
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 38/2014
pp. 279-296

ORDER OF CONVEXITY OF INTEGRAL TRANSFORMS AND
DUALITY

S. Verma, S. Gupta, S. Singh

Abstract. Recently, Ali et al. [2] defined the class Wβ(α, γ) consisting of
functions f which satisfy

<eiφ
(

(1− α+ 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β

)
> 0,

for all z ∈ E = {z : |z| < 1} and for α, γ ≥ 0 and β < 1, φ ∈ R (the set of reals).
For f ∈ Wβ(α, γ), they discussed the convexity of the integral transform

Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt,

where λ is a non-negative real-valued integrable function satisfying the condition∫ 1

0
λ(t)dt = 1. The aim of present paper is to find conditions on λ(t) such that

Vλ(f) is convex of order δ (0 ≤ δ ≤ 1/2) whenever f ∈ Wβ(α, γ). As applications,
we study various choices of λ(t), related to classical integral transforms.
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1. Introduction

Let A denote the class of analytic functions f defined in the open unit disc E = {z :
|z| < 1} with the normalization f(0) = f ′(0)−1 = 0. LetA0 = {g : g(z) = f(z)/z, f ∈ A}.
Let S be the subclass of A consisting of univalent functions in E. A function f ∈ S
is said to be starlike or convex, if f maps E conformally onto the domains, respec-
tively, starlike with respect to the origin and convex. The generalization of these
two classes are given by the following analytic characterizations :

S∗(β) =

{
f ∈ A : <

(
zf ′(z)

f(z)

)
> β, 0 ≤ β < 1

}
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K(β) =

{
f ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
> β, 0 ≤ β < 1

}
.

For β = 0, we usually set S∗(0) = S∗ and K(0) = K.

For two functions f(z) = z + a2z
2 + a3z

3 + · · · and g(z) = z + b2z
2 + b3z

3 + · · ·
in A, their Hadamard product (or convolution) is the function f ∗ g defined by

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n.

For f ∈ A, Fournier and Ruscheweyh [8] introduced the operator

F (z) = Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt, (1)

where λ is a non-negative real-valued integrable function satisfying the condition∫ 1

0
λ(t)dt = 1. This operator contains some of the well-known operators such as

Libera, Bernardi and Komatu as its special cases. This operator has been studied
by a number of authors for various choices of λ(t) (for example see [1], [4], [6],
[8]). Fournier and Ruscheweyh [8] applied the duality theory ([10, 11]) to prove the
starlikeness of the linear integral transform Vλ(f) when f varies in the class

P(β) :=
{
f ∈ A : ∃φ ∈ R|<eiφ

(
f ′(z)− β

)
> 0, z ∈ E

}
.

In 1995, Ali and Singh [3] discussed the convexity properties of the integral
transform (1) for functions f in the class P(β). In 2002, Choi et al. [7] investigated
convexity properties of the integral transform (1) for functions f in the class

Pγ(β) :=

{
f ∈ A : ∃φ ∈ R|<eiφ

(
(1− γ)

f(z)

z
+ γf ′(z)− β

)
> 0, z ∈ E

}
.

It is evident that the class Pγ(β) is closely related to the class Rγ(β) defined by

Rγ(β) :=
{
f ∈ A : ∃φ ∈ R|<eiφ

(
f ′(z) + γzf ′′(z)− β

)
> 0, z ∈ E

}
.

Clearly, f ∈ Rγ(β) if and only if zf ′ belongs to Pγ(β).

In a very recent paper, R. M. Ali et al. [2] discussed the convexity of the integral
transform (1) for the functions f in a more general class Wβ(α, γ) given by{
f ∈ A : ∃φ ∈ R|<eiφ

(
(1− α+ 2γ)

f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β

)
> 0, z ∈ E

}
.

(2)
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Note that Wβ(1, 0) ≡ P(β), Wβ(α, 0) ≡ Pα(β) and Wβ(1 + 2γ, γ) ≡ Rγ(β).

In the present paper, we shall mainly tackle the problem of finding a sharp
estimate of the parameter β that ensures Vλ(f) to be convex of order δ for f ∈
Wβ(α, γ). To prove our result, we shall need the duality theory for convolutions,
so we include here some basic concepts and results from this theory. For a subset
B ⊂ A0, we define

B∗ = {g ∈ A0 : (f ∗ g)(z) 6= 0, z ∈ E, for all f ∈ B.}

The set B∗ is called the dual of B. Further, the second dual of B is defined as
B∗∗ = (B∗)∗. We state below a fundamental result.

Theorem 1. Let

B =

{
β + (1− β)

(
1 + xz

1 + yz

)
: |x| = |y| = 1

}
, β ∈ R, β 6= 1.

Then, we have

1. B∗∗ =
{
g ∈ A0 : ∃φ ∈ R such that<{eiφ(g(z)− β)} > 0, z ∈ E

}
.

2. If Γ1 and Γ2 are two continuous linear functionals on B with 06∈Γ2, then for
every g ∈ B∗∗ we can find v ∈ B such that

Γ1(g)

Γ2(g)
=

Γ1(v)

Γ2(v)
.

The basic reference to this theory is the book by Ruscheweyh [10] (see also [11]).

2. Preliminaries

We follow the notations used in [1]. Let µ ≥ 0 and ν ≥ 0 satisfy

µ+ ν = α− γ and µν = γ. (3)

When γ = 0, then µ is chosen to be 0, in which case, ν = α ≥ 0. When α = 1 + 2γ,
(3) yields µ+ ν = 1 + γ = 1 + µν, or (µ− 1)(1− ν) = 0.

(i) For γ > 0, then choosing µ = 1 gives ν = γ.
(ii) For γ = 0, then µ = 0 and ν = α = 1.
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Whenever the particular case α = 1 + 2γ will be considered, the values of µ and
ν for γ > 0 will be taken as µ = 1 and ν = γ respectively, while µ = 0 and ν = 1 = α
in the case when γ = 0.

Next we introduce two auxiliary functions. Let

φµ,ν(z) = 1 +
∞∑
n=1

(nν + 1)(nµ+ 1)

n+ 1
zn, (4)

and

ψµ,ν(z) = φ−1
µ,ν(z) = 1 +

∞∑
n=1

n+ 1

(nν + 1)(nµ+ 1)
zn

=

∫ 1

0

∫ 1

0

dsdt

(1− tνsµz)2
. (5)

Here φ−1
µ,ν denotes the convolution inverse of φµ,ν such that φµ,ν ∗φ−1

µ,ν = z/(1−z).
If γ = 0, then µ = 0, ν = α, and it is clear that

ψ0,α(z) = 1 +

∞∑
n=1

n+ 1

nα+ 1
zn =

∫ 1

0

dt

(1− tαz)2
.

If γ > 0, then ν > 0, µ > 0, and making the change of variables u = tν , v = sµ

results in

ψµ,ν(z) =
1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1− uvz)2
dudv.

Thus the function ψµ,ν can be written as

ψµ,ν(z) =

{
1
µν

∫ 1
0

∫ 1
0
u1/ν−1v1/µ−1

(1−uvz)2 dudv, γ > 0;∫ 1
0

dt
(1−tαz)2 , γ = 0, α > 0.

(6)

Let q be the solution of the initial value problem

d

dt

(
t1/νq(t)

)
=

{
1
µν t

1/ν−1
∫ 1

0
(1−δ)−(1+δ)st
(1−δ)(1+st)3

s1/µ−1ds, γ > 0,
1
α

(1−δ)−(1+δ)t
(1−δ)(1+t)3

t1/α−1, γ = 0, α > 0,
(7)

satisfying q(0) = 1.
Solving the differential equation (7), we have

q(t) =
1

µν

∫ 1

0

∫ 1

0

(1− δ)− (1 + δ)swt

(1− δ)(1 + swt)3
s1/µ−1w1/ν−1dsdw. (8)
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In particular,

qα(t) =
1

α

∫ 1

0

(1− δ)− (1 + δ)st

(1− δ)(1 + st)3
s1/α−1ds, γ = 0, α > 0. (9)

Further let

Λν(t) =

∫ 1

t

λ(x)

x1/ν
dx, ν > 0, (10)

and

Πµ,ν(t) =

{ ∫ 1
t Λν(x)x1/ν−1−1/µdx, γ > 0,

Λα(t), γ = 0, (µ = 0, ν = α > 0).
(11)

For the function Πµ,ν(t), we define

MΠµ,ν (hδ) =

 <
∫ 1

0 t
1/µ−1Πµ,ν(t)

[
h′δ(tz)−

(1−δ)−(1+δ)t
(1−δ)(1+t)3

]
dt, γ > 0,

<
∫ 1

0 t
1/α−1Π0,α(t)

[
h′δ(tz)−

(1−δ)−(1+δ)t
(1−δ)(1+t)3

]
dt, γ = 0,

(12)

where hδ(z) is defined as

hδ(z) =
z
(

1 + ε+2δ−1
2−2δ z

)
(1− z)2

, |ε| = 1. (13)

3. Main Results

Theorem 2. Let µ ≥ 0, ν ≥ 0 satisfy (3). Define β < 1 by

β − 1/2

(1− β)
= −

∫ 1

0
λ(t)q(t)dt, (14)

where q(t) is the solution of the initial-value problem (7). Further for Λν(t) and
Πµ,ν(t) defined by (10) and (11) respectively, assume that t1/νΛν(t) → 0, and

t1/νΠµ,ν(t) → 0 as t → 0+. Then for δ ∈ [0, 1/2], Vλ(Wβ(α, γ)) ⊂ K(δ) if and
only if MΠµ,ν (hδ) ≥ 0, where MΠµ,ν (hδ) and hδ are defined by equations (12) and
(13) respectively.

Proof. As the case γ = 0 (µ = 0, ν = α) corresponds to the Theorem 2.3 in [5], so
we will prove the result only when γ > 0.
Let

H(z) = (1− α+ 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z).
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Since µ+ ν = α− γ and µν = γ, therefore

H(z) = (1 + γ − (α− γ))
f(z)

z
+ (α− γ − γ)f ′(z) + γzf ′′(z)

= (1 + µν − µ− ν)
f(z)

z
+ (µ+ ν − µν)f ′(z) + µνzf ′′(z).

Writing f(z) = z +
∑∞

n=2 anz
n, we obtain from (4)

H(z) = 1 +
∞∑
n=1

an+1(nν + 1)(nµ+ 1)zn = f ′(z) ∗ φµ,ν(z),

and (5) gives that
f ′(z) = H(z) ∗ ψµ,ν(z). (15)

Now, for f ∈ Wβ(α, γ), we have

<
{
eiφ

H(z)− β
1− β

}
> 0.

Thus, in the view of the Theorem 1, we may confine ourselves to functions f ∈
Wβ(α, γ) for which

H(z) = β + (1− β)

(
1 + xz

1 + yz

)
, |x| = |y| = 1.

Thus (15) gives

f ′(z) =

(
(1− β)

1 + xz

1 + yz
+ β

)
∗ ψµ,ν(z),

and therefore
f(z)

z
=

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z). (16)

Here ψ := ψµ,ν .
A well-known result from the theory of convolutions [9, Pg 94] (also see [11])

states that

F ∈ K(δ) ⇔ 1

z
(zF ′ ∗ hδ)(z) 6= 0, z ∈ E,

where hδ is as defined in (13). Hence F ∈ K(δ) if and only if

0 6= 1

z
(Vλ(f)(z)∗zh′δ(z)) =

1

z

[∫ 1

0
λ(t)

f(tz)

t
dt ∗ zh′δ(z)

]
=

∫ 1

0

λ(t)

1− tz
dt∗f(z)

z
∗h′δ(z)
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Using (16), we have

0 6=
∫ 1

0

λ(t)

1− tz
dt ∗

[
1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z)

]
∗ h′δ(z)

=

∫ 1

0

λ(t)

1− tz
dt ∗ h′δ(z) ∗

[
1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw

]
∗ ψ(z)

=

∫ 1

0
λ(t)h′δ(tz)dt ∗ (1− β)

[
1

z

∫ z

0

(
1 + xw

1 + yw
+

β

(1− β)

)
dw

]
∗ ψ(z)

= (1− β)

[∫ 1

0
λ(t)h′δ(tz)dt+

β

(1− β)

]
∗ 1

z

∫ z

0

1 + xw

1 + yw
dw ∗ ψ(z)

= (1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′δ(tw)dw

)
dt+

β

(1− β)

]
∗ 1 + xz

1 + yz
∗ ψ(z).

This holds if and only if [11, p. 23]

<(1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′δ(tw)dw

)
dt+

β

(1− β)

]
∗ ψ(z) ≥ 1/2,

⇔ <(1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′δ(tw)dw

)
dt+

β

(1− β)
− 1

2(1− β)

]
∗ ψ(z) ≥ 0,

⇔ <
[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′δ(tw)dw

)
dt+

β − 1/2

(1− β)

]
∗ ψ(z) ≥ 0,

⇔ <
[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′δ(tw)dw − q(t)

)
dt

]
∗ ψ(z) ≥ 0, (using (14)),

⇔ <
[∫ 1

0
λ(t)

(
h′δ(tz)− q(t)

)
dt

]
∗ 1

z

∫ z

0
ψ(w)dw ≥ 0,

⇔ <
[∫ 1

0
λ(t)

(
h′δ(tz)− q(t)

)
dt

]
∗
∞∑
n=0

zn

(nν + 1)(nµ+ 1)
≥ 0, (using (5))

⇔ <
∫ 1

0
λ(t)

( ∞∑
n=0

zn

(nν + 1)(nµ+ 1)
∗ h′δ(tz)− q(t)

)
dt ≥ 0,

⇔ <
∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

dηdζ

(1− ηνζµz)
∗ h′δ(tz)− q(t)

)
dt ≥ 0,

⇔ <
∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0
h′δ(tzη

νζµ)dηdζ − q(t)
)
dt ≥ 0,

which can also be written as

<
∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

1

µν
h′δ(tzuv)u1/ν−1v1/µ−1dvdu− q(t)

)
dt ≥ 0.
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Writing w = tu, we get

<
∫ 1

0

λ(t)

t1/ν

[∫ t

0

∫ 1

0
h′δ(wzv)w1/ν−1v1/µ−1dvdw − µνt1/νq(t)

]
dt ≥ 0.

An integration by parts with respect to t and (7) gives

<
∫ 1

0
Λν(t)

[∫ 1

0
h′δ(tzv)t1/ν−1v1/µ−1dv − t1/ν−1

∫ 1

0

1− δ − (1 + δ)st

(1− δ)(1 + st)3
s1/µ−1ds

]
dt ≥ 0.

Again writing w = vt and η = st above inequality reduces to

<
∫ 1

0
Λν(t)t1/ν−1/µ−1

[∫ t

0
h′δ(wz)w

1/µ−1dw −
∫ t

0

1− δ − (1 + δ)η

(1− δ)(1 + η)3
η1/µ−1dη

]
dt ≥ 0,

which after integration by parts with respect to t yields

<
∫ 1

0
Πµ,ν(t)t1/µ−1

[
h′δ(tz)−

1− δ − (1 + δ)t

(1− δ)(1 + t)3

]
dt ≥ 0.

Thus F ∈ K(δ) if and only if MΠµ,ν (hδ) ≥ 0.

Finally, to prove the sharpness, let f ∈ Wβ(α, γ) be of the form for which

(1− α+ 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z) = β + (1− β)

1 + z

1− z
.

Using a series expansion we obtain that

f(z) = z + 2(1− β)

∞∑
n=1

1

(nν + 1)(nµ+ 1)
zn+1.

Thus

F (z) = Vλ(f)(z) =

∫ 1

0
λ(t)

f(tz)

t
dt = z + 2(1− β)

∞∑
n=1

τn
(nν + 1)(nµ+ 1)

zn+1,

where τn =
∫ 1

0 λ(t)tndt. From (7), it is a simple exercise to write q(t) in a series
expansion as

q(t) = 1 +
1

1− δ

∞∑
n=1

(−1)n(n+ 1)(n+ 1− δ)
(nν + 1)(nµ+ 1)

tn. (17)
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Now, by (14) and (17), we have

β − 1/2

1− β
= −

∫ 1

0
λ(t)q(t)dt

= −
∫ 1

0
λ(t)

[
1 +

1

1− δ

∞∑
n=1

(−1)n(n+ 1)(n+ 1− δ)
(nν + 1)(nµ+ 1)

tn

]
dt

= −1− 1

1− δ

∞∑
n=1

(−1)n(n+ 1)(n+ 1− δ)
(nν + 1)(nµ+ 1)

∫ 1

0
λ(t)tndt.

Therefore
1

2(1− β)
= − 1

1− δ

∞∑
n=1

(−1)n(n+ 1)(n+ 1− δ)τn
(nν + 1)(nµ+ 1)

. (18)

Finally, we see that

F ′(z) = 1 + 2(1− β)
∞∑
n=1

(n+ 1)τn
(nν + 1)(nµ+ 1)

zn.

Therefore

(zF ′(z))′ = 1 + 2(1− β)
∞∑
n=1

(n+ 1)2τn
(nν + 1)(nµ+ 1)

zn.

For z = −1, we have

(zF ′)′(−1) = 1 + 2(1− β)
∞∑
n=1

(−1)n(n+ 1)2τn
(nν + 1)(nµ+ 1)

= 1 + 2(1− β)
∞∑
n=1

(−1)n(n+ 1)(n+ 1− δ)τn
(nν + 1)(nµ+ 1)

+ 2(1− β)
∞∑
n=1

(−1)nδ(n+ 1)τn
(nν + 1)(nµ+ 1)

= 1− (1− δ) + δ2(1− β)
∞∑
n=1

(−1)n(n+ 1)τn
(nν + 1)(nµ+ 1)

(Using(18))

= δ

(
1 + 2(1− β)

∞∑
n=1

(−1)n(n+ 1)τn
(nν + 1)(nµ+ 1)

)
= δF ′(−1).

Thus (zF ′(z))′/F ′(z) at z = −1 equals δ. This implies that the result is sharp for
the order of convexity.
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4. Consequences of Theorem 2

To obtain a sufficient condition for the convexity of order δ of the integral transform
(1) by a much easier method, we present the following theorem.

Theorem 3. Let Λν(t), Πµ,ν(t) be integrable on [0,1] and positive on (0,1). Also,

suppose that t1/νΛν(t) → 0, and t1/νΠµ,ν(t) → 0 as t → 0+. Assume further that
µ ≥ 1 and (

−tΠ′µ,ν(t) +
(

1− 1
µ

)
Πµ,ν(t)

)
(1 + t)(1− t)1+2δ

is decreasing on (0,1). (19)

For δ ∈ [0, 1/2], if β satisfies (14), then Vλ(f) ∈ K(δ) for f ∈ Wβ(α, γ).

Proof. For γ > 0, integration by parts with respect to t yields∫ 1

0

t
1
µ−1Πµ,ν(t)

(
<(h′δ(tz))−

1− δ − (1 + δ)t

(1− δ)(1 + t)3

)
dt

=

∫ 1

0

t
1
µ−1Πµ,ν(t)

d

dt

(
<hδ(tz)

z
− t(1− δ(1 + t))

(1− δ)(1 + t)2

)
dt

=

∫ 1

0

t
1
µ−1

(
−tΠ′µ,ν(t) +

(
1− 1

µ

)
Πµ,ν(t)

)(
<hδ(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

)
dt.

Also for µ ≥ 1, the function t1/µ−1 is decreasing on (0,1). Thus, the condition
(19) along with Theorem 1 from [8] yields∫ 1

0
t
1
µ
−1

Πµ,ν(t)

(
<
(
h′δ(tz)

)
− 1− δ − (1 + δ)t

(1− δ)(1 + t)3

)
dt > 0.

Thus, an application of Theorem 2 evidently leads to the desired result.

Below, we obtain the conditions to ensure convexity of Vλ(f). As defined in (11)
and (10), for γ > 0,

Πµ,ν(t) =

∫ 1

t
Λν(x)x1/ν−1−1/µdx, and Λν(t) =

∫ 1

t

λ(x)

x1/ν
dx.

In order to apply Theorem 3, we have to prove that the function

k(t) =

(
t
1
ν
− 1
µΛν(t) +

(
1− 1

µ

)
Πµ,ν(t)

)
(1 + t)(1− t)1+2δ

:=
p(t)

(1 + t)(1− t)1+2δ
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is decreasing in (0,1). Since k(t) > 0 and

k′(t)

k(t)
=

p′(t)

p(t)
+

2(t+ δ(1 + t))

1− t2

=
2(t+ δ(1 + t))

(1− t2)p(t)

[
(1− t2)p′(t)

2(t+ δ(1 + t))
+ p(t)

]
=

2(t+ δ(1 + t))

(1− t2)p(t)
[q(t)] (say).

Thus to prove that k′(t) ≤ 0, it is enough to prove that q(t) ≤ 0. Since q(1) = 0, so
it remains to show that q(t) is increasing over (0,1). Now

q′(t) =
(1 + t)

2(t+ δ(1 + t))2

[
(1− t)(t+ δ(1 + t))p′′(t)− (1− t− δ(1 + t))(1 + 2δ)p′(t)

]
.

So, q′(t) ≥ 0 for t ∈ (0, 1) is equivalent to the inequality r(t) ≥ 0, where

r(t) = (1− t)(t+ δ(1 + t))p′′(t)− (1− t− δ(1 + t))(1 + 2δ)p′(t)

By using the idea similar to the one used to prove Theorem 3.1 in [6], we can write

r(t) = −λ(t)t
1− 1

µ

[(
1

ν
− 1

µ
− 1

)
X(t) + Z(t) +

tλ′(t)

λ(t)
X(t)

]
+[(

1

ν
− 1

µ
− 1

)
X(t) + Z(t)

](
1

ν
− 1

)
t
1
ν
− 1
µ
−1
∫ 1

t
A(s)ds

where,

A(t) = λ(t)t−1/ν ,

X(t) = (1− t)(t+ δ(1 + t)),

Z(t) = −t(1− t− δ(1 + t))(1 + 2δ). (20)

Clearly, A(t) > 0 and X(t) > 0 for all t ∈ (0, 1).
Thus, r(t) is non-negative if(

1

ν
− 1

µ
− 1

)
X(t)+Z(t)+

tλ′(t)

λ(t)
X(t) ≤ 0 and

[(
1

ν
− 1

µ
− 1

)
X(t) + Z(t)

](
1

ν
− 1

)
≥ 0.

(21)
Since ν ≥ 1, we can rewrite the condition (21) as follows :

tλ′(t)

λ(t)
≤ 2 +

1

µ
− 1

ν
−
(
X(t) + Z(t)

X(t)

)
and

1

ν
− 1

µ
− 2 ≤ −

(
X(t) + Z(t)

X(t)

)
.

In view of the fact that X(t) +Z(t) and X(t) are non-negative on (0,1), the above
inequality further reduces to

tλ′(t)

λ(t)
≤ 2 +

1

µ
− 1

ν
and

1

ν
− 1

µ
− 2 ≤ 0. (22)
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For µ ≥ 1, condition (3) implies ν ≥ µ ≥ 1. Thus, condition (22) implies that r(t)
is non-negative if

tλ′(t)

λ(t)
≤ 2 +

1

µ
− 1

ν
, ν ≥ µ ≥ 1. (23)

These conditions leads to the following theorem.

Theorem 4. Assume that both Λν(t), Πµ,ν(t) are integrable on [0,1] and positive on
(0,1). Let λ(t) be a non-negative real-valued integrable function on [0,1] and satisfy
the condition

tλ′(t)

λ(t)
≤ 2 +

1

µ
− 1

ν
, ν ≥ µ ≥ 1.

Let f ∈ Wβ(α, γ) and β < 1 with

β − 1/2

(1− β)
= −

∫ 1

0
λ(t)q(t)dt,

where q(t) is defined by (8). Then F (z) = Vλ(f)(z) ∈ K(δ) for δ ∈ [0, 1/2]. The
conclusion does not hold for smaller values of β.

On the other hand, when γ = 0 (µ = 0, ν = α > 0), so we get the following result.

Theorem 5. Let λ(t) be a non-negative real-valued integrable function on [0,1].
Assume that both Λα(t), Π0,α(t) are integrable on [0,1] and positive on (0,1). Let
λ(1) = 0 and λ satisfies the condition

tλ′′(t)− 1

α
λ′(t) ≥ 0, α ≥ 1.

Let f ∈ Wβ(α, γ) and β < 1 with

β − 1/2

(1− β)
= −

∫ 1

0
λ(t)qα(t)dt,

where qα(t) is defined by 9 with δ ∈ [0, 1/2]. Then F (z) = Vλ(f)(z) ∈ K(δ). The
conclusion does not hold for smaller values of β.

Proof. As in Theorem 2, for γ = 0 and f ∈ Wβ(α, γ), we have Vλ(f)(z) ∈ K(δ) if∫ 1

0
t
1
α
−1Π0,α(t)

(
<
(
h′δ(tz)

)
− 1− δ − (1 + δ)t

(1− δ)(1 + t)3

)
dt > 0,

which is equivalent to∫ 1

0
t
1
α
−1

(
t1−

1
αλ(t) +

(
1− 1

α

)
Λα(t)

)(
<hδ(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

)
dt > 0.
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Since t
1
α
−1 is decreasing on (0,1) for α ≥ 1, thus to apply Theorem 1 in [8], it is

enough to show that

p(t) =
t1−

1
αλ(t) +

(
1− 1

α

)
Λα(t)

(1 + t)(1− t)1+2δ
:=

k(t)

(1 + t)(1− t)1+2δ

is decreasing on (0,1). Here, logarithmic differentiation implies that

p′(t)

p(t)
=

2(t+ δ(1 + t))

(1− t2)k(t)

[
(1− t2)k′(t)

2(t+ δ(1 + t))
+ k(t)

]
.

Since p(t) > 0 for α ≥ 1, thus to prove that p′(t) ≤ 0 on (0,1) it remains to show
that

r(t) = k(t) +
(1− t2)k′(t)

2(t+ δ(1 + t))
≤ 0.

Since r(1) = 0, so r(t) ≤ 0 if r(t) is increasing on (0,1). Thus, r′(t) is non-negative
if

t
−1
α (1 + t)

2(t+ δ(1 + t))

{
X(t)tλ′′(t) +

[(
1− 1

α

)
X(t) + Z(t)

]
λ′(t)

}
≥ 0,

where X(t) and Z(t) are as defined in (20). Further simplification yields that

tλ′′(t) +

(
X(t) + Z(t)

X(t)
− 1

α

)
λ′(t) ≥ 0.

Since, X(t) and X(t) + Z(t) are non-negative in (0,1), thus r′(t) ≥ 0 is equivalent
to

tλ′′(t)− 1

α
λ′(t) ≥ 0, α ≥ 1,

which completes the proof.

Remark 1. Observe that results in [2] can be obtained from our results by setting
δ = 0.

5. Applications

In this section, we apply Theorem 4 and Theorem 5 to obtain certain results regard-
ing convexity of well-known integral operators. The proofs of the following results
run on the same lines as given in [2] and hence omitted.

Consider λ to be defined as

λ(t) = (1 + c)tc, c > −1.
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Then the integral transform

Fc(z) = Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt, c > −1, (24)

is the well-known Bernardi integral operator. The classical Alexander and Libera
transforms are special cases of (24) with c = 0 and c = 1 respectively. For this
special case of λ, the following result holds.

Theorem 6. Let c > −1 and 0 < γ ≤ α ≤ 1 + 2γ. Let β < 1 satisfy

β − 1/2

1− β
= −(1 + c)

∫ 1

0
tcq(t)dt,

where q is given by

q(t) =
1

µν

∫ 1

0

∫ 1

0

(1− δ)− (1 + δ)swt

(1− δ)(1 + swt)3
s1/µ−1w1/ν−1dsdw.

Then for δ ∈ [0, 1/2], we have Vλ(Wβ(α, γ)) ⊂ K(δ) provided c satisfies the condi-
tion:

c ≤ 2 +
1

µ
− 1

ν
, ν ≥ µ ≥ 1.

The value of β is sharp.

Writing α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 6 gives the following criteria
of convexity:

Corollary 7. Let −1 < c ≤ 3− 1/γ and γ ≥ 1. Let β < 1 satisfy

β − 1/2

1− β
= −(1 + c)

∫ 1

0
tcq(t)dt,

where q is given by

q(t) =
1

µν

∫ 1

0

∫ 1

0

(1− δ)− (1 + δ)swt

(1− δ)(1 + swt)3
s1/µ−1w1/ν−1dsdw.

Then for δ ∈ [0, 1/2], we have Vλ(Rβ(γ)) ⊂ K(δ). The value of β is sharp.

Further, letting γ = 1 and c = 0 in Corollary 7, we have

Corollary 8. Let β < 1 satisfy

β − 1/2

1− β
=

1

1− δ

(
δ
π2

12
− log 2

)
If f ∈ Rβ(1), then Alexander transform F0(z) ≡ A[f ](z) =

∫ 1

0

f(tz)

t
dt is convex of

order δ where δ ∈ [0, 1/2]. The value of β is sharp.
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Remark 2. 1. For δ = 0,

β0 =
1− 2 log 2

2− 2 log 2
= −0.629 . . . .

Then, for f satisfying

<eiφ
(
f ′(z) + zf ′′(z)− β

)
> 0, z ∈ E,

Alexander transform A[f ] is convex. It has been shown in [8] that β0 is the
best possible bound here.

2. We note that for δ = 1/2, β1/2 = 0.590 . . .. Then, for f satisfying

<eiφ
(
f ′(z) + zf ′′(z)− β

)
> 0, z ∈ E,

Alexander transform A[f ] is convex of order 1/2.

While, the case c = 0 in Theorem 6 yields yet another interesting result, which
we state as a theorem.

Theorem 9. Let 0 < γ ≤ α ≤ 1 + 2γ. If F ∈ A satisfies

<
(
F ′(z) + αzF ′′(z) + γz2F ′′′(z)

)
> β, z ∈ E,

and β < 1 satisfies
β − 1/2

1− β
= −

∫ 1

0
q(t)dt,

where q is given by

q(t) =
1

µν

∫ 1

0

∫ 1

0

(1− δ)− (1 + δ)swt

(1− δ)(1 + swt)3
s1/µ−1w1/ν−1dsdw,

then for δ ∈ [0, 1/2], F belongs to K(δ). The value of β is sharp.

To state our next theorem, we define

λ(t) =

{
(a+ 1)(b+ 1) t

a(1−tb−a)
b−a , b6=a;

(a+ 1)2ta log(1/t), b=a,
(25)

where b > −1 and a > −1.
Then,

Vλ(f)(z) = Gf (a, b; z) =

{
(a+1)(b+1)

b−a
∫ 1

0 t
a−1(1− tb−a)f(tz)dt, b6=a;

(a+ 1)2
∫ 1

0 t
a−1 log(1/t)f(tz)dt, b=a.
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Theorem 10. Let b > −1, a > −1 and 0 < γ ≤ α ≤ 1 + 2γ. Let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)q(t)dt,

where q is given by

q(t) =
1

µν

∫ 1

0

∫ 1

0

(1− δ)− (1 + δ)swt

(1− δ)(1 + swt)3
s1/µ−1w1/ν−1dsdw.

and λ(t) is defined by (25). If f ∈ Wβ(α, γ), then the convolution operator Gf (a, b; z)
belongs to K(δ) with δ ∈ [0, 1/2] if

a ≤ 2 +
1

µ
− 1

ν
, ν ≥ µ ≥ 1.

The value of β is sharp.

Substituting α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 6, gives the following
result :

Corollary 11. Let b > −1, −1 < a ≤ 3− 1/γ and γ ≥ 1. Let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)q(t)dt,

where q is given by

q(t) =
1

µν

∫ 1

0

∫ 1

0

(1− δ)− (1 + δ)swt

(1− δ)(1 + swt)3
s1/µ−1w1/ν−1dsdw.

and λ(t) is defined by (25). If f ∈ Rβ(γ), then the convolution operator Gf (a, b; z)
belongs to K(δ) with δ ∈ [0, 1/2]. The value of β is sharp.

While for γ = 0, with an application of Theorem 5, we get the following result:

Theorem 12. Let b > −1, a > −1 and α ≥ 1. Let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)qα(t)dt,

where qα is given by

qα(t) =
1

α

∫ 1

0

(1− δ)− (1 + δ)st

(1− δ)(1 + st)3
s1/α−1ds

and λ(t) is defined by (25). If f ∈ Pβ(α), then the convolution operator Gf (a, b; z)
belongs to K(δ) with δ ∈ [0, 1/2] if one of the following conditions holds :
(i) −1 < a ≤ 0 and a = b, or
(ii) −1 < a ≤ 0 and −1 < a < b ≤ 1 + 1/α.
The value of β is sharp.
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Now, we define

λ(t) =
(1 + a)p

Γ(p)
ta (log(1/t))p−1 , a > −1, p ≥ 0.

In this case, Vλ reduces to the Komatu operator [9]

Vλ(f)(z) =
(1 + a)p

Γ(p)

∫ 1

0

(
log

(
1

t

))p−1

ta−1f(tz)dt, a > −1, p ≥ 0.

For p = 1 Komatu operator gives the Bernardi integral operator. For this λ, the
following result holds.

Theorem 13. Let a > p− 2 > −1 and 0 < γ ≤ α ≤ 1 + 2γ. Let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)q(t)dt,

where q is given by

q(t) =
1

µν

∫ 1

0

∫ 1

0

(1− δ)− (1 + δ)swt

(1− δ)(1 + swt)3
s1/µ−1w1/ν−1dsdw.

If f ∈ Wβ(α, γ), then the function

Φp(a; z) ∗ f(z) =
(1 + a)p

Γ(p)

∫ 1

0

(
log

(
1

t

))p−1

ta−1f(tz)dt

belongs to K(δ) with δ ∈ [0, 1/2] if

a ≤ 2 +
1

µ
− 1

ν
, ν ≥ µ ≥ 1.

The value of β is sharp.
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