ψ(z) = z +

∞∑
n=2

νnz
n, µn, νn ≥ 0 (3)

is given by

(Φ ∗Ψ)(z) = Φ(z) ∗Ψ(z) = z +

∞∑
n=2

µnνnz
n

and the integral convolution is defined by

(Φ �Ψ)(z) = Φ(z) �Ψ(z) = z +
∞∑
n=2

µnνn
n

zn

Towards the end of last century, Jahangiri [8], Frasin [7], Silverman [10], and
Silverman and Silvia [11] were amongst those who focused on the harmonic starlike
functions. Later Ozturk S. et. al [9] defined the class S∗H(λ, α) consisting of functions
f = h+ ḡ such that h and g are of the form

h(z) = z −
∞∑
n=2

|an|zn, g(z) =
∞∑
n=1

|bn|zn (4)

which satisfy the condition

Re

{
zh′(z)− zg′(z)

λ(zh′(z)− zg′(z)) + (1− λ)(h(z) + g(z))

}
≥ α,

for some 0 ≤ α < 1, 0 ≤ λ ≤ 1 and for all z ∈ U .
Let S∗H(Φ,Ψ, λ, α) denote the subclass of SH of functions of the form f = h+ ḡ ∈

SH that satisfy the condition

Re

{
h(z) ∗ Φ(z)− g(z) ∗Ψ(z)

λ(h(z) ∗ Φ(z)− g(z) ∗Ψ(z)) + (1− λ)(h(z) � Φ(z) + g(z) �Ψ(z))

}
≥ α, (5)

where 0 ≤ α < 1, 0 ≤ λ ≤ 1 and Φ,Ψ are as given in (3). We further let
TS∗H(Φ,Ψ, λ, α) denote the subclass of S∗H(Φ,Ψ, λ, α) consisting of functions f =
h + ḡ ∈ SH such that h and g are of the form (4). We note that the family
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TS∗H(Φ,Ψ, λ, α) is of special interest because it contains various classes of well-
known harmonic univalent functions as well as many new ones. For different choice
of Φ,Ψ, λ and α we obtain following various classes introduced by other authors:

(i) TS∗H( z
(1−z)2 ,

z
(1−z)2 , λ, α) = TS∗H(λ, α) (see Ozturk et al.[9]).

(ii) TS∗H( z
(1−z)2 ,

z
(1−z)2 , 0, α) = TS∗H(α) (see Jahangiri [8]).

(iii) TS∗H( z
(1−z)2 ,

z
(1−z)2 , 0, 0) = TS∗H (see Silverman et al. [11]).

(iv) TS∗H( z
(1−z)2 ,

z
(1−z)2 , 0, 0) = TS∗0H (see Avci et al.[2] and Silverman [10]).

(v) TS∗H( z+z2

(1−z)3 ,
z+z2

(1−z)3 , 0, α) = K∗H(α) (see Jahangiri [8]).

(vi) TS∗H( z+z2

(1−z)3 ,
z+z2

(1−z)3 , 0, 0) = K∗0H (see Silverman [10]).

(vii) TS∗H(Φ,Ψ, 0, α) = TS∗H(Φ,Ψ, α) (see Dixit et al.[4]).

(viii) TS∗H(Φ,Ψ, 0, α) = HST (φ, χ, 0, α) (see El-Ashwah[6] and Dixit et al.[4])

In this paper, we obtain coefficient bounds for the subclasses S∗H(Φ,Ψ, λ, α) and
TS∗H(Φ,Ψ, λ, α), we also obtain distortion bounds, extreme points, convolution con-
ditions, and convex combination for functions in TS∗H(Φ,Ψ, λ, α).

2. Main Results

We begin with a sufficient condition for functions in S∗H(Φ,Ψ, λ, α).

Theorem 1. Let f = h+ ḡ be of the form (2). Furthermore, let

∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|an|+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bn| ≤ 1, (6)

where 0 ≤ α < 1, 0 ≤ λ ≤ 1, n2(1 − α) ≤ µn[n − (1 + α)(λn − λ + 1)] ≤
νn[n − (1 + α)(λn + λ − 1)] . Then f is sense-preserving harmonic univalent in U
and for λ ≤ 1−α

1+α , f ∈ S∗H(Φ,Ψ, λ, α).
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Proof. We first note that f is sense-preserving in U. This is because

|h′(z)| ≥ 1−
∞∑
n=2

n|an||z|n−1 > 1−
∞∑
n=2

n|an|

≥ 1−
∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|an|

≥
∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bn| >

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bn||z|n−1

≥
∞∑
n=1

n|bn||z|n−1 ≥ |g′(z)|,

where we have used hypothesis of the theorem.
Now to show that f is univalent in U , suppose z1, z2 ∈ U so that z1 6= z2, then∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣
= 1−

∣∣∣∣∣∣∣∣
∞∑
n=1

bn(zn1 − zn2 )

(z1 − z2) +
∞∑
n=2

an(zn1 − zn2 )

∣∣∣∣∣∣∣∣
> 1−

∞∑
n=1

n|bn|

1−
∞∑
n=2

n|an|

≥ 1−

∞∑
n=1

νn
n

(
n+α−αλ(n+1)

1−α

)
|bn|

1−
∞∑
n=2

µn
n

(
n−α−αλ(n−1)

1−α

)
|an|

≥ 0.

Now, we show that f ∈ S∗H(Φ,Ψ, λ, α) . By using the fact that Re(w) > α if
and only if |1− α+ w| > |1 + α− w|, it suffices to show that,

|(1− α)B(z) +A(z)| − |(1 + α)B(z)−A(z)| > 0, (7)

where A(z) = h(z) ∗ Φ(z) − g(z) ∗Ψ(z) and B(z) = λA(z) + (1 − λ)(h(z) � Φ(z) +
g(z) �Ψ(z)).
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Substituting A(z) and B(z) in (7) as well as making use of (6) and λ ≤ 1−α
1+α , we

obtain

|A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)|

=
∣∣∣[1 + λ(1− α)](h(z) ∗ Φ(z)− g(z) ∗Ψ(z)) + (1− α)(1− λ)(h(z) � Φ(z) + g(z) �Ψ(z))

∣∣∣
−
∣∣∣[1− λ(1 + α)](h(z) ∗ Φ(z)− g(z) ∗Ψ(z))− (1 + α)(1− λ)(h(z) � Φ(z) + g(z) �Ψ(z))

∣∣∣
=

∣∣∣∣∣(2− α)z +

∞∑
n=2

[
1 + (1− α)

(
λ+

1− λ
n

)]
µnanz

n

−
∞∑
n=1

[
1 + (1− α)

(
λ− 1− λ

n

)]
νnbnzn

∣∣∣∣∣ (where ν1 = 1)

−

∣∣∣∣∣−αz +

∞∑
n=2

[
1− (1 + α)

(
λ+

1− λ
n

)]
µnanz

n

−
∞∑
n=1

[
1− (1 + α)

(
λ− 1− λ

n

)]
νnbnzn

∣∣∣∣∣ (where ν1 = 1)

≥ 2(1− α)|z|

{
1−

∞∑
n=2

n− α− αλ(n− 1)

n(1− α)
µn|an||z|n−1

−
∞∑
n=1

n+ α− αλ(n+ 1)

n(1− α)
νn|bn||z|n−1

}

> 2(1− α)|z|

{
1−

∞∑
n=2

n− α− αλ(n− 1)

n(1− α)
µn|an|

−
∞∑
n=1

n+ α− αλ(n+ 1)

n(1− α)
νn|bn|

}
≥ 0 from (6).

The coefficient bound (6) is sharp for the functions

f(z) = z +
∞∑
n=2

n

µn

(
1− α

n− α− αλ(n− 1)

)
xnz

n +
∞∑
n=1

n

νn

(
1− α

n+ α− αλ(n+ 1)

)
ynz

n,

where
∞∑
n=2
|xn|+

∞∑
n=1
|yn| = 1.
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Next, we show that the above sufficient condition is also necessary for functions
in TS∗H(Φ,Ψ, λ, α).

Theorem 2. Let f = h + ḡ be of the form (4). Then f ∈ TS∗H(Φ,Ψ, λ, α) if and
only if

∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|an|+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bn| ≤ 1, (8)

where, 0 ≤ α < 1, 0 ≤ λ ≤ 1, n2(1 − α) ≤ µn[n − (1 + α)(λn − λ + 1)] ≤
νn[n− (1 + α)(λn+ λ− 1)].

Proof. The if part, follows from Theorem 1. To prove the only if part, let f ∈
TS∗H(Φ,Ψ, λ, α) then from (5) we have

Re

{
h(z) ∗ Φ(z)− g(z) ∗Ψ(z)

λ(h(z) ∗ Φ(z)− g(z) ∗Ψ(z)) + (1− λ)(h(z) � Φ(z) + g(z) �Ψ(z))
− α

}

= Re


(1− α)z −

∞∑
n=2

µn
[n−α−αλ(n−1)]

n |an|zn −
∞∑
n=1

νn
[n+α−αλ(n+1)]

n |bn|z̄n

z −
∞∑
n=2

µn
[
λ+

(
1−λ
n

)]
|an|zn +

∞∑
n=1

νn
[(

1−λ
n

)
− λ
]
|bn|z̄n


> 0.

If we choose z to be real and z → 1−, we get

(1− α)−
∞∑
n=2

µn
[n−α−αλ(n−1)]

n |an| −
∞∑
n=1

νn
[n+α−αλ(n+1)]

n |bn|

1−
∞∑
n=2

µn
[
λ+

(
1−λ
n

)]
|an|+

∞∑
n=1

νn
[(

1−λ
n

)
− λ

]
|bn|

≥ 0,

or, equivalently,

∞∑
n=2

µn
[n− α− αλ(n− 1)]

n
|an|+

∞∑
n=1

νn
[n+ α− αλ(n+ 1)]

n
|bn| ≤ 1− α,

which is the required condition (8).

In addition to the above main result, the following results are further properties
concerning the class TS∗H(Φ,Ψ, λ, α). These results agree with previously obtained
ones by other authors.
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Theorem 3. If f ∈ TS∗H(Φ,Ψ, λ, α) and µ2(2−α−αλ) ≤ µn(n−α−αλ(n− 1)) ≤
νn(n+ α− αλ(n+ 1)) for n ≥ 2. Then we have,

|f(z)| ≤ (1 + |b1|)r + 2

(
(1− α)

µ2(2− α− αλ)
− 1 + α− 2αλ

µ2(2− α− αλ)
ν1|b1|

)
r2, |z| = r < 1,

and

|f(z)| ≥ (1− |b1|)r − 2

(
(1− α)

µ2(2− α− αλ)
− 1 + α− 2αλ

µ2(2− α− αλ)
ν1|b1|

)
r2, |z| = r < 1,

Proof. We only prove the right hand inequality. The proof for the left hand inequal-
ity is similar and will be omitted.

|f(z)| ≤ (1 + |b1|)r +
∞∑
n=2

(|an|+ |bn|)rn

≤ (1 + |b1|)r +

∞∑
n=2

(|an|+ |bn|)r2

≤ (1 + |b1|)r +
2(1− α)

µ2(2− α− αλ)

∞∑
n=2

µ2(2− α− αλ)

2(1− α)
(|an|+ |bn|)r2

≤ (1 + |b1|)r +
2(1− α)

µ2(2− α− αλ)
×

∞∑
n=2

(
µn
n

n− α− αλ(n− 1)

1− α
|an|+

νn
n

n+ α− αλ(n+ 1)

1− α
|bn|
)
r2

≤ (1 + |b1|)r +
2(1− α)

µ2(2− α− αλ)

(
1− 1 + α− 2αλ

1− α
ν1|b1|

)
r2

≤ (1 + |b1|)r + 2

(
(1− α)

µ2(2− α− αλ)
− 1 + α− 2αλ

µ2(2− α− αλ)
ν1|b1|

)
r2.

The upper bound given for f ∈ TS∗H(Φ,Ψ, λ, α) is sharp and equality occurs for the
function

f(z) = z+|b1|z̄+2

(
(1− α)

µ2(2− α− αλ)
− 1 + α− 2αλ

µ2(2− α− αλ)
ν1|b1|

)
z̄2, |b1| ≤

1− α
(1 + α− 2αλ)ν1

.
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The following covering result follows from the left hand inequality in Theorem
3.

Corollary 4. Let f ∈ TS∗H(Φ,Ψ, λ, α), then{
w : |w| < 1

A
[A− (1− α) + ((1 + α− 2αλ)ν1 −A)|b1|]

}
⊂ f(U),

where A = µ2
2 (2− α− αλ).

Now we determine the extreme points of TS∗H(Φ,Ψ, λ, α)

Theorem 5. Let

h1(z) = z, hn(z) = z − n

µn

(
1− α

n− α− αλ(n− 1)

)
zn (n = 2, 3, ...)

and

gn(z) = z +
n

νn

(
1− α

n+ α− αλ(n+ 1)

)
z̄n (n = 1, 2...).

Then f ∈ TS∗H(Φ,Ψ, λ, α) if and only if it can be expressed as

f(z) =

∞∑
n=1

xnhn + yngn,

where xn ≥ 0, yn ≥ 0, x1 = 1 −
∞∑
n=2

xn + yn ≥ 0, and y1 = 0. In particular, the

extreme points of TS∗H(Φ,Ψ, λ, α) are hn and gn.

Proof. Suppose

f(z) =
∞∑
n=1

xnhn + yngn

=
∞∑
n=1

(xn + yn)z −
∞∑
n=2

n

µn

(
1− α

n− α− αλ(n− 1)

)
xnz

n

+
∞∑
n=1

n

νn

(
1− α

n+ α− αλ(n+ 1)

)
ynz

n.

Then
∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
n

µn

(
1− α

n− α− αλ(n− 1)

)
xn
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+
∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
n

νn

(
1− α

n+ α− αλ(n+ 1)

)
yn

=
∞∑
n=2

xn +
∞∑
n=1

yn = 1− x1 ≤ 1

and so f ∈ TS∗H(Φ,Ψ, λ, α). Conversely, if f ∈ TS∗H(Φ,Ψ, λ, α), then

|an| ≤
n

µn

(
1− α

n− α− αλ(n− 1)

)
and |bn| ≤

n

νn

(
1− α

n+ α− αλ(n+ 1)

)
.

Setting

xn =
µn
n

(
n− α− αλ(n− 1)

1− α

)
|an| (n = 2, 3...)

and

yn =
νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bn| (n = 1, 2...).

Then note that by Theorem 2, 0 ≤ xn ≤ 1 (n = 2, 3...) and 0 ≤ yn ≤ 1 (n = 1, 2...).

We define x1 = 1−
∞∑
n=2

xn−
∞∑
n=1

yn , by Theorem 2 we obtain f(z) =
∞∑
n=1

xnhn + yngn

. This completes the proof of Theorem 5.

Next, we show that TS∗H(Φ,Ψ, λ, α) is closed under convex combinations of its
members.

Theorem 6. The class TS∗H(Φ,Ψ, λ, α) is closed under convex combination.

Proof. For i = 1, 2, 3... let fi ∈ TS∗H(Φ,Ψ, λ, α), where fi is given by

fi(z) = z −
∞∑
n=2

|ain |zn +
∞∑
n=1

|bin |z̄n.

Then by Theorem 2,

∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|ain |+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bin | ≤ 1 (9)

For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1 , the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑
n=2

( ∞∑
i=1

ti|ain |

)
zn +

∞∑
n=1

( ∞∑
i=1

ti|bin |

)
z̄n.
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Then by 6,

∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

) ∣∣∣∣∣
∞∑
i=1

ti|ain |

∣∣∣∣∣+
∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

) ∣∣∣∣∣
∞∑
i=1

ti|bin |

∣∣∣∣∣
=
∞∑
i=1

ti

{ ∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|ain |+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bin |

}

≤ 1
∞∑
i=1

ti = 1. from (9)

and so by Theorem 2, we have
∞∑
i=1

tifi(z) ∈ TS∗H(Φ,Ψ, λ, α).

Finally we show that the class TS∗H(Φ,Ψ, λ, α) is invariant under convolution.
For harmonic functions f(z) = z −

∑∞
n=2 anz

n +
∑∞

n=1 bnz̄
n and F (z) = z −∑∞

n=2Anz
n +

∑∞
n=1Bnz̄

n, we define the convolution of two harmonic functions f
and F as

(f ∗ F )(z) = f(z) ∗ F (z) = z −
∞∑
n=2

anAnz
n +

∞∑
n=1

bnBnz̄
n.

Theorem 7. If f ∈ TS∗H(Φ,Ψ, λ, α) and F ∈ TS∗H(Φ,Ψ, λ, α) then f ∗ F ∈
TS∗H(Φ,Ψ, λ, α).

Proof. Let f(z) = z −
∑∞

n=2 |an|zn +
∑∞

n=1 |bn|z̄n

and F (z) = z −
∑∞

n=2 |An|zn +
∑∞

n=1 |Bn|z̄n

be in TS∗H(Φ,Ψ, λ, α), Then by Theorem 2, we have

∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|an|+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bn| ≤ 1,

and

∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|An|+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|Bn| ≤ 1.
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So for the coefficients of f ∗ F we can write

∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|anAn|+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bnBn|

≤
∞∑
n=2

µn
n

(
n− α− αλ(n− 1)

1− α

)
|an|+

∞∑
n=1

νn
n

(
n+ α− αλ(n+ 1)

1− α

)
|bn| ≤ 1.

Thus f ∗ F ∈ TS∗H(Φ,Ψ, λ, α).
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