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Abstract. This work deals with the nonhomogeneous discrete Dirichlet eigen-
value problem

−∆
((
|∆u(k−1)|p1(k−1)−2+|∆u(k−1)|p2(k−1)−2

)
∆u(k−1)

)
= λ|u|q(k)−2u, k ∈ [1, T ].

Through an approach based on variational methods and critical points, intervals of a
numerical parameter λ are derived for which the existence and nonexistence results
are obtained.
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1. Introduction

In the recent mathematical literature a great deal of work has been devoted to the
study of discrete boundary value problems. The studies of such kind of problems
can be placed at the interface of certain mathematical fields, such as nonlinear dif-
ferential equations and numerical analysis. More, they are strongly motivated by
their applicability to various fields of research, such as computer science, mechani-
cal engineering, control systems, artificial or biological neural networks, economics
and many others. For this reasons, in these last years, many authors have widely
developed various methods and techniques, such as fixed points theorems, lower and
upper solutions, and Brower degree. Very recently, also the critical point theory has
aroused the attention of many authors in the study of these problems. Far from
being exhaustive, further details can be found in [1, 3, 4, 8, 11, 12, 14] and the
reference therein.

Let T ≥ 2 be a positive integer, [a, b] be the discrete interval {a, a + 1, ..., b}
where a and b are integers and a < b. and λ be a positive parameter. The main aim
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of this paper is to study the existence of solutions for following discrete boundary
value problem

−∆
((
|∆u(k − 1)|p1(k−1)−2 + |∆u(k − 1)|p2(k−1)−2

)
∆u(k − 1)

)
= λ|u|q(k)−2u,

k ∈ [1, T ], u(0) = u(T + 1) = 0,
(1)

where p1, p2 : [0, T ]→ [2,∞) and q : [1, T ]→ [2,∞) are bounded functions, ∆u(k) =
u(k + 1)− u(k) is the forward difference operator while λ is a positive real number.

Continuous versions of problems such as (1) are known to be mathematical mod-
els of various phenomena arising in the study of elastic mechanics [18], electrorheolog-
ical fluids [15] or image restoration [5]. Variational continuous anisotropic problems
have been started by Fan and Zhang in [7] and later considered by many methods
and authors, see [10] for an extensive survey of such boundary value problems.

However, to the best of our knowledge, discrete problems like (1) involving
anisotropic exponents have been discussed for the first time by Mihailescu, Rad-
ulescu and Tersian [14] and for the second time by Koné and Ouaro [12], where
known tools from the critical point theory are applied in order to get the existence
of solutions.

From now onwards, we will use the following notations:

pmin(k) := min
i=1,2

pi(k), pmax(k) := max
i=1,2

pi(k), for all k ∈ [0, T ];

p−min := min
k∈[0,T ]

pmin(k), p+
max := min

k∈[0,T ]
pmax(k);

p−i := min
k∈[0,T ]

pi(k), p+
i := max

k∈[0,T ]
pi(k), for i = 1, 2;

q− := min
k∈[1,T ]

q(k) and q+ := max
k∈[1,T ]

q(k)

Inspired by the paper [14] and the ideas introduced in [8, 13], our analysis mainly
concern existence and nonexistence of weak solutions to problem (1), under appro-
priate assumptions. More precisely, we aim to provide intervals for a parameter λ
for which problem (1) has, or not, non trivial solutions. For these results we use
some known tools such as a direct variational method, mountain pass geometry and
Ekeland’s variational principle.

Firstly, in the situation when p+
min < q− ≤ q+ < p−max and following along the

same lines as in [13], we will prove the existence of two positive constants λ∗ and λ̂
with λ∗ < λ̂ such that any λ ∈ [λ̂,+∞) is an eigenvalue, while and λ ∈ (0, λ∗) is not
an eigenvalue of our problem.

Secondly, in the case q− < p−min or q− > p+
max, and by applying mountain pass

Lemma and Ekeland’s variational principle, we will show that there exists a positive
constant λ∗ such that any λ ∈ (0, λ∗) is an eigenvalue of problem (1).
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The remaining part of this article is organized as follows. The second section
is devoted to mathematical preliminaries and statement of main results which are
proved in the third section.

2. Preliminaries and statement of main results

Solutions to (1) will be investigated in a space

W =
{
u : [0, T + 1]→ R s.t u(0) = u(T + 1) = 0

}
,

which is a T -dimensional Hilbert space, see [2], with the inner product

(u, v) =
T+1∑
k=1

∆u(k − 1)∆v(k − 1), for all u, v ∈W.

The associated norm is defined by

‖u‖ =
( T+1∑
k=1

|∆u(k − 1)|2
) 1

2
.

Moreover, it is useful to introduce other norms on W , namely

|u|m =
( T∑
k=1

|u(k)|m
) 1

m
, ∀u ∈W and m ≥ 2.

It can be verified (see [4]) that

T
2−m
2m |u|2 ≤ |u|m ≤ T

1
m |u|2, ∀u ∈W and m ≥ 2. (2)

Next, we list some inequalities that will be are used later. For (a)−(c) see [8, 14],
for (d) and (e) see [8] and for (g) see [17].

Lemma 1. For every u ∈W , we have

(a)

T∑
k=1

|u(k)|m ≤ T (T + 1)m−1
T+1∑
k=1

|∆u(k − 1)|m, ∀m ≥ 2.

(b)

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
2−p−

2 ‖u‖p− − (T + 1), with ‖u‖ > 1.
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(c)

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
p+−2

2 ‖u‖p+ , with ‖u‖ < 1.

(d) (T + 2)
2−m

2 ‖u‖m ≤
T+1∑
k=1

|∆u(k − 1)|m ≤ (T + 1)‖u‖m, ∀m ≥ 2.

(e)

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ (T + 1)‖u‖p+ + (T + 1).

(f)

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ 2m
T∑
k=1

|u(k)|m, ∀m ≥ 2.

(g) max
k∈[1,T ]

|u(k)| ≤ (T + 1)
1
q

( T+1∑
k=1

|∆u(k − 1)|p
) 1

p
, for all p, q > 1 such that

1

p
+

1

q
= 1.

We say that λ ∈ R is an eigenvalue of problem (1) if there exists u ∈ W \ {0}
such that

T+1∑
k=1

(
|∆u(k − 1)|p1(k−1)−2+|∆u(k − 1)|p2(k−1)−2

)
∆u(k − 1)∆ϕ(k − 1)

= λ
T∑
k=1

|u(k)|q(k)−2u(k)ϕ(k),

for any ϕ ∈ W . We point out that if λ is an eigenvalue of problem (1), then the
corresponding eigenfunction u ∈W \ {0} is a weak solution of problem (1).

Define

λ̂ = inf
u∈W\{0}

J(u)

I(u)
,

where

J(u) =

T+1∑
k=1

( 1

p1(k − 1)
|∆u(k − 1)|p1(k−1) +

1

p2(k − 1)
|∆u(k − 1)|p2(k−1)

)
and

I(u) =

T∑
k=1

1

q(k)
|u(k)|q(k).
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3. Main results and Proofs

Theorem 2. If
p+

min < q− ≤ q+ < p−max, (3)

then λ̂ > 0. Moreover, any λ ∈ [λ̂,+∞) is an eigenvalue of problem (1). Further-
more, there exists a positive constant λ∗ such that λ∗ ≤ λ̂ and any λ ∈ (0, λ∗) is not
an eigenvalue of problem (1).

Proof. Our proof, follows as [13], is divide in a series of steps in order to clarify the
exposition.

Step 1 we show λ̂ > 0.

By (3), for all k ∈ [1, T ] and u ∈W , we point out that

|∆u(k)|q+ + |∆u(k)|q− ≤ 2
(
|∆u(k)|p1(k) + |∆u(k)|p2(k)

)
,

and
|u(k)|q(k) ≤ |u(k)|q+ + |u(k)|q− .

Thus, summing for k from 1 to T , for u ∈W we obtain

T∑
k=1

(
|∆u(k)|q+ + |∆u(k)|q−

)
≤ 2

T∑
k=1

(
|∆u(k)|p1(k) + |∆u(k)|p2(k)

)
, (4)

and
T∑
k=1

|u(k)|q(k) ≤
T∑
k=1

(
|u(k)|q+ + |u(k)|q−

)
. (5)

Combining (5) and Lemma 1 (a), we have

T∑
k=1

|u(k)|q(k) ≤
T∑
k=1

(
|u(k)|q+ + |u(k)|q−

)
≤ c1

T+1∑
k=1

|∆u(k − 1)|q+ + c2

T+1∑
k=1

|∆u(k − 1)|q− . (6)

Thus, according to (4), it follows

T∑
k=1

|u(k)|q(k) ≤ 2c3

T∑
k=1

(
|∆u(k)|p1(k) + |∆u(k)|p2(k)

)
. (7)
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Consequently, from (7), we deduce

λ̂ ≥ inf
u∈W\{0}

1
p+2

( T+1∑
k=1

|∆u(k − 1)|p1(k−1) +

T+1∑
k=1

|∆u(k − 1)|p2(k−1)
)

1
q−

T∑
k=1

|u(k)|q(k)

=
q−

p+
max

inf
u∈W\{0}

T∑
k=1

|∆u(k)|p1(k) +
T∑
k=1

|∆u(k)|p2(k)

T∑
k=1

|u(k)|q(k)

≥ q−

2cp+
max

> 0.

So, Step 1 is verified.

Step 2 λ̂ is an eigenvalue of problem (1).

We need to establish the following two auxiliary results which will be used.
Claim:

lim
‖u‖→0

J(u)

I(u)
= +∞. (8)

lim
‖u‖→∞

J(u)

I(u)
= +∞. (9)

Indeed, using (6) and 2, we infer

|u|q
−

q− + |u|q
+

q+
≤ cq−

T+1∑
k=1

|∆u(k − 1)|q− + cq+

T+1∑
k=1

|∆u(k − 1)|q+

≤ cq−T‖u‖q
−

+ cq+T‖u‖q
+
. (10)

Then, combining relations (5) and (10), it follows

T∑
k=1

|u(k)|q(k) ≤ cq−T‖u‖q
−

+ cq+T‖u‖q
+

(11)

On the other hand, from Lemma 1 (c), there exists a positive constant C such
that

T+1∑
k=1

|∆u(k − 1)|pmin(k−1) ≥ C‖u‖p
+
min , ∀u ∈W with ‖u‖ < 1. (12)
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We focus on the case, when u ∈ W with ‖u‖ < 1. Thus, |∆u(k)| < 1 for any
k ∈ [0, T ]. So, for any u ∈W with ‖u‖ < 1 small enough, by relations (11) and (12)
we get

J(u)

I(u)
≥

1
p+min

T+1∑
k=1

|∆u(k − 1)|pmin(k−1)

T
(
cq−‖u‖q

−+cq+‖u‖q
+
)

q−

≥ q−

p+
min

C‖u‖p
+
min

T
(
cq−‖u‖q

− + cq+‖u‖q
+
) .

In view of 3, passing to the limit as ‖u‖ → 0 in the above inequality, (8) follows.
Similarly, from Lemma 1 (b), there exist two positive constants C1 and C2 such

that

T+1∑
k=1

(
|∆u(k − 1)|pmax(k−1) ≥ C1‖u‖p

−
max − C2, ∀u ∈W with ‖u‖ > 1. (13)

Thus, for any u ∈W with ‖u‖ > 1, from (11) and (13), we obtain

J(u)

I(u)
≥

1
p−max

T+1∑
k=1

|∆u(k − 1)|pmax(k−1)

T
(
cq−‖u‖q

−+cq+‖u‖q
+
)

q−

≥ q−

p−max

C1‖u‖p
−
max − C2

T
(
cq−‖u‖q

− + cq+‖u‖q
+
) .

Using again 3, passing to the limit as ‖u‖ → +∞, (9) holds true.
Now, we verify step 2. For this, we will prove that there exists u0 ∈ W \ {0}

such that
J(u0)

I(u0)
= λ̂. (14)

In fact, Let (un) ⊂W \ {0} be a minimizing sequence for λ̂, that is,

lim
n→∞

J(un)

I(un)
= λ̂. (15)

In view of the 9 above, we infer that (un) is bounded in W . That information
combined with the fact that W is a finite dimensional Hilbert space implies that

7
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there exists a subsequence, still denoted by (un), and u0 ∈W such that un converges
to u0 in W . As consequence,

J(u0)

I(u0)
= λ̂, if u0 6= 0.

It remains to show that u0 is nontrivial. In fact, if not, (8) implies

lim
n→∞

J(un)

I(un)
=∞.

But, this contradicts (15). Thus, u0 6= 0 and (14) holds true.
Therefore, for any v ∈W , we infer

d

dt

J(u0 + tv)

I(u0 + tv)

∣∣∣
t=0

= 0.

A simple computation yields,

T+1∑
k=1

(
|∆u0(k − 1)|p1(k−1)−2+|∆u0(k − 1)|p2(k−1)−2

)
∆u0(k − 1)∆v(k − 1)I(u0)

=

T∑
k=1

|u(k)|q(k)−2u(k)v(k)J(u0).

for any v ∈W . The above relation combined with (14) and the fact that I(u0) 6= 0
implies the fact that λ̂ is an eigenvalue of problem (1). Thus, step 2 is verified.

Remark 1. Define

λ∗ = inf
u∈W\{0}

T+1∑
k=1

(
|∆u(k − 1)|p1(k−1) + |∆u(k − 1)|p2(k−1)

)
T∑
k=1

|u(k)|q(k)

. (16)

One has
λ̂ > λ∗.

In fact, as u0 is an eigenfunction corresponding to the eigenvalue λ̂ of problem (1),
then

T+1∑
k=1

(
|∆u0(k − 1)|p1(k−1)−2+|∆u0(k − 1)|p2(k−1)−2

)
∆u0(k − 1)∆v(k − 1)

= λ̂

T∑
k=1

|u(k)|q(k)−2u(k)v(k),

8
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for every v ∈W . Taking v = u0, we obtain

T+1∑
k=1

(
|∆u0(k − 1)|p1(k−1) + |∆u0(k − 1)|p2(k−1)

)
= λ̂

T∑
k=1

|u0(k)|q(k).

Step 3 Any λ ∈ (λ̂,∞) is an eigenvalue of problem (1).

Fix λ ∈ (λ̂,+∞), let us define a functional Tλ : W → R by

Tλ(u) = J(u)− λI(u).

Standard arguments assure that Tλ ∈ C1(W,R) and its Gâteaux derivative T
′
λ at u

reads

〈T ′λ(u), v〉 =
T+1∑
k=1

(
|∆u(k − 1)|p1(k−1)−2 + |∆u(k − 1)|p2(k−1)−2

)
∆u(k − 1)∆v(k − 1)

− λ
T∑
k=1

|u(k)|q(k)−2u(k)v(k),

for all v ∈W .
Suppose that u is a critical point to Tλ, i.e. 〈T ′λ(u), v〉 = 0 for all v ∈ W .

Summing by parts and taking boundary values into account, see [9], we observe that

T+1∑
k=1

∆
(
|∆u(k − 1)|p1(k−1)−2+|∆u(k − 1)|p2(k−1)−2

)
∆u(k − 1)v(k − 1)

− λ
T∑
k=1

|u(k)|q(k)−2u(k)v(k) = 0.

Since v ∈W is arbitrary, we see that u satisfies (1).
As W is finite dimensional and Tλ is Gâteaux differentiable and continuous it

suffices to show that it is coercive. By Lemma 1 (b) and (11), for sufficiently large
‖u‖, we obtain

Tλ(u) ≥ C1‖u‖p
−
max − C2 − λT

(
cq−‖u‖q

−
+ cq+‖u‖q

+)
,

where ci, i = 1, 2 are positive constants. Thanks to q− ≤ q+ < p−2 , we conclude
Tλ(u) → +∞ as ‖u‖ → +∞. Applying [16, Theorem 1.2] in order to prove that
there exists uλ ∈ W a global minimum point of Tλ and thus, a critical point of Tλ.

9
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In order to finish the proof of step 3 it is enough to show that uλ is not trivial.

Indeed, since λ > λ̂ = inf
u∈W\{0}

J(u)

I(u)
it follows that there exists vλ ∈W such that

J(vλ) < λI(vλ), that is Tλ(vλ) < 0.

Thus,
inf
u∈W

Tλ(v) < 0

and we conclude that uλ is a nontrivial critical point of Tλ. Thus, step 3 is verified.

Step 4 Any λ ∈ (0, λ∗) is not an eigenvalue of problem (1) with λ∗ is given by (16).

Precise that, from Remark 1, we have λ∗ < λ̂. By contradiction, if we assume
that there exists λ ∈ (0, λ∗) an eigenvalue of problem (1), then there exists uλ ∈
W \ {0} such that

〈J ′(uλ), v〉 = λ〈I ′(uλ), v〉, ∀v ∈W.
In particular, for v = uλ we get

T+1∑
k=1

(
|∆uλ(k − 1)|p1(k−1) + |∆uλ(k − 1)|p2(k−1)

)
= λ

T∑
k=1

|uλ(k)|q(k).

The fact that uλ ∈W \{0} assures that

T∑
k=1

|uλ(k)|q(k) > 0. Since λ < λ∗, the above

information yields

T+1∑
k=1

(
|∆uλ(k − 1)|p1(k−1)+|∆uλ(k − 1)|p2(k−1)

)
≥ λ∗

T∑
k=1

|uλ(k)|q(k)

> λ

T∑
k=1

|uλ(k)|q(k)

=
T+1∑
k=1

(
|∆uλ(k − 1)|p1(k−1) + |∆uλ(k − 1)|p2(k−1)

)
.

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified and
the proof of Theorem 2 is ended.

Theorem 3. If
q− < p−min or q− > p+

max (17)

then, there exists a positive constant λ∗ such that any λ ∈ (0, λ∗) is an eigenvalue
of problem (1).

10
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Proof. Case q− > p+
max.

In order to use a mountain pass lemma, we start by proving that Tλ satisfies the
Palais-Smale condition. Let (un) ⊂W be a sequence such that {Tλ(un)} is bounded
and J (un) → 0. As W is finitely dimensional, it is enough to show that (un) is
bounded. If not, we may assume that ‖un‖ → ∞ as n→∞. Thus, we may consider
that ‖un‖ > 1 for any integer n. Then, by inequality (f), (d) and (e) in Lemma 1,
we get

Tλ(un) ≤ 1

p−max

(
(T + 1)‖un‖p

+
max + (T + 1)

)
− 2q

−
λ

q+
(T + 1)

2−q−
2 ‖un‖q

−

which implies that Tλ(un) → −∞ as ‖un‖ → +∞ because q− > p+
max. Thus, we

obtain a contradiction with the fact that Tλ(un) is bounded. Hence, the sequence
(un) is bounded.

Now, we will verify the other assumptions. Put

Ω =
{
u ∈W : ‖u‖ ≤ (T + 1)

−1
2

}
.

Then, from Lemma 1 (g), it follows

|u(k)| ≤ max
s∈[1,T ]

|u(s)| ≤ (T + 1)
1
2 ‖u‖ ≤ 1, ∀u ∈ Ω, ∀k ∈ [1, T ],

so,

I(u) ≤
T∑
k=1

1

q(k)
, ∀u ∈ Ω.

Therefore, in view Lemma 1 (c), we deduce

Tλ(u) ≥ 1

p+
max

T
p+max−2

2 (T + 1)
−p+max

2 − λ
T∑
k=1

1

q(k)
, ∀u ∈ ∂Ω.

Consequently, if we set

λ∗ =
T

p+max−2
2 (T + 1)

−p+max
2

p+
max

T∑
k=1

1

q(k)

,

then for any λ ∈ (0, λ∗), we have

Tλ(u) > 0, ∀u ∈ ∂Ω. (18)

11
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It remains to verify that there exists h0 such that

uh0 /∈ Ω and Tλ(uh0) < min
u∈∂Ω

Tλ(u). (19)

In fact, let uh ∈W be defined by{
uh(k) = h for k ∈ [1, T ],
uh(0) = uh(T ) = 0,

Therefore, for h > 1, we get

Tλ(uh) ≤2
(hpmax(0)

pmax(0)
+
hpmax(T )

pmax(T )

)
− λ

T∑
k=1

hq(k)

q(k)

≤ 4

p−max
hp

+
max − λ T

q+
hq
−

Since q− > p+
max, we deduce lim

h→∞
Tλ(uh) = −∞. So, the assertion (19) holds true.

Applying a mountain pass lemma, problem (1) has at least one solution, that is, there
exists u∗ ∈W such that T

′
λ(u∗) = 0 and Tλ(u∗) = c, where c > max

(
Tλ(0), Tλ(uh0)

)
.

As, Tλ(0) = 0, u∗ 6= 0.

Case q− < p−min.

Let λ ∈ (0, λ∗) be fixed. From (18) and using the Weierstrass theorem, we obtain

inf
u∈∂Ω

Tλ(u) > 0.

Take t ∈ [0, 1] and define u0 ∈W a function such that{
u0(k) = 0 for k ∈ [1, T ] \ {k0},
u0(k0) = t,

with k0 ∈ [1, T ] is given such that q(k0) = q−. Then,

Tλ(u0) ≤ 2
( tpmin(k0−1)

pmin(k0 − 1)
+
tpmax(k0)

pmin(k0)

)
− λt

q(k0)

q(k0)

≤ 4

p−min

tp
−
min − λ

q+
tq
−
.

Hence, for 0 < t <
(
λp−min
4q+

) 1

p−
min
−q− , we have

Tλ(u0) < 0.

12
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As u0 ∈ IntΩ, we write

inf
u∈IntΩ

Tλ(u) < 0 < inf
u∈∂Ω

Tλ(u).

Let us choose ε > 0 such that

0 < ε < inf
∂Ω
Tλ − inf

IntΩ
Tλ. (20)

Therefore, by applying the Ekeland’s variational principle [6] to the functional Tλ :
Ω→ R, there exists uε ∈ Ω such that

Tλ(uε) < inf
Ω
Tλ + ε and Tλ(uε) < Tλ(u) + ε‖u− uε‖, for u 6= uε.

Hence, by (20), it follows that Tλ(uε) < inf
∂Ω
Tλ and so, uε ∈ IntΩ.

Now, let us define Φλ : Ω → R by Φ(u) = Tλ(u) + ε‖u − uε‖. It is easy to see
that uε is a minimum point of Φ, and thus

Φ(uε + t.v)− Φ(uε)

t
≥ 0,

for t > 0 small enough and any v ∈ Ω. The above expression shows that

Tλ(uε + t.v)− Tλ(uε)

t
+ ε‖v‖ ≥ 0.

Letting t→ 0+, we deduce that

〈T ′λ(uε), u〉+ ε‖u‖ ≥ 0,

that is,
‖T ′λ(uε)‖ ≤ ε.

Therefore, there exists a sequence (un) ⊂ IntΩ such that

Tλ(un)→ c := inf
u∈Ω

Tλ(u), and T
′
λ(un)→ 0 as n→∞.

Since The sequence (un) is bounded in W , there exists u0 ∈ W such that, up to a
subsequence, (un) converges to u0 in W . Thus,

Tλ(u0) = c, and T
′
λ(u0) = 0.

So, u0 is a non trivial weak solution of problem (1).
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