ORDER OF CONVEXITY OF INTEGRAL TRANSFORMS AND DUALITY

S. Verma, S. Gupta, S. Singh

Abstract. Recently, Ali et al. [2] defined the class $\mathcal{W}_{\beta}(\alpha, \gamma)$ consisting of functions f which satisfy

$$
\Re e^{i \phi}\left((1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-\beta\right)>0,
$$

for all $z \in E=\{z:|z|<1\}$ and for $\alpha, \gamma \geq 0$ and $\beta<1, \phi \in \mathbb{R}$ (the set of reals). For $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$, they discussed the convexity of the integral transform

$$
V_{\lambda}(f)(z):=\int_{0}^{1} \lambda(t) \frac{f(t z)}{t} d t
$$

where λ is a non-negative real-valued integrable function satisfying the condition $\int_{0}^{1} \lambda(t) d t=1$. The aim of present paper is to find conditions on $\lambda(t)$ such that $V_{\lambda}(f)$ is convex of order $\delta(0 \leq \delta \leq 1 / 2)$ whenever $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$. As applications, we study various choices of $\lambda(t)$, related to classical integral transforms.

2000 Mathematics Subject Classification: 30C45, 30C80.
Keywords: Starlike function, Convex function, Hadamard product, Duality.

1. Introduction

Let \mathcal{A} denote the class of analytic functions f defined in the open unit disc $E=\{z$: $|z|<1\}$ with the normalization $f(0)=f^{\prime}(0)-1=0$. Let $\mathcal{A}_{0}=\{g: g(z)=f(z) / z, f \in \mathcal{A}\}$. Let S be the subclass of \mathcal{A} consisting of univalent functions in E. A function $f \in S$ is said to be starlike or convex, if f maps E conformally onto the domains, respectively, starlike with respect to the origin and convex. The generalization of these two classes are given by the following analytic characterizations :

$$
S^{*}(\beta)=\left\{f \in \mathcal{A}: \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, \quad 0 \leq \beta<1\right\}
$$

$$
K(\beta)=\left\{f \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta, \quad 0 \leq \beta<1\right\} .
$$

For $\beta=0$, we usually set $S^{*}(0)=S^{*}$ and $K(0)=K$.
For two functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ and $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ in \mathcal{A}, their Hadamard product (or convolution) is the function $f * g$ defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} .
$$

For $f \in \mathcal{A}$, Fournier and Ruscheweyh [8] introduced the operator

$$
\begin{equation*}
F(z)=V_{\lambda}(f)(z):=\int_{0}^{1} \lambda(t) \frac{f(t z)}{t} d t \tag{1}
\end{equation*}
$$

where λ is a non-negative real-valued integrable function satisfying the condition $\int_{0}^{1} \lambda(t) d t=1$. This operator contains some of the well-known operators such as Libera, Bernardi and Komatu as its special cases. This operator has been studied by a number of authors for various choices of $\lambda(t)$ (for example see [1], [4], [6], [8]). Fournier and Ruscheweyh [8] applied the duality theory ($[10,11]$) to prove the starlikeness of the linear integral transform $V_{\lambda}(f)$ when f varies in the class

$$
\mathcal{P}(\beta):=\left\{f \in \mathcal{A}: \exists \phi \in \mathbb{R} \mid \Re e^{i \phi}\left(f^{\prime}(z)-\beta\right)>0, z \in E\right\} .
$$

In 1995, Ali and Singh [3] discussed the convexity properties of the integral transform (1) for functions f in the class $\mathcal{P}(\beta)$. In 2002, Choi et al. [7] investigated convexity properties of the integral transform (1) for functions f in the class

$$
\mathcal{P}_{\gamma}(\beta):=\left\{f \in \mathcal{A}: \exists \phi \in \mathbb{R} \left\lvert\, \Re e^{i \phi}\left((1-\gamma) \frac{f(z)}{z}+\gamma f^{\prime}(z)-\beta\right)>0\right., z \in E\right\} .
$$

It is evident that the class $\mathcal{P}_{\gamma}(\beta)$ is closely related to the class $\mathcal{R}_{\gamma}(\beta)$ defined by

$$
\mathcal{R}_{\gamma}(\beta):=\left\{f \in \mathcal{A}: \exists \phi \in \mathbb{R} \mid \Re e^{i \phi}\left(f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-\beta\right)>0, z \in E\right\}
$$

Clearly, $f \in \mathcal{R}_{\gamma}(\beta)$ if and only if $z f^{\prime}$ belongs to $\mathcal{P}_{\gamma}(\beta)$.
In a very recent paper, R. M. Ali et al. [2] discussed the convexity of the integral transform (1) for the functions f in a more general class $\mathcal{W}_{\beta}(\alpha, \gamma)$ given by

$$
\begin{equation*}
\left\{f \in \mathcal{A}: \exists \phi \in \mathbb{R} \left\lvert\, \Re e^{i \phi}\left((1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-\beta\right)>0\right., z \in E\right\} . \tag{2}
\end{equation*}
$$

Note that $\mathcal{W}_{\beta}(1,0) \equiv \mathcal{P}(\beta), \mathcal{W}_{\beta}(\alpha, 0) \equiv \mathcal{P}_{\alpha}(\beta)$ and $\mathcal{W}_{\beta}(1+2 \gamma, \gamma) \equiv \mathcal{R}_{\gamma}(\beta)$.
In the present paper, we shall mainly tackle the problem of finding a sharp estimate of the parameter β that ensures $V_{\lambda}(f)$ to be convex of order δ for $f \in$ $\mathcal{W}_{\beta}(\alpha, \gamma)$. To prove our result, we shall need the duality theory for convolutions, so we include here some basic concepts and results from this theory. For a subset $\mathcal{B} \subset \mathcal{A}_{0}$, we define

$$
\mathcal{B}^{*}=\left\{g \in \mathcal{A}_{0}:(f * g)(z) \neq 0, z \in E, \text { for all } f \in \mathcal{B} .\right\}
$$

The set \mathcal{B}^{*} is called the dual of \mathcal{B}. Further, the second dual of \mathcal{B} is defined as $\mathcal{B}^{* *}=\left(\mathcal{B}^{*}\right)^{*}$. We state below a fundamental result.

Theorem 1. Let

$$
\mathcal{B}=\left\{\beta+(1-\beta)\left(\frac{1+x z}{1+y z}\right):|x|=|y|=1\right\}, \beta \in \mathbb{R}, \beta \neq 1 .
$$

Then, we have

1. $\mathcal{B}^{* *}=\left\{g \in \mathcal{A}_{0}: \exists \phi \in \mathbb{R}\right.$ such that $\left.\Re\left\{e^{i \phi}(g(z)-\beta)\right\}>0, z \in E\right\}$.
2. If Γ_{1} and Γ_{2} are two continuous linear functionals on \mathcal{B} with $0 \notin \Gamma_{2}$, then for every $g \in \mathcal{B}^{* *}$ we can find $v \in \mathcal{B}$ such that

$$
\frac{\Gamma_{1}(g)}{\Gamma_{2}(g)}=\frac{\Gamma_{1}(v)}{\Gamma_{2}(v)} .
$$

The basic reference to this theory is the book by Ruscheweyh [10] (see also [11]).

2. Preliminaries

We follow the notations used in [1]. Let $\mu \geq 0$ and $\nu \geq 0$ satisfy

$$
\begin{equation*}
\mu+\nu=\alpha-\gamma \text { and } \mu \nu=\gamma . \tag{3}
\end{equation*}
$$

When $\gamma=0$, then μ is chosen to be 0 , in which case, $\nu=\alpha \geq 0$. When $\alpha=1+2 \gamma$, (3) yields $\mu+\nu=1+\gamma=1+\mu \nu$, or $(\mu-1)(1-\nu)=0$.
(i) For $\gamma>0$, then choosing $\mu=1$ gives $\nu=\gamma$.
(ii) For $\gamma=0$, then $\mu=0$ and $\nu=\alpha=1$.

Whenever the particular case $\alpha=1+2 \gamma$ will be considered, the values of μ and ν for $\gamma>0$ will be taken as $\mu=1$ and $\nu=\gamma$ respectively, while $\mu=0$ and $\nu=1=\alpha$ in the case when $\gamma=0$.

Next we introduce two auxiliary functions. Let

$$
\begin{equation*}
\phi_{\mu, \nu}(z)=1+\sum_{n=1}^{\infty} \frac{(n \nu+1)(n \mu+1)}{n+1} z^{n}, \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
\psi_{\mu, \nu}(z) & =\phi_{\mu, \nu}^{-1}(z)=1+\sum_{n=1}^{\infty} \frac{n+1}{(n \nu+1)(n \mu+1)} z^{n} \\
& =\int_{0}^{1} \int_{0}^{1} \frac{d s d t}{\left(1-t^{\nu} s^{\mu} z\right)^{2}} . \tag{5}
\end{align*}
$$

Here $\phi_{\mu, \nu}^{-1}$ denotes the convolution inverse of $\phi_{\mu, \nu}$ such that $\phi_{\mu, \nu} * \phi_{\mu, \nu}^{-1}=z /(1-z)$. If $\gamma=0$, then $\mu=0, \nu=\alpha$, and it is clear that

$$
\psi_{0, \alpha}(z)=1+\sum_{n=1}^{\infty} \frac{n+1}{n \alpha+1} z^{n}=\int_{0}^{1} \frac{d t}{\left(1-t^{\alpha} z\right)^{2}}
$$

If $\gamma>0$, then $\nu>0, \mu>0$, and making the change of variables $u=t^{\nu}, v=s^{\mu}$ results in

$$
\psi_{\mu, \nu}(z)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{u^{1 / \nu-1} v^{1 / \mu-1}}{(1-u v z)^{2}} d u d v
$$

Thus the function $\psi_{\mu, \nu}$ can be written as

$$
\psi_{\mu, \nu}(z)= \begin{cases}\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{u^{1 / \nu-1} v^{1 / \mu-1}}{(1-u v z)^{2}} d u d v, & \gamma>0 \tag{6}\\ \int_{0}^{1} \frac{d t}{\left(1-t^{\alpha} z\right)^{2}}, & \gamma=0, \alpha>0\end{cases}
$$

Let q be the solution of the initial value problem

$$
\frac{d}{d t}\left(t^{1 / \nu} q(t)\right)= \begin{cases}\frac{1}{\mu \nu} t^{1 / \nu-1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s t}{(1-\delta)(1+s t)^{3}} s^{1 / \mu-1} d s, & \gamma>0, \tag{7}\\ \frac{1}{\alpha} \frac{(1-\delta)-(1+\delta) t}{(1-\delta)(1+t)^{3}} t^{1 / \alpha-1}, & \gamma=0, \alpha>0\end{cases}
$$

satisfying $q(0)=1$.
Solving the differential equation (7), we have

$$
\begin{equation*}
q(t)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s w t}{(1-\delta)(1+s w t)^{3}} s^{1 / \mu-1} w^{1 / \nu-1} d s d w . \tag{8}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
q_{\alpha}(t)=\frac{1}{\alpha} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s t}{(1-\delta)(1+s t)^{3}} s^{1 / \alpha-1} d s, \gamma=0, \alpha>0 . \tag{9}
\end{equation*}
$$

Further let

$$
\begin{equation*}
\Lambda_{\nu}(t)=\int_{t}^{1} \frac{\lambda(x)}{x^{1 / \nu}} d x, \quad \nu>0 \tag{10}
\end{equation*}
$$

and

$$
\Pi_{\mu, \nu}(t)= \begin{cases}\int_{t}^{1} \Lambda_{\nu}(x) x^{1 / \nu-1-1 / \mu} d x, & \gamma>0, \tag{11}\\ \Lambda_{\alpha}(t), & \gamma=0,(\mu=0, \nu=\alpha>0)\end{cases}
$$

For the function $\Pi_{\mu, \nu}(t)$, we define

$$
\mathfrak{M}_{\Pi_{\mu, \nu}}\left(h_{\delta}\right)=\left\{\begin{array}{ll}
\Re \int_{0}^{1} t^{1 / \mu-1} \Pi_{\mu, \nu}(t)\left[h_{\delta}^{\prime}(t z)-\frac{(1-\delta)-(1+\delta) t}{(1-\delta)(1+t)^{3}}\right] d t, & \gamma>0, \tag{12}\\
\Re \int_{0}^{1} t^{1 / \alpha-1} \Pi_{0, \alpha}(t)\left[h_{\delta}^{\prime}(t z)-\frac{(1-\delta)-(1+\delta) t}{(1-\delta)(1+t)^{3}}\right]
\end{array}\right] t, \quad \gamma=0, ~ \$
$$

where $h_{\delta}(z)$ is defined as

$$
\begin{equation*}
h_{\delta}(z)=\frac{z\left(1+\frac{\epsilon+2 \delta-1}{2-2 \delta} z\right)}{(1-z)^{2}},|\epsilon|=1 . \tag{13}
\end{equation*}
$$

3. Main Results

Theorem 2. Let $\mu \geq 0, \nu \geq 0$ satisfy (3). Define $\beta<1$ by

$$
\begin{equation*}
\frac{\beta-1 / 2}{(1-\beta)}=-\int_{0}^{1} \lambda(t) q(t) d t, \tag{14}
\end{equation*}
$$

where $q(t)$ is the solution of the initial-value problem (7). Further for $\Lambda_{\nu}(t)$ and $\Pi_{\mu, \nu}(t)$ defined by (10) and (11) respectively, assume that $t^{1 / \nu} \Lambda_{\nu}(t) \rightarrow 0$, and $t^{1 / \nu} \Pi_{\mu, \nu}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$. Then for $\delta \in[0,1 / 2], V_{\lambda}\left(\mathcal{W}_{\beta}(\alpha, \gamma)\right) \subset K(\delta)$ if and only if $\mathfrak{M}_{\Pi_{\mu, \nu}}\left(h_{\delta}\right) \geq 0$, where $\mathfrak{M}_{\Pi_{\mu, \nu}}\left(h_{\delta}\right)$ and h_{δ} are defined by equations (12) and (13) respectively.

Proof. As the case $\gamma=0(\mu=0, \nu=\alpha)$ corresponds to the Theorem 2.3 in [5], so we will prove the result only when $\gamma>0$.
Let

$$
H(z)=(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z) .
$$

Since $\mu+\nu=\alpha-\gamma$ and $\mu \nu=\gamma$, therefore

$$
\begin{aligned}
H(z) & =(1+\gamma-(\alpha-\gamma)) \frac{f(z)}{z}+(\alpha-\gamma-\gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z) \\
& =(1+\mu \nu-\mu-\nu) \frac{f(z)}{z}+(\mu+\nu-\mu \nu) f^{\prime}(z)+\mu \nu z f^{\prime \prime}(z) .
\end{aligned}
$$

Writing $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, we obtain from (4)

$$
H(z)=1+\sum_{n=1}^{\infty} a_{n+1}(n \nu+1)(n \mu+1) z^{n}=f^{\prime}(z) * \phi_{\mu, \nu}(z),
$$

and (5) gives that

$$
\begin{equation*}
f^{\prime}(z)=H(z) * \psi_{\mu, \nu}(z) . \tag{15}
\end{equation*}
$$

Now, for $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$, we have

$$
\Re\left\{e^{i \phi} \frac{H(z)-\beta}{1-\beta}\right\}>0 .
$$

Thus, in the view of the Theorem 1, we may confine ourselves to functions $f \in$ $\mathcal{W}_{\beta}(\alpha, \gamma)$ for which

$$
H(z)=\beta+(1-\beta)\left(\frac{1+x z}{1+y z}\right),|x|=|y|=1 .
$$

Thus (15) gives

$$
f^{\prime}(z)=\left((1-\beta) \frac{1+x z}{1+y z}+\beta\right) * \psi_{\mu, \nu}(z)
$$

and therefore

$$
\begin{equation*}
\frac{f(z)}{z}=\frac{1}{z} \int_{0}^{z}\left((1-\beta) \frac{1+x w}{1+y w}+\beta\right) d w * \psi(z) . \tag{16}
\end{equation*}
$$

Here $\psi:=\psi_{\mu, \nu}$.
A well-known result from the theory of convolutions $[9, \mathrm{Pg} 94]$ (also see [11]) states that

$$
F \in K(\delta) \Leftrightarrow \frac{1}{z}\left(z F^{\prime} * h_{\delta}\right)(z) \neq 0, \quad z \in E
$$

where h_{δ} is as defined in (13). Hence $F \in K(\delta)$ if and only if
$0 \neq \frac{1}{z}\left(V_{\lambda}(f)(z) * z h^{\prime}{ }_{\delta}(z)\right)=\frac{1}{z}\left[\int_{0}^{1} \lambda(t) \frac{f(t z)}{t} d t * z h^{\prime}{ }_{\delta}(z)\right]=\int_{0}^{1} \frac{\lambda(t)}{1-t z} d t * \frac{f(z)}{z} * h^{\prime}{ }_{\delta}(z)$

Using (16), we have

$$
\begin{aligned}
0 & \neq \int_{0}^{1} \frac{\lambda(t)}{1-t z} d t *\left[\frac{1}{z} \int_{0}^{z}\left((1-\beta) \frac{1+x w}{1+y w}+\beta\right) d w * \psi(z)\right] * h^{\prime} \delta_{\delta}(z) \\
& =\int_{0}^{1} \frac{\lambda(t)}{1-t z} d t * h^{\prime}(z) *\left[\frac{1}{z} \int_{0}^{z}\left((1-\beta) \frac{1+x w}{1+y w}+\beta\right) d w\right] * \psi(z) \\
& =\int_{0}^{1} \lambda(t) h^{\prime}(t z) d t *(1-\beta)\left[\frac{1}{z} \int_{0}^{z}\left(\frac{1+x w}{1+y w}+\frac{\beta}{(1-\beta)}\right) d w\right] * \psi(z) \\
& =(1-\beta)\left[\int_{0}^{1} \lambda(t) h^{\prime} \delta_{\delta}(t z) d t+\frac{\beta}{(1-\beta)}\right] * \frac{1}{z} \int_{0}^{z} \frac{1+x w}{1+y w} d w * \psi(z) \\
& =(1-\beta)\left[\int_{0}^{1} \lambda(t)\left(\frac{1}{z} \int_{0}^{z} h_{\delta}^{\prime}(t w) d w\right) d t+\frac{\beta}{(1-\beta)}\right] * \frac{1+x z}{1+y z} * \psi(z) .
\end{aligned}
$$

This holds if and only if [11, p. 23]

$$
\begin{aligned}
& \Re(1-\beta)\left[\int_{0}^{1} \lambda(t)\left(\frac{1}{z} \int_{0}^{z} h^{\prime}{ }_{\delta}(t w) d w\right) d t+\frac{\beta}{(1-\beta)}\right] * \psi(z) \geq 1 / 2, \\
\Leftrightarrow & \Re(1-\beta)\left[\int_{0}^{1} \lambda(t)\left(\frac{1}{z} \int_{0}^{z}{h^{\prime}}_{\delta}(t w) d w\right) d t+\frac{\beta}{(1-\beta)}-\frac{1}{2(1-\beta)}\right] * \psi(z) \geq 0, \\
\Leftrightarrow & \Re\left[\int_{0}^{1} \lambda(t)\left(\frac{1}{z} \int_{0}^{z}{h^{\prime}}^{\prime}(t w) d w\right) d t+\frac{\beta-1 / 2}{(1-\beta)}\right] * \psi(z) \geq 0, \\
\Leftrightarrow & \Re\left[\int_{0}^{1} \lambda(t)\left(\frac{1}{z} \int_{0}^{z}{h^{\prime}}_{\delta}(t w) d w-q(t)\right) d t\right] * \psi(z) \geq 0, \quad(\operatorname{using}(14)), \\
\Leftrightarrow & \Re\left[\int_{0}^{1} \lambda(t)\left(h^{\prime}{ }_{\delta}(t z)-q(t)\right) d t\right] * \frac{1}{z} \int_{0}^{z} \psi(w) d w \geq 0, \\
\Leftrightarrow & \Re\left[\int_{0}^{1} \lambda(t)\left(h^{\prime}{ }_{\delta}(t z)-q(t)\right) d t\right] * \sum_{n=0}^{\infty} \frac{z^{n}}{(n \nu+1)(n \mu+1)} \geq 0, \quad(\operatorname{using}(5)) \\
\Leftrightarrow & \Re \int_{0}^{1} \lambda(t)\left(\sum_{n=0}^{\infty} \frac{z^{n}}{(n \nu+1)(n \mu+1)} * h^{\prime}{ }_{\delta}(t z)-q(t)\right) d t \geq 0, \\
\Leftrightarrow & \Re \int_{0}^{1} \lambda(t)\left(\int_{0}^{1} \int_{0}^{1} \frac{d \eta d \zeta}{\left(1-\eta^{\nu} \zeta^{\mu} z\right)} * h^{\prime}{ }_{\delta}(t z)-q(t)\right) d t \geq 0, \\
\Leftrightarrow & \Re \int_{0}^{1} \lambda(t)\left(\int_{0}^{1} \int_{0}^{1} h^{\prime}{ }_{\delta}\left(t z \eta^{\nu} \zeta^{\mu}\right) d \eta d \zeta-q(t)\right) d t \geq 0,
\end{aligned}
$$

which can also be written as

$$
\Re \int_{0}^{1} \lambda(t)\left(\int_{0}^{1} \int_{0}^{1} \frac{1}{\mu \nu} h_{\delta}^{\prime}(t z u v) u^{1 / \nu-1} v^{1 / \mu-1} d v d u-q(t)\right) d t \geq 0
$$

Writing $w=t u$, we get

$$
\Re \int_{0}^{1} \frac{\lambda(t)}{t^{1 / \nu}}\left[\int_{0}^{t} \int_{0}^{1} h_{\delta}^{\prime}(w z v) w^{1 / \nu-1} v^{1 / \mu-1} d v d w-\mu \nu t^{1 / \nu} q(t)\right] d t \geq 0 .
$$

An integration by parts with respect to t and (7) gives
$\Re \int_{0}^{1} \Lambda_{\nu}(t)\left[\int_{0}^{1} h_{\delta}^{\prime}(t z v) t^{1 / \nu-1} v^{1 / \mu-1} d v-t^{1 / \nu-1} \int_{0}^{1} \frac{1-\delta-(1+\delta) s t}{(1-\delta)(1+s t)^{3}} s^{1 / \mu-1} d s\right] d t \geq 0$.
Again writing $w=v t$ and $\eta=s t$ above inequality reduces to
$\Re \int_{0}^{1} \Lambda_{\nu}(t) t^{1 / \nu-1 / \mu-1}\left[\int_{0}^{t} h_{\delta}^{\prime}(w z) w^{1 / \mu-1} d w-\int_{0}^{t} \frac{1-\delta-(1+\delta) \eta}{(1-\delta)(1+\eta)^{3}} \eta^{1 / \mu-1} d \eta\right] d t \geq 0$,
which after integration by parts with respect to t yields

$$
\Re \int_{0}^{1} \Pi_{\mu, \nu}(t) t^{1 / \mu-1}\left[h_{\delta}^{\prime}(t z)-\frac{1-\delta-(1+\delta) t}{(1-\delta)(1+t)^{3}}\right] d t \geq 0
$$

Thus $F \in K(\delta)$ if and only if $\mathfrak{M}_{\Pi_{\mu, \nu}}\left(h_{\delta}\right) \geq 0$.
Finally, to prove the sharpness, let $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$ be of the form for which

$$
(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)=\beta+(1-\beta) \frac{1+z}{1-z} .
$$

Using a series expansion we obtain that

$$
f(z)=z+2(1-\beta) \sum_{n=1}^{\infty} \frac{1}{(n \nu+1)(n \mu+1)} z^{n+1} .
$$

Thus

$$
F(z)=V_{\lambda}(f)(z)=\int_{0}^{1} \lambda(t) \frac{f(t z)}{t} d t=z+2(1-\beta) \sum_{n=1}^{\infty} \frac{\tau_{n}}{(n \nu+1)(n \mu+1)} z^{n+1},
$$

where $\tau_{n}=\int_{0}^{1} \lambda(t) t^{n} d t$. From (7), it is a simple exercise to write $q(t)$ in a series expansion as

$$
\begin{equation*}
q(t)=1+\frac{1}{1-\delta} \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)(n+1-\delta)}{(n \nu+1)(n \mu+1)} t^{n} . \tag{17}
\end{equation*}
$$

Now, by (14) and (17), we have

$$
\begin{aligned}
\frac{\beta-1 / 2}{1-\beta} & =-\int_{0}^{1} \lambda(t) q(t) d t \\
& =-\int_{0}^{1} \lambda(t)\left[1+\frac{1}{1-\delta} \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)(n+1-\delta)}{(n \nu+1)(n \mu+1)} t^{n}\right] d t \\
& =-1-\frac{1}{1-\delta} \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)(n+1-\delta)}{(n \nu+1)(n \mu+1)} \int_{0}^{1} \lambda(t) t^{n} d t .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\frac{1}{2(1-\beta)}=-\frac{1}{1-\delta} \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)(n+1-\delta) \tau_{n}}{(n \nu+1)(n \mu+1)} . \tag{18}
\end{equation*}
$$

Finally, we see that

$$
F^{\prime}(z)=1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(n+1) \tau_{n}}{(n \nu+1)(n \mu+1)} z^{n} .
$$

Therefore

$$
\left(z F^{\prime}(z)\right)^{\prime}=1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(n+1)^{2} \tau_{n}}{(n \nu+1)(n \mu+1)} z^{n} .
$$

For $z=-1$, we have

$$
\begin{aligned}
\left(z F^{\prime}\right)^{\prime}(-1) & =1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)^{2} \tau_{n}}{(n \nu+1)(n \mu+1)} \\
& =1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)(n+1-\delta) \tau_{n}}{(n \nu+1)(n \mu+1)}+2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n} \delta(n+1) \tau_{n}}{(n \nu+1)(n \mu+1)} \\
& =1-(1-\delta)+\delta 2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1) \tau_{n}}{(n \nu+1)(n \mu+1)}(\mathrm{Using}(18)) \\
& =\delta\left(1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1) \tau_{n}}{(n \nu+1)(n \mu+1)}\right) \\
& =\delta F^{\prime}(-1) .
\end{aligned}
$$

Thus $\left(z F^{\prime}(z)\right)^{\prime} / F^{\prime}(z)$ at $z=-1$ equals δ. This implies that the result is sharp for the order of convexity.

4. Consequences of Theorem 2

To obtain a sufficient condition for the convexity of order δ of the integral transform (1) by a much easier method, we present the following theorem.

Theorem 3. Let $\Lambda_{\nu}(t), \Pi_{\mu, \nu}(t)$ be integrable on [0,1] and positive on (0,1). Also, suppose that $t^{1 / \nu} \Lambda_{\nu}(t) \rightarrow 0$, and $t^{1 / \nu} \Pi_{\mu, \nu}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$. Assume further that $\mu \geq 1$ and

$$
\begin{equation*}
\frac{\left(-t \Pi_{\mu, \nu}^{\prime}(t)+\left(1-\frac{1}{\mu}\right) \Pi_{\mu, \nu}(t)\right)}{(1+t)(1-t)^{1+2 \delta}} \text { is decreasing on }(0,1) \text {. } \tag{19}
\end{equation*}
$$

For $\delta \in[0,1 / 2]$, if β satisfies (14), then $V_{\lambda}(f) \in K(\delta)$ for $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$.
Proof. For $\gamma>0$, integration by parts with respect to t yields

$$
\begin{aligned}
& \int_{0}^{1} t^{\frac{1}{\mu}-1} \Pi_{\mu, \nu}(t)\left(\Re\left(h_{\delta}^{\prime}(t z)\right)-\frac{1-\delta-(1+\delta) t}{(1-\delta)(1+t)^{3}}\right) d t \\
= & \int_{0}^{1} t^{\frac{1}{\mu}-1} \Pi_{\mu, \nu}(t) \frac{d}{d t}\left(\Re \frac{h_{\delta}(t z)}{z}-\frac{t(1-\delta(1+t))}{(1-\delta)(1+t)^{2}}\right) d t \\
= & \int_{0}^{1} t^{\frac{1}{\mu}-1}\left(-t \Pi_{\mu, \nu}^{\prime}(t)+\left(1-\frac{1}{\mu}\right) \Pi_{\mu, \nu}(t)\right)\left(\Re \frac{h_{\delta}(t z)}{t z}-\frac{1-\delta(1+t)}{(1-\delta)(1+t)^{2}}\right) d t .
\end{aligned}
$$

Also for $\mu \geq 1$, the function $t^{1 / \mu-1}$ is decreasing on $(0,1)$. Thus, the condition (19) along with Theorem 1 from [8] yields

$$
\int_{0}^{1} t^{\frac{1}{\mu}-1} \Pi_{\mu, \nu}(t)\left(\Re\left(h_{\delta}^{\prime}(t z)\right)-\frac{1-\delta-(1+\delta) t}{(1-\delta)(1+t)^{3}}\right) d t>0 .
$$

Thus, an application of Theorem 2 evidently leads to the desired result.
Below, we obtain the conditions to ensure convexity of $V_{\lambda}(f)$. As defined in (11) and (10), for $\gamma>0$,

$$
\Pi_{\mu, \nu}(t)=\int_{t}^{1} \Lambda_{\nu}(x) x^{1 / \nu-1-1 / \mu} d x, \text { and } \Lambda_{\nu}(t)=\int_{t}^{1} \frac{\lambda(x)}{x^{1 / \nu}} d x .
$$

In order to apply Theorem 3, we have to prove that the function

$$
k(t)=\frac{\left(t^{\frac{1}{\nu}-\frac{1}{\mu}} \Lambda_{\nu}(t)+\left(1-\frac{1}{\mu}\right) \Pi_{\mu, \nu}(t)\right)}{(1+t)(1-t)^{1+2 \delta}}:=\frac{p(t)}{(1+t)(1-t)^{1+2 \delta}}
$$

is decreasing in $(0,1)$. Since $k(t)>0$ and

$$
\begin{aligned}
\frac{k^{\prime}(t)}{k(t)} & =\frac{p^{\prime}(t)}{p(t)}+\frac{2(t+\delta(1+t))}{1-t^{2}} \\
& =\frac{2(t+\delta(1+t))}{\left(1-t^{2}\right) p(t)}\left[\frac{\left(1-t^{2}\right) p^{\prime}(t)}{2(t+\delta(1+t))}+p(t)\right]=\frac{2(t+\delta(1+t))}{\left(1-t^{2}\right) p(t)}[q(t)] \quad \text { (say) }
\end{aligned}
$$

Thus to prove that $k^{\prime}(t) \leq 0$, it is enough to prove that $q(t) \leq 0$. Since $q(1)=0$, so it remains to show that $q(t)$ is increasing over $(0,1)$. Now
$q^{\prime}(t)=\frac{(1+t)}{2(t+\delta(1+t))^{2}}\left[(1-t)(t+\delta(1+t)) p^{\prime \prime}(t)-(1-t-\delta(1+t))(1+2 \delta) p^{\prime}(t)\right]$.
So, $q^{\prime}(t) \geq 0$ for $t \in(0,1)$ is equivalent to the inequality $r(t) \geq 0$, where

$$
r(t)=(1-t)(t+\delta(1+t)) p^{\prime \prime}(t)-(1-t-\delta(1+t))(1+2 \delta) p^{\prime}(t)
$$

By using the idea similar to the one used to prove Theorem 3.1 in [6], we can write

$$
\begin{aligned}
r(t) & =-\lambda(t) t^{1-\frac{1}{\mu}}\left[\left(\frac{1}{\nu}-\frac{1}{\mu}-1\right) X(t)+Z(t)+\frac{t \lambda^{\prime}(t)}{\lambda(t)} X(t)\right]+ \\
& {\left[\left(\frac{1}{\nu}-\frac{1}{\mu}-1\right) X(t)+Z(t)\right]\left(\frac{1}{\nu}-1\right) t^{\frac{1}{\nu}-\frac{1}{\mu}-1} \int_{t}^{1} A(s) d s }
\end{aligned}
$$

where,

$$
\begin{align*}
A(t) & =\lambda(t) t^{-1 / \nu} \\
X(t) & =(1-t)(t+\delta(1+t)) \\
Z(t) & =-t(1-t-\delta(1+t))(1+2 \delta) \tag{20}
\end{align*}
$$

Clearly, $A(t)>0$ and $X(t)>0$ for all $t \in(0,1)$.
Thus, $r(t)$ is non-negative if
$\left(\frac{1}{\nu}-\frac{1}{\mu}-1\right) X(t)+Z(t)+\frac{t \lambda^{\prime}(t)}{\lambda(t)} X(t) \leq 0$ and $\left[\left(\frac{1}{\nu}-\frac{1}{\mu}-1\right) X(t)+Z(t)\right]\left(\frac{1}{\nu}-1\right) \geq 0$.
Since $\nu \geq 1$, we can rewrite the condition (21) as follows :

$$
\frac{t \lambda^{\prime}(t)}{\lambda(t)} \leq 2+\frac{1}{\mu}-\frac{1}{\nu}-\left(\frac{X(t)+Z(t)}{X(t)}\right) \text { and } \frac{1}{\nu}-\frac{1}{\mu}-2 \leq-\left(\frac{X(t)+Z(t)}{X(t)}\right)
$$

In view of the fact that $X(t)+Z(t)$ and $X(t)$ are non-negative on $(0,1)$, the above inequality further reduces to

$$
\begin{equation*}
\frac{t \lambda^{\prime}(t)}{\lambda(t)} \leq 2+\frac{1}{\mu}-\frac{1}{\nu} \text { and } \frac{1}{\nu}-\frac{1}{\mu}-2 \leq 0 . \tag{22}
\end{equation*}
$$

For $\mu \geq 1$, condition (3) implies $\nu \geq \mu \geq 1$. Thus, condition (22) implies that $r(t)$ is non-negative if

$$
\begin{equation*}
\frac{t \lambda^{\prime}(t)}{\lambda(t)} \leq 2+\frac{1}{\mu}-\frac{1}{\nu}, \quad \nu \geq \mu \geq 1 \tag{23}
\end{equation*}
$$

These conditions leads to the following theorem.
Theorem 4. Assume that both $\Lambda_{\nu}(t), \Pi_{\mu, \nu}(t)$ are integrable on [0,1] and positive on $(0,1)$. Let $\lambda(t)$ be a non-negative real-valued integrable function on [0,1] and satisfy the condition

$$
\frac{t \lambda^{\prime}(t)}{\lambda(t)} \leq 2+\frac{1}{\mu}-\frac{1}{\nu}, \quad \nu \geq \mu \geq 1
$$

Let $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$ and $\beta<1$ with

$$
\frac{\beta-1 / 2}{(1-\beta)}=-\int_{0}^{1} \lambda(t) q(t) d t
$$

where $q(t)$ is defined by (8). Then $F(z)=V_{\lambda}(f)(z) \in K(\delta)$ for $\delta \in[0,1 / 2]$. The conclusion does not hold for smaller values of β.

On the other hand, when $\gamma=0(\mu=0, \nu=\alpha>0)$, so we get the following result.
Theorem 5. Let $\lambda(t)$ be a non-negative real-valued integrable function on [0,1]. Assume that both $\Lambda_{\alpha}(t), \Pi_{0, \alpha}(t)$ are integrable on $[0,1]$ and positive on (0,1$)$. Let $\lambda(1)=0$ and λ satisfies the condition

$$
t \lambda^{\prime \prime}(t)-\frac{1}{\alpha} \lambda^{\prime}(t) \geq 0, \quad \alpha \geq 1
$$

Let $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$ and $\beta<1$ with

$$
\frac{\beta-1 / 2}{(1-\beta)}=-\int_{0}^{1} \lambda(t) q_{\alpha}(t) d t
$$

where $q_{\alpha}(t)$ is defined by 9 with $\delta \in[0,1 / 2]$. Then $F(z)=V_{\lambda}(f)(z) \in K(\delta)$. The conclusion does not hold for smaller values of β.

Proof. As in Theorem 2, for $\gamma=0$ and $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$, we have $V_{\lambda}(f)(z) \in K(\delta)$ if

$$
\int_{0}^{1} t^{\frac{1}{\alpha}-1} \Pi_{0, \alpha}(t)\left(\Re\left(h_{\delta}^{\prime}(t z)\right)-\frac{1-\delta-(1+\delta) t}{(1-\delta)(1+t)^{3}}\right) d t>0
$$

which is equivalent to

$$
\int_{0}^{1} t^{\frac{1}{\alpha}-1}\left(t^{1-\frac{1}{\alpha}} \lambda(t)+\left(1-\frac{1}{\alpha}\right) \Lambda_{\alpha}(t)\right)\left(\Re \frac{h_{\delta}(t z)}{t z}-\frac{1-\delta(1+t)}{(1-\delta)(1+t)^{2}}\right) d t>0
$$

Since $t^{\frac{1}{\alpha}-1}$ is decreasing on $(0,1)$ for $\alpha \geq 1$, thus to apply Theorem 1 in [8], it is enough to show that

$$
p(t)=\frac{t^{1-\frac{1}{\alpha}} \lambda(t)+\left(1-\frac{1}{\alpha}\right) \Lambda_{\alpha}(t)}{(1+t)(1-t)^{1+2 \delta}}:=\frac{k(t)}{(1+t)(1-t)^{1+2 \delta}}
$$

is decreasing on $(0,1)$. Here, logarithmic differentiation implies that

$$
\frac{p^{\prime}(t)}{p(t)}=\frac{2(t+\delta(1+t))}{\left(1-t^{2}\right) k(t)}\left[\frac{\left(1-t^{2}\right) k^{\prime}(t)}{2(t+\delta(1+t))}+k(t)\right] .
$$

Since $p(t)>0$ for $\alpha \geq 1$, thus to prove that $p^{\prime}(t) \leq 0$ on $(0,1)$ it remains to show that

$$
r(t)=k(t)+\frac{\left(1-t^{2}\right) k^{\prime}(t)}{2(t+\delta(1+t))} \leq 0 .
$$

Since $r(1)=0$, so $r(t) \leq 0$ if $r(t)$ is increasing on (0,1). Thus, $r^{\prime}(t)$ is non-negative if

$$
\frac{t^{\frac{-1}{\alpha}}(1+t)}{2(t+\delta(1+t))}\left\{X(t) t \lambda^{\prime \prime}(t)+\left[\left(1-\frac{1}{\alpha}\right) X(t)+Z(t)\right] \lambda^{\prime}(t)\right\} \geq 0,
$$

where $X(t)$ and $Z(t)$ are as defined in (20). Further simplification yields that

$$
t \lambda^{\prime \prime}(t)+\left(\frac{X(t)+Z(t)}{X(t)}-\frac{1}{\alpha}\right) \lambda^{\prime}(t) \geq 0
$$

Since, $X(t)$ and $X(t)+Z(t)$ are non-negative in $(0,1)$, thus $r^{\prime}(t) \geq 0$ is equivalent to

$$
t \lambda^{\prime \prime}(t)-\frac{1}{\alpha} \lambda^{\prime}(t) \geq 0, \quad \alpha \geq 1
$$

which completes the proof.
Remark 1. Observe that results in [2] can be obtained from our results by setting $\delta=0$.

5. Applications

In this section, we apply Theorem 4 and Theorem 5 to obtain certain results regarding convexity of well-known integral operators. The proofs of the following results run on the same lines as given in [2] and hence omitted.

Consider λ to be defined as

$$
\lambda(t)=(1+c) t^{c}, \quad c>-1
$$

Then the integral transform

$$
\begin{equation*}
F_{c}(z)=V_{\lambda}(f)(z)=(1+c) \int_{0}^{1} t^{c-1} f(t z) d t, \quad c>-1, \tag{24}
\end{equation*}
$$

is the well-known Bernardi integral operator. The classical Alexander and Libera transforms are special cases of (24) with $c=0$ and $c=1$ respectively. For this special case of λ, the following result holds.

Theorem 6. Let $c>-1$ and $0<\gamma \leq \alpha \leq 1+2 \gamma$. Let $\beta<1$ satisfy

$$
\frac{\beta-1 / 2}{1-\beta}=-(1+c) \int_{0}^{1} t^{c} q(t) d t
$$

where q is given by

$$
q(t)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s w t}{(1-\delta)(1+s w t)^{3}} s^{1 / \mu-1} w^{1 / \nu-1} d s d w .
$$

Then for $\delta \in[0,1 / 2]$, we have $V_{\lambda}\left(\mathcal{W}_{\beta}(\alpha, \gamma)\right) \subset K(\delta)$ provided c satisfies the condition:

$$
c \leq 2+\frac{1}{\mu}-\frac{1}{\nu}, \quad \nu \geq \mu \geq 1 .
$$

The value of β is sharp.
Writing $\alpha=1+2 \gamma, \gamma>0$ and $\mu=1$ in Theorem 6 gives the following criteria of convexity:

Corollary 7. Let $-1<c \leq 3-1 / \gamma$ and $\gamma \geq 1$. Let $\beta<1$ satisfy

$$
\frac{\beta-1 / 2}{1-\beta}=-(1+c) \int_{0}^{1} t^{c} q(t) d t
$$

where q is given by

$$
q(t)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s w t}{(1-\delta)(1+s w t)^{3}} s^{1 / \mu-1} w^{1 / \nu-1} d s d w .
$$

Then for $\delta \in[0,1 / 2]$, we have $V_{\lambda}\left(\mathcal{R}_{\beta}(\gamma)\right) \subset K(\delta)$. The value of β is sharp.
Further, letting $\gamma=1$ and $c=0$ in Corollary 7, we have
Corollary 8. Let $\beta<1$ satisfy

$$
\frac{\beta-1 / 2}{1-\beta}=\frac{1}{1-\delta}\left(\delta \frac{\pi^{2}}{12}-\log 2\right)
$$

If $f \in \mathcal{R}_{\beta}(1)$, then Alexander transform $F_{0}(z) \equiv A[f](z)=\int_{0}^{1} \frac{f(t z)}{t} d t$ is convex of order δ where $\delta \in[0,1 / 2]$. The value of β is sharp.

Remark 2. 1. For $\delta=0$,

$$
\beta_{0}=\frac{1-2 \log 2}{2-2 \log 2}=-0.629 \ldots .
$$

Then, for f satisfying

$$
\Re e^{i \phi}\left(f^{\prime}(z)+z f^{\prime \prime}(z)-\beta\right)>0, z \in E \text {, }
$$

Alexander transform $A[f]$ is convex. It has been shown in [8] that β_{0} is the best possible bound here.
2. We note that for $\delta=1 / 2, \beta_{1 / 2}=0.590 \ldots$. Then, for f satisfying

$$
\Re e^{i \phi}\left(f^{\prime}(z)+z f^{\prime \prime}(z)-\beta\right)>0, z \in E,
$$

Alexander transform $A[f]$ is convex of order $1 / 2$.
While, the case $c=0$ in Theorem 6 yields yet another interesting result, which we state as a theorem.

Theorem 9. Let $0<\gamma \leq \alpha \leq 1+2 \gamma$. If $F \in \mathcal{A}$ satisfies

$$
\Re\left(F^{\prime}(z)+\alpha z F^{\prime \prime}(z)+\gamma z^{2} F^{\prime \prime \prime}(z)\right)>\beta, \quad z \in E,
$$

and $\beta<1$ satisfies

$$
\frac{\beta-1 / 2}{1-\beta}=-\int_{0}^{1} q(t) d t,
$$

where q is given by

$$
q(t)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s w t}{(1-\delta)(1+s w t)^{3}} s^{1 / \mu-1} w^{1 / \nu-1} d s d w,
$$

then for $\delta \in[0,1 / 2], F$ belongs to $K(\delta)$. The value of β is sharp.
To state our next theorem, we define

$$
\lambda(t)= \begin{cases}(a+1)(b+1) \frac{t^{a}\left(1-t^{b-a}\right)}{b-a}, & \mathrm{~b} \neq \mathrm{a} ; \tag{25}\\ (a+1)^{2} t^{a} \log (1 / t), & \mathrm{b}=\mathrm{a},\end{cases}
$$

where $b>-1$ and $a>-1$.
Then,

$$
V_{\lambda}(f)(z)=G_{f}(a, b ; z)= \begin{cases}\frac{(a+1)(b+1)}{b-a} \int_{0}^{1} t^{a-1}\left(1-t^{b-a}\right) f(t z) d t, & \mathrm{~b} \neq \mathrm{a} ; \\ (a+1)^{2} \int_{0}^{1} t^{a-1} \log (1 / t) f(t z) d t, & \mathrm{~b}=\mathrm{a} .\end{cases}
$$

Theorem 10. Let $b>-1, a>-1$ and $0<\gamma \leq \alpha \leq 1+2 \gamma$. Let $\beta<1$ satisfy

$$
\frac{\beta-1 / 2}{1-\beta}=-\int_{0}^{1} \lambda(t) q(t) d t,
$$

where q is given by

$$
q(t)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s w t}{(1-\delta)(1+s w t)^{3}} s^{1 / \mu-1} w^{1 / \nu-1} d s d w .
$$

and $\lambda(t)$ is defined by (25). If $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$, then the convolution operator $G_{f}(a, b ; z)$ belongs to $K(\delta)$ with $\delta \in[0,1 / 2]$ if

$$
a \leq 2+\frac{1}{\mu}-\frac{1}{\nu}, \quad \nu \geq \mu \geq 1 .
$$

The value of β is sharp.
Substituting $\alpha=1+2 \gamma, \gamma>0$ and $\mu=1$ in Theorem 6, gives the following result :

Corollary 11. Let $b>-1,-1<a \leq 3-1 / \gamma$ and $\gamma \geq 1$. Let $\beta<1$ satisfy

$$
\frac{\beta-1 / 2}{1-\beta}=-\int_{0}^{1} \lambda(t) q(t) d t,
$$

where q is given by

$$
q(t)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s w t}{(1-\delta)(1+s w t)^{3}} s^{1 / \mu-1} w^{1 / \nu-1} d s d w .
$$

and $\lambda(t)$ is defined by (25). If $f \in \mathcal{R}_{\beta}(\gamma)$, then the convolution operator $G_{f}(a, b ; z)$ belongs to $K(\delta)$ with $\delta \in[0,1 / 2]$. The value of β is sharp.

While for $\gamma=0$, with an application of Theorem 5 , we get the following result:
Theorem 12. Let $b>-1, a>-1$ and $\alpha \geq 1$. Let $\beta<1$ satisfy

$$
\frac{\beta-1 / 2}{1-\beta}=-\int_{0}^{1} \lambda(t) q_{\alpha}(t) d t,
$$

where q_{α} is given by

$$
q_{\alpha}(t)=\frac{1}{\alpha} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s t}{(1-\delta)(1+s t)^{3}} s^{1 / \alpha-1} d s
$$

and $\lambda(t)$ is defined by (25). If $f \in \mathcal{P}_{\beta}(\alpha)$, then the convolution operator $G_{f}(a, b ; z)$ belongs to $K(\delta)$ with $\delta \in[0,1 / 2]$ if one of the following conditions holds :
(i) $-1<a \leq 0$ and $a=b$, or
(ii) $-1<a \leq 0$ and $-1<a<b \leq 1+1 / \alpha$.

The value of β is sharp.

Now, we define

$$
\lambda(t)=\frac{(1+a)^{p}}{\Gamma(p)} t^{a}(\log (1 / t))^{p-1}, a>-1, p \geq 0 .
$$

In this case, V_{λ} reduces to the Komatu operator [9]

$$
V_{\lambda}(f)(z)=\frac{(1+a)^{p}}{\Gamma(p)} \int_{0}^{1}\left(\log \left(\frac{1}{t}\right)\right)^{p-1} t^{a-1} f(t z) d t, a>-1, p \geq 0 .
$$

For $p=1$ Komatu operator gives the Bernardi integral operator. For this λ, the following result holds.

Theorem 13. Let $a>p-2>-1$ and $0<\gamma \leq \alpha \leq 1+2 \gamma$. Let $\beta<1$ satisfy

$$
\frac{\beta-1 / 2}{1-\beta}=-\int_{0}^{1} \lambda(t) q(t) d t
$$

where q is given by

$$
q(t)=\frac{1}{\mu \nu} \int_{0}^{1} \int_{0}^{1} \frac{(1-\delta)-(1+\delta) s w t}{(1-\delta)(1+s w t)^{3}} s^{1 / \mu-1} w^{1 / \nu-1} d s d w .
$$

If $f \in \mathcal{W}_{\beta}(\alpha, \gamma)$, then the function

$$
\Phi_{p}(a ; z) * f(z)=\frac{(1+a)^{p}}{\Gamma(p)} \int_{0}^{1}\left(\log \left(\frac{1}{t}\right)\right)^{p-1} t^{a-1} f(t z) d t
$$

belongs to $K(\delta)$ with $\delta \in[0,1 / 2]$ if

$$
a \leq 2+\frac{1}{\mu}-\frac{1}{\nu}, \quad \nu \geq \mu \geq 1 .
$$

The value of β is sharp.

References

[1] R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness of integral transforms and duality, J. Math. Anal. Appl. 385 (2012), 808-822.
[2] R. M. Ali, M. M. Nargesi and V. Ravichandran, Convexity of integral transforms and duality, Complex Var. Elliptic Equ. (2012), 1-22.
[3] R. M. Ali and V. Singh, Convexity and starlikeness of functions defined by a class of integral operators, Complex Variables Theory Appl. 26, 4 (1995), 299-309.
[4] R. Balasubramanian, S. Ponnusamy and D. J. Prabhakaran, Duality techniques for certain integral transforms to be starlike, J. Math. Anal. Appl. 293 (2004), 355373.
[5] R. Balasubramanian, S. Ponnusamy and D. J. Prabhakaran, Convexity of integral transforms and function spaces, Integral Transforms Spec. Funct. 18, 1-2 (2007), 1-14.
[6] R. Balasubramanian, S. Ponnusamy and D. J. Prabhakaran, On extremal problems related to integral transforms of a class of analytic functions, J. Math. Anal. Appl. 336, 1 (2007), 542-555.
[7] J. H. Choi, Y.C. Kim and M. Saigo, Geometric properties of convolution operators defined by Gaussian hypergeometric functions, Integral Transforms Spec. Funct. 13, 2 (2002), 117-130.
[8] R. Fournier and S. Ruscheweyh, On two extremal problems related to univalent functions, Rocky Mountain J. Math. 24, 2 (1994), 529-538.
[9] Y. Komatu, On analytic prolongation of a family of operators, Mathematica (Cluj) 32, 55(2) (1990), 141-145.
[10] S. Ruscheweyh, Convolutions in Geometric Function Theory (Montreal: Les Presses de l' Universite de Montreal).
[11] S. Ruscheweyh, Duality for Hadamard products with applications to extremal problems for functions regular in unit disc, Trans. Amer. Math. Soc. 210 (1975), 63-74.

Sarika Verma, Sushma Gupta and Sukhjit Singh Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, (Punjab) India email: sarika.16984@gmail.com

