CERTAIN NEW SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

J.K. Prajapat, A.K. Mishra

Abstract. In this work, we introduce and investigate two new subclass of analytic and close-to-convex functions in the open unit disk \mathbb{U}. For each of these function classes, several coefficient inequalities are established. The usefulness of the main results are depicted by showing improvement in earlier results.

2000 Mathematics Subject Classification: 30C45.
Keywords: Analytic Functions, Univalent Function, Starlike Functions, Close-to-Convex Function.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}$: $|z|<1\}$ and \mathcal{A} denote class of functions $f \in \mathcal{H}$ normalized by $f(0)=0, f^{\prime}(0)=1$. A function $f \in \mathcal{A}$ has series representation of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{U} \tag{1}
\end{equation*}
$$

We denote by \mathcal{S} the subclass \mathcal{A} consisting of all functions in \mathcal{A}, which are also univalent in \mathbb{U}. Let $\Omega=\{w \in \mathcal{H}: w(0)=0,|w(z)|<1\}$. We say that $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in the unit disk \mathbb{U}, written $f \prec g$, if there exists a function $w \in \Omega$ such that $f(z)=g(w(z))$ for $z \in \mathbb{U}$. Therefore $f \prec g$ in \mathbb{U} implies $f(\mathbb{U}) \subset$ $g(\mathbb{U})$. Furthermore, if the function g is univalent in U , then $f \prec g$, if and only if, $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$ in \mathbb{U}.

A function $f \in \mathcal{A}$ is said to belongs to the class $\mathcal{S}^{*}(\alpha)$ of starlike function of order α in \mathbb{U}, if it satisfies the inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}, 0 \leq \alpha<1)
$$

Further, a function f is said to belongs to the class $\mathcal{K}(\alpha)$ of close-to-convex function of order α in \mathbb{U}, if $g \in \mathcal{S}^{*}(\alpha)$ and satisfies the following inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha \quad(z \in \mathbb{U}, 0 \leq \alpha<1) .
$$

Obviously $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$ and $\mathcal{K}(0)=\mathcal{K}$.
Gao and Zhou [1] studied a subclass \mathcal{K}_{s} of analytic functions, that is, a function $f \in \mathcal{S}$ said to be in the class \mathcal{K}_{s}, if it satisfies the inequality:

$$
\Re\left(\frac{z^{2} f^{\prime}(z)}{g(z) g(-z)}\right)<0, \quad z \in \mathbb{U},
$$

where $g \in \mathcal{S}^{*}(1 / 2)$. Recently, Kowalczyk and Les-Bomba [5] generalize the class \mathcal{K}_{s}, that is, a function $f \in \mathcal{S}$ said to be in the class $\mathcal{K}_{s}(\gamma)$, if it satisfies the inequality:

$$
\Re\left(\frac{-z^{2} f^{\prime}(z)}{g(z) g(-z)}\right)>\gamma, \quad z \in \mathbb{U},
$$

where $0 \leq \gamma<1$ and $g \in \mathcal{S}^{*}(1 / 2)$. Note that $\mathcal{K}_{s}(0) \equiv \mathcal{K}_{s}$. More recently, Seker [8] further generalize the class $\mathcal{K}_{s}(\gamma)$ with respect to k-symmetric points, that is, a function $f \in \mathcal{S}$ said to be in the class $\mathcal{K}_{s}^{(k)}(\gamma)$, if it satisfies the inequality:

$$
\Re\left(\frac{z^{k} f^{\prime}(z)}{g_{k}(z)}\right)>\gamma, \quad z \in \mathbb{U},
$$

where $0 \leq \gamma<1$ and $g \in \mathcal{S}^{*}\left(\frac{k-1}{k}\right), k \geq 1$, is a fixed positive integer and $g_{k}(z)$ defined by the following inequality

$$
g_{k}(z)=\prod_{i=0}^{i-1} \varepsilon^{-i} g\left(\varepsilon^{i} z\right), \quad \varepsilon^{k}=1 .
$$

Note that $\mathcal{K}_{s}^{(2)}(\gamma)=\mathcal{K}_{s}(\gamma)$ and $\mathcal{K}_{s}^{(2)}(0)=\mathcal{K}_{s}$. Several other subclasses of close-toconvex functions have been studied recently. We choose recall here the investigation by (for example) Goyal and Goswami [2], Wang et al. [9], Xu al. [10].

Motivated by aforementioned work and a class of analytic functions studied by Owa et al. [7], we introduce a new class $\mathcal{X}_{t}(\gamma)$, which is subclass of the class $\mathcal{K}_{s}(\gamma)$.

Definition 1. A function $f \in \mathcal{S}$ said to be in the class $\mathcal{X}_{t}(\gamma)$, if it satisfies the inequality:

$$
\begin{equation*}
\Re\left(\frac{t z^{2} f^{\prime}(z)}{g(z) g(t z)}\right)>\gamma, \quad z \in \mathbb{U}, \tag{2}
\end{equation*}
$$

where $0 \leq \gamma<1,|t| \leq 1, t \neq 0$ and $g \in \mathcal{S}^{*}(1 / 2)$.

A simple calculation shows that the inequality (1.2) is equivalent to

$$
\begin{equation*}
\left|\frac{t z^{2} f^{\prime}(z)}{g(z) g(t z)}-1\right|<\left|\frac{t z^{2} f^{\prime}(z)}{g(z) g(t z)}+1-2 \gamma\right|, \quad z \in \mathbb{U} \tag{3}
\end{equation*}
$$

Note that, $\mathcal{X}_{-1}(\gamma)=\mathcal{K}_{s}(\gamma)$ and $\mathcal{X}_{-1}(0)=\mathcal{K}_{s}$. Further we observe that the class $\mathcal{K}_{s}^{(k)}(\gamma)$ studied by Seker $[8]$ is different from the class $\mathcal{X}_{t}(\gamma)$. In the class $\mathcal{K}_{s}^{(k)}(\gamma)$, Seker consider k-symmetric points in the unit disk \mathbb{U}, whereas in the class $\mathcal{X}_{t}(\gamma)$, we consider arbitrary points in the unit disk \mathbb{U}. However, $\mathcal{K}_{s}^{(2)}(\gamma) \equiv \mathcal{X}_{-1}(\gamma)$.
Example. We observe that, the function

$$
\mathcal{F}(z)=\frac{2 \gamma-1-t}{(1-t)^{2}} \ln \frac{1-t z}{1-z}+\frac{2(1-\gamma) z}{(1-t)(1-z)}, \quad z \in \mathbb{U}
$$

belongs to the class $\mathcal{X}_{t}(\gamma)$, where $0 \leq \gamma<1,|t| \leq 1, t \neq 0$. Indeed, \mathcal{F} is analytic in \mathbb{U} and $f(0)=0$. Moreover,

$$
\mathcal{F}^{\prime}(z)=\frac{1+(1-2 \gamma) z}{(1-t z)(1-z)^{2}}, \quad z \in \mathbb{U}
$$

If we put $g(z)=z /(1-z), z \in \mathbb{U}$, then it is clear that $g \in \mathcal{S}^{*}(1 / 2)$ and

$$
\Re\left(\frac{t z^{2} \mathcal{F}^{\prime}(z)}{g(z) g(t z)}\right)=\Re\left(\frac{1+(1-2 \gamma) z}{1-z}\right)>\gamma, \quad z \in \mathbb{U}
$$

This means that $\mathcal{F} \in \mathcal{X}_{t}(\gamma)$ and is generated by $g=z /(1-z)$.
Remark 1. If $g(z) \in \mathcal{A}$, given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}, \quad z \in \mathbb{U} \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
F(z)=\frac{g(z) g(t z)}{t z}=z+\sum_{n=2}^{\infty} c_{n} z^{n}, \quad z \in \mathbb{U} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=b_{n}+b_{2} b_{n-1} t+b_{3} b_{n-2} t^{2}+\ldots+b_{n-1} b_{2} t^{n-2}+b_{n} t^{n-1} \tag{6}
\end{equation*}
$$

Further, if $g \in \mathcal{S}^{*}(1 / 2)$ defined above by (4) and $|t z| \leq|z|<1$, then from the definitions of starlike function, we have

$$
\Re\left(\frac{z F^{\prime}(z)}{F(z)}\right)=\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)+\Re\left(\frac{t z g^{\prime}(t z)}{g(t z)}\right)-1>0
$$

Therefore, $F(z)=\frac{g(z) g(t z)}{t z} \in \mathcal{S}^{*}$ and thus

$$
\mathcal{X}_{t}(\gamma) \subset \mathcal{K}_{s}(\gamma) \subset \mathcal{K}_{s} \subset \mathcal{K} \subset \mathcal{S}
$$

We further generalize class $\mathcal{X}_{t}(\gamma)$, as follows:
Definition 2. a function $f \in \mathcal{S}$ said to be in the class $\mathcal{X}_{t}(h)$, if there exist a function $g \in \mathcal{S}^{*}(1 / 2)$ such that

$$
\begin{equation*}
\frac{t z^{2} f^{\prime}(z)}{g(z) g(t z)} \in h(\mathbb{U}), \quad(z \in \mathbb{U},|t| \leq 1, t \neq 0) \tag{7}
\end{equation*}
$$

where $h: \mathbb{U} \rightarrow \mathbb{C}$ be a complex function such that $h(0)=1$ and $h(\bar{z})=\overline{h(z)}$ $(z \in \mathbb{U} ; \Re(h(z))>0)$. Suppose also that the function h satisfies the following conditions:

$$
\begin{cases}\min _{|z|=r}|h(z)|=\min \{h(r), h(-r)\}, & 0<r<1, \tag{8}\\ \max _{|z|=r}|h(z)|=\max \{h(r), h(-r)\}, & 0<r<1 .\end{cases}
$$

Note that, $\mathcal{X}_{-1}(h) \equiv \mathcal{K}_{s}(h)$ is the class studied by Xu et al. [10].
Remark 2. From the definition, it is clear that a function $f \in \mathcal{S}$ said to be in the class $\mathcal{X}_{t}(h)$, if there exist a function $g \in \mathcal{S}^{*}(1 / 2)$ such that

$$
\frac{z f^{\prime}(z)}{F(z)} \in h(\mathbb{U}), \quad z \in \mathbb{U},
$$

where $F(z)$ given by (5) and member of the class of starlike functions. Therefore $f \in \mathcal{K}$. Thus we have $\mathcal{X}_{t}(h) \subset \mathcal{K} \subset \mathcal{S}$.

In the present paper, we obtained certain coefficient inequalities of the classes $\mathcal{X}_{t}(\gamma)$ and $\mathcal{X}_{t}(h)$.

2. Main Results

We first prove the following result.
Theorem 1. Let an analytic function $f(z)$ be given by (1) and $g \in \mathcal{S}^{*}(1 / 2)$ given by (4). If $f \in \mathcal{X}_{t}(h)$, then

$$
\begin{equation*}
1+\sum_{n=2}^{\infty}\left(\frac{n a_{n}-h(x) c_{n}}{1-h(x)}\right) z^{n-1} \neq 0 \quad(|x|=1 ; z \in \mathbb{U}) . \tag{9}
\end{equation*}
$$

Proof. Suppose that

$$
\frac{t z^{2} f^{\prime}(z)}{g(z) g(t z)} \neq h(x) \quad(|x|=1 ; z \in \mathbb{U})
$$

or

$$
f^{\prime}(z) \neq h(x)\left(\frac{g(z) g(t z)}{t z^{2}}\right) \quad(|x|=1 ; z \in \mathbb{U}) .
$$

Now using (1) and (5) and simplifying, we get the desired result (9).
On taking

$$
\begin{equation*}
h(x)=h\left(e^{i \theta}\right)=\frac{1+(1-2 \gamma) e^{i \theta}}{1-e^{i \theta}} \quad(0<\theta<2 \pi ; 0 \leq \gamma<1) \tag{10}
\end{equation*}
$$

in Theorem 2.1, we obtain
Theorem 2. Let an analytic function $f(z)$ be given by (1) and $g \in \mathcal{S}^{*}(1 / 2)$ given by (4). If $f \in \mathcal{X}_{t}(\gamma)$, then

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{2 n\left|a_{n}\right|+(1+|1-2 \gamma|)\left|c_{n}\right|\right\} \leq 2(1-\gamma), \quad z \in \mathbb{U} \tag{11}
\end{equation*}
$$

where the coefficient of $c_{n}(n=2,3, \cdots)$ are given by (6).
Proof. If $f \in \mathcal{X}_{t}(\gamma)$, then (9) holds true. Using (10) in (9), we get

$$
1-\sum_{n=2}^{\infty} \frac{e^{-i \theta}-1}{2(1-\gamma)} n a_{n} z^{n-1}+\sum_{n=2}^{\infty} \frac{e^{-i \theta}+1-2 \gamma}{2(1-\gamma)} c_{n} z^{n-1} \neq 0, \quad z \in \mathbb{U} .
$$

Now

$$
\begin{aligned}
\mid 1- & \left.\sum_{n=2}^{\infty} \frac{e^{-i \theta}-1}{2(1-\gamma)} n a_{n} z^{n-1}+\sum_{n=2}^{\infty} \frac{e^{-i \theta}+1-2 \gamma}{2(1-\gamma)} c_{n} z^{n-1} \right\rvert\, \\
& \geq 1-\left|\sum_{n=2}^{\infty} \frac{e^{-i \theta}-1}{2(1-\gamma)} n a_{n} z^{n-1}-\sum_{n=2}^{\infty} \frac{e^{-i \theta}+1-2 \gamma}{2(1-\gamma)} c_{n} z^{n-1}\right| \\
& \geq 1-\left|\sum_{n=2}^{\infty} \frac{e^{-i \theta}-1}{2(1-\gamma)} n a_{n} z^{n-1}\right|-\left|\sum_{n=2}^{\infty} \frac{e^{-i \theta}+1-2 \gamma}{2(1-\gamma)} c_{n} z^{n-1}\right| \\
& \geq 1-\sum_{n=2}^{\infty} \frac{2}{2(1-\gamma)} n\left|a_{n}\right|-\sum_{n=2}^{\infty} \frac{1+|1-2 \gamma|}{2(1-\gamma)}\left|c_{n}\right| \geq 0
\end{aligned}
$$

Which is equivalent to inequality (11). This complete the proof of Theorem 2.

Theorem 3. Let an analytic function $f(z)$ be given by (1) and $g \in \mathcal{S}^{*}(1 / 2)$ given by (4). If inequality (11) holds true, then $f \in \mathcal{X}_{t}(\gamma)$.

Proof. For $z \in \mathbb{U}$, we have

$$
\begin{aligned}
A & =\left|z f^{\prime}(z)-\frac{g(z) g(t z)}{t z}\right|-\left|z f^{\prime}(z)+(1-2 \gamma) \frac{g(z) g(t z)}{t z}\right| \\
& =\left|\sum_{n=2}^{n=\infty} n a_{n} z^{n}-\sum_{n=2}^{n=\infty} c_{n} z^{n}\right|-\left|2(1-\gamma) z+\sum_{n=2}^{\infty} n a_{n} z^{n}+(1-2 \gamma) \sum_{n=2}^{n=\infty} c_{n} z^{n}\right| \\
\leq & \sum_{n=2}^{n=\infty} n\left|a_{n}\right||z|^{n}+\sum_{n=2}^{n=\infty}\left|c_{n}\right||z|^{n}-\left(2(1-\gamma)|z|-\sum_{n=2}^{n=\infty} n\left|a_{n}\right||z|^{n}-|1-2 \gamma| \sum_{n=2}^{n=\infty}\left|c_{n}\right||z|^{n}\right) \\
= & -2(1-\gamma)|z|+\sum_{n=2}^{n=\infty} 2 n\left|a_{n}\right||z|^{n}+(1+|1-2 \gamma|) \sum_{n=2}^{n=\infty}\left|c_{n}\right||z|^{n} \\
\leq & \left(-2(1-\gamma)+\sum_{n=2}^{n=\infty} 2 n\left|a_{n}\right|+(1+|1-2 \gamma|) \sum_{n=2}^{n=\infty}\left|c_{n}\right|\right)|z| \leq 0 .
\end{aligned}
$$

From the above calculation we obtain that $A<0$. Thus, we have

$$
\left|z f^{\prime}(z)-\frac{g(z) g(t z)}{t z}\right|<\left|z f^{\prime}(z)+(1-2 \gamma) \frac{g(z) g(t z)}{t z}\right| \quad z \in \mathbb{U}
$$

which is equivalent to inequality (3). Thus $f \in \mathcal{X}_{t}(\gamma)$ and it complete the proof of the Theorem 3.

Combining Theorem 2 and Theorem 3, we get
Theorem 4. Let an analytic function $f(z)$ be given by (1) and $g \in \mathcal{S}^{*}(1 / 2)$ given by (4). The inequality (11) holds true iff $f \in \mathcal{X}_{t}(\gamma)$.
Remark 3. Setting $t=-1$ in (6), we find that

$$
\begin{aligned}
& c_{2 n}=0, n \in \mathbb{N}, \\
& c_{3}=2 b_{3}-b_{2}^{2}, \quad c_{5}=2 b_{5}-2 b_{2} b_{4}+b_{3}^{2}, \quad c_{7}=2 b_{7}-2 b_{2} b_{6}+2 b_{3} b_{5}-b_{4}^{2}, \cdots
\end{aligned}
$$

thus

$$
c_{2 n-1}=B_{2 n-1}, n=2,3, \cdots,
$$

where

$$
B_{2 n-1}=2 b_{2 n-1}-2 b_{2} b_{2 n-2}+\cdots+(-1)^{n} 2 b_{n-1} b_{n+1}+(-1)^{n+1} b_{n}^{2}, n=2,3, \cdots .
$$

Therefore, setting $t=-1$ in Theorem 4, we get an improved form of a known result by Kowalczyk and Les-Bomba [5].

Theorem 5. Let an analytic function $f(z)$ be given by (1) and $g \in \mathcal{S}^{*}(1 / 2)$ given by (4). If $f \in \mathcal{X}_{t}(\gamma)$, then

$$
\begin{equation*}
n^{2}\left|a_{n}\right|^{2}-4|1-\gamma|^{2} \leq\left(|2 \gamma-1|^{2}-1\right) \sum_{k=2}^{k=n}\left|c_{k}\right|^{2} \tag{12}
\end{equation*}
$$

where c_{n} is defined by (6).
Proof. Since $f \in \mathcal{X}_{t}(\gamma)$ for some $g \in S^{*}(1 / 2)$, then the inequality (3) holds. From a simple calculation, we see that the inequality (3) is equivalent to

$$
\frac{t z^{2} f^{\prime}(z)}{g(z) g(t z)}=\frac{1+(2 \gamma-1) z \phi(z)}{1+z \phi(z)}, \quad z \in \mathbb{U}
$$

where ϕ is an analytic function in \mathbb{U} and $|\phi(z)| \leq 1$, for $z \in \mathbb{U}$. Then

$$
\left(z f^{\prime}(z)-(2 \gamma-1) \frac{g(z) g(t z)}{t z}\right) z \phi(z)=\frac{g(z) g(t z)}{t z}-z f^{\prime}(z)
$$

Now if we put $z \phi(z)=\sum_{n=1}^{n=\infty} v_{n} z^{n}$, we see that $|z \phi(z)| \leq|z|$, for $z \in \mathbb{U}$. Thus

$$
\begin{equation*}
\left((2-2 \gamma) z+\sum_{n=2}^{n=\infty} n a_{n} z^{n}-(2 \gamma-1) \sum_{n=2}^{n=\infty} c_{n} z^{n}\right) \sum_{n=1}^{n=\infty} v_{n} z^{n}=\sum_{n=2}^{n=\infty} c_{n} z^{n}-\sum_{n=2}^{n=\infty} n a_{n} z^{n} \tag{13}
\end{equation*}
$$

we compare coefficients in (13). Hence we can write for $n \geq 2$

$$
\left((2-2 \gamma) z+\sum_{k=2}^{k=n-1} k a_{k} z^{k}-(2 \gamma-1) \sum_{k=2}^{k=n} c_{k} z^{k}\right) z \phi(z)=\sum_{k=2}^{k=n} c_{k} z^{k}-\sum_{k=2}^{k=n} k a_{k} z^{k}+\sum_{k=n+1}^{k=\infty} d_{k} z^{k} .
$$

Then we square the modulus of both sides of the above inequality and then we integrate along $|z|=r<1$. After using the fact that $|z \phi(z)| \leq|z|<1$, we obtain
$\sum_{k=2}^{k=n}\left|c_{k}\right|^{2} r^{2 k}+\sum_{k=2}^{k=n}\left|k a_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{k=\infty}\left|d_{k}\right|^{2} r^{2 k}<|2-2 \gamma|^{2} r^{2}+\sum_{k=2}^{k=n-1}\left|k a_{k}\right|^{2} r^{2 k}+|2 \gamma-1|^{2} \sum_{k=2}^{k=n}\left|c_{k}\right|^{2} r^{2 k}$.
Letting $r \rightarrow 1$, we have

$$
\sum_{k=2}^{k=n}\left|c_{k}\right|^{2}+\sum_{k=2}^{k=n}\left|k a_{k}\right|^{2} \leq|2-2 \gamma|^{2}+\sum_{k=2}^{k=n-1}\left|k a_{k}\right|^{2}+|2 \gamma-1|^{2} \sum_{k=2}^{k=n}\left|c_{k}\right|^{2}
$$

Hence

$$
k^{2}\left|a_{k}\right|^{2}-4(1-\gamma)^{2} \leq\left(|2 \gamma-1|^{2}-1 \mid\right) \sum_{k=2}^{k=n}\left|c_{k}\right|^{2}
$$

Thus we have the inequality (12), which finishes the proof.

Theorem 6. Let $0 \leq \gamma<1$. If the function $f \in \mathcal{X}_{t}(\gamma)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{n}\left\{\left|c_{n}\right|+2(1-\gamma)\left(1+\sum_{k=2}^{n-1}\left|c_{k}\right|\right)\right\}, \quad k \in \mathbb{N} . \tag{14}
\end{equation*}
$$

Proof. By setting

$$
\begin{equation*}
\frac{1}{1-\gamma}\left(\frac{z f^{\prime}(z)}{F(z)}-\gamma\right)=h(z), \quad z \in \mathbb{U} \tag{15}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
z f^{\prime}(z)=[1+(1-\gamma)(h(z)-1)] F(z) \tag{16}
\end{equation*}
$$

we get

$$
\begin{equation*}
h(z)=1+d_{1} z+d_{2} z^{2}+\cdots, \quad z \in \mathbb{U} \tag{17}
\end{equation*}
$$

where $\Re(h(z))>0$. Now using (17) and (5) in (16), we get

$$
\begin{aligned}
& 2 a_{2}=(1-\gamma) d_{1}+c_{2} \\
& 3 a_{3}=(1-\gamma)\left(d_{2}+d_{1} c_{2}\right)+c_{3} \\
& 4 a_{4}=(1-\gamma)\left(d_{3}+d_{2} c_{2}+d_{1} c_{3}\right)+c_{4} \\
& \vdots \\
& n a_{n}=(1-\gamma)\left(d_{n-1}+d_{n-2} c_{2}+\cdots+d_{1} c_{n-1}\right)+c_{n} .
\end{aligned}
$$

Since $\Re(h(z))>0$, then $\left|d_{n}\right| \leq 2, n \in \mathbb{N}$. Using this property, we get

$$
\begin{aligned}
& 2\left|a_{2}\right| \leq\left|c_{2}\right|+2(1-\gamma) \\
& 3\left|a_{3}\right| \leq\left|c_{3}\right|+2(1-\gamma)\left\{1+\left|c_{2}\right|\right\}
\end{aligned}
$$

and

$$
4\left|a_{4}\right| \leq\left|c_{4}\right|+2(1-\gamma)\left\{1+\left|c_{2}\right|+\left|c_{3}\right|\right\}
$$

respectively. Using the principle of mathematical induction, we obtain (14). This completes proof of Theorem 6 .

Corollary 7. Let $0 \leq \gamma<1$. If the function $f \in \mathcal{X}_{t}(\gamma)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq 1+(n-1)(1-\gamma) \tag{18}
\end{equation*}
$$

Proof. From remark 1.1, we know that $F(z) \in \mathcal{S}^{*}$, thus $\left|c_{n}\right| \leq n$. The assertion (18), can now easily derived from Theorem 6.

Remark 4. Setting $t=-1$ in Corollary 7, we get the corresponding result due to Geo and Zhou [1].

References

[1] C. Geo, S. Zhou, On a class of analytic functions related to the class to the starlike functions, Kyungpook Math. J. 45 (2005), 123-130.
[2] S. P. Goyal, Pranay Goswami, On certain properties for a subclass of close-toconvex functions, J. Classical Analysis 1, 2 (2012), 103-112.
[3] I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, Inc. (2003).
[4] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[5] J. Kowalczyk, E. Leś-Bomba, em On a subclass of close-to-convex functions, Appl. Math. Letters 23(2010), 1147-1151.
[6] S. Owa, On a class of starlike functions II, J.Korean Math. Soc. 19, 1 (1982), 29-38.
[7] S. Owa, T. Sekine, R. Yamakawa, On Sakaguchi type functions, Appl. Math. Comput. 187 (2007), 356-361.
[8] B. Seker, On certain new subclass of close-to-convex functions, Appl. Math. Comput. 218, 3 (2011), 1041-1045.
[9] Zhi-Gang Wang, C.-Y. Gao, S.-M. Yuan, On certain subclass of close-to-convex functions, Acta Math. Acad. Paedagog. Nyhazi. (N. S.) 22 (2006), 171-177.
[10] Qing-Hua Xu, H. M. Srivastava, Zhou Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Letters 24 (2011), 396-401.

J. K. Prajapat
Department of Mathematics, Central University of Rajasthan, Kishangarh-305801, Distt.-Ajmer, Rajasthan, India email: jkp_0007@rediffmail.com
Ambuj. K. Mishra
Department of Mathematics, Institute of Applied Sciences \& Humanities, G. L. A. University, Mathura, U. P., India email: ambuj_math@rediffmail.com

