LACUNARY STRONGLY ALMOST SUMMABLE SEQUENCE SPACES DEFINED BY IDEAL AND MODULUS FUNCTION

S. KUMAR, S.S. BHATIA, V. KUMAR

ABSTRACT. In the present article, we define a certain type of sequence spaces: $w_{\theta}^{f}[\mathcal{I},p]_{0}, w_{\theta}^{f}[\mathcal{I},p]$ and $w_{\theta}^{f}[\mathcal{I},p]_{\infty}$. Which are defined by combining the concepts of modulus functions, lacunary sequence and \mathcal{I} -convergence. We also examined some topological properties of the resulting sequence spaces. In the last section, we introduce the concept of \mathcal{I} -lacunary almost statistical convergence and find out a condition under which this convergence coincides with $w_{\theta}^{f}[\mathcal{I},p]$.

2000 Mathematics Subject Classification: 40A05, 40D25.

Keywords: Statistical convergence, \mathcal{I} -convergence, lacunary sequence, modulus function, almost convergence.

1. INTRODUCTION AND BACKGROUND

Let ℓ_{∞} and C be the Banach spaces of real bounded and convergent sequences with the usual supremum norm. In Banach [1], a linear functional \pounds on ℓ_{∞} is said to be a Banach limit if it satisfies the following conditions:

(i) $\pounds(x) \ge 0$ when the sequence $x = (x_k)$ has $x_k \ge 0$ for all k, (ii) $\pounds(e) = 1$, where $e = (1, 1, 1, \dots)$, (iii) $\pounds(Dx) = \pounds(x)$, where D is the shift operator defined by $(Dx_k = x_{k+1})$.

Let \mathfrak{B} be the set of all Banach limits on ℓ_{∞} . A sequence x is said to be almost convergent to a number L if $\mathfrak{L}(x) = L$ for all $\mathfrak{L} \in \mathfrak{B}$. Lorentz[15] has shown that xis almost convergent to L if and only if

$$t_{k_m} = t_{k_m}(x) = \frac{x_m + x_{m+1} + \dots + x_{m+k}}{k+1} \to L \text{ as } k \to \infty,$$

uniformly to m.

Maddox[16] and Freedman et.al.[9] introduced the concept of strongly almost convergence. Further, Das and Sahoo[3] defined the sequence space

$$[w(p)] = \{x \in W : \frac{1}{n+1} \sum_{k=0}^{n} |t_{k_m}(x-\ell)|^{p_k} \to 0 \text{ as } n \to \infty, \}$$

uniformly to m and investigated some of its properties.

The notion of statistical convergence has been introduced by Fast[8] in 1951 and has been developed extensively in different directions by Šalát[22], Fridy[10], Connor[2], Maddox[18] and many others.

A number sequence $x = (x_k)$ is said to be statistically convergent to a number L (denoted by $S - \lim_{k \to \infty} x_k = L$) provided that for every $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |x_k - L| \ge \epsilon\}| = 0,$$

where the vertical bars denote the cardinality of the enclosed set. Let S denotes the set of all statistically convergent sequences of numbers.

By a lacunary sequence, we mean an increasing sequence $\theta = (k_r)$ of positive integers such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$, where the ratio $\frac{k_r}{k_{r-1}}$ is denoted by q_r .

Using lacunary sequence, Fridy and Orhan [11] generalized statistical convergence as follows:

Let $\theta = (k_r)$ be a lacunary sequence. A sequence $x = (x_k)$ of numbers is said to be lacunary statistically convergent to a number L (denoted by $S_{\theta} - \lim_{k \to \infty} x_k = L$) if for each $\epsilon > 0$,

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |x_k - L| \ge \epsilon\}| = 0.$$

Let S_{θ} denotes the set of all lacunary statistically convergent sequences of numbers. Recently, lacunary sequence it has been studied by various authors (for instance [12], [20] and [7]).

A family of sets $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called an ideal in \mathbb{N} if and only if (i) $\emptyset \in \mathcal{I}$; (ii) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$; (iii) For $A \in \mathcal{I}$ and $B \subset A$ we have $B \in \mathcal{I}$.

A non-empty family of sets $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ is called a filter on \mathbb{N} if and only if (i) $\emptyset \notin \mathcal{F}$;(ii) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$;(iii) For $A \in \mathcal{F}$ and $B \supset A$ we have $B \in \mathcal{F}$.

An ideal \mathcal{I} is called non-trivial if $\mathcal{I} \neq \emptyset$ and $\mathbb{N} \notin \mathcal{I}$.

It immediately implies that $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is a non-trivial ideal if and only if the class $\mathcal{F} = \mathcal{F}(\mathcal{I}) = \{\mathbb{N} - A : A \in \mathcal{I}\}$ is a filter on \mathbb{N} . The filter $\mathcal{F} = \mathcal{F}(\mathcal{I})$ is called the filter associated with the ideal \mathcal{I} .

A non-trivial ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called an admissible ideal in \mathbb{N} if and only if it contains all singletons i.e. if it contains $\{\{n\} : n \in \mathbb{N}\}$. Throughout the paper, \mathcal{I} is considered as a non-trivial admissible ideal.

Using the above terminology, Kostyrko et.al.[14] defined \mathcal{I} -convergence as follows:

A sequence $x = (x_k)$ in X is said to be \mathcal{I} -convergent to $\xi \in X$ if for each $\epsilon > 0$, the set $A(\epsilon) = \{k \in \mathbb{N} : |x_k - \xi| \ge \epsilon\} \in \mathcal{I}$. In this case, we write $\mathcal{I} - \lim_{k \to \infty} x_k = \xi$. The detailed history and development of this convergence can be found in ([5], [6], [13] and [4]).

The following inequality will be used throughout the paper. Let $p = (p_k)$ be a positive sequence of real numbers with $0 < p_k \leq \sup_k p_k = H$, $C = \max(1, 2^{H-1})$. Then for $a_k, b_k \in \mathbb{C}$, we have

$$|a_k + b_k|^{p_k} \le C\{|a_k|^{p_k} + |b_k|^{p_k}\},\tag{1}$$

for all $k \in \mathbb{N}$.

The notion of modulus function was introduced by Nakano[19] and now we recall that a modulus function f is a function from $[0, \infty)$ to $[0, \infty)$ such that

(i) f(x) = 0 if and only if x = 0, ii) $f(x + y) \le f(x) + f(y)$ for all $x, y \ge 0$, iii) f is increasing, iv) f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. A modulus function may be bounded or unbounded. Subsequently, the notion of modulus function was used to define sequence spaces by Ruckle[21], Maddox[17], Pehilvan and Fisher[20], Savas[23], Et.and Gokhan[7] and many others. The following well-known lemma is required for establishing a very important result in our article.

Let f be a modulus function and let $0 < \delta < 1$. Then for each $x > \delta$ we have $f(x) \leq \frac{2 \cdot f(1)x}{\delta}$.

2. MAIN RESULTS

In this section, we define a certain type of ideal convergent sequence spaces, where w(X) denotes the space of all sequences $x = (x_k) \in X$.

Definition 1. Let \mathcal{I} be an admissible ideal, f be a modulus function and $p = (p_k)$ be any sequence of positive real numbers. For each $\epsilon > 0$, we define the following sequence spaces:

$$w_{\theta}^{f}[\mathcal{I},p]_{0} = \left\{ x \in w(X) : \{r \in \mathbb{N} : \frac{1}{h_{r}} \sum_{k \in I_{r}} [f(|t_{k_{n}}(x)|)]^{p_{k}} \ge \epsilon \} \in \mathcal{I}, \text{uniformly in } \mathbf{n} \right\},$$

$$w_{\theta}^{f}[\mathcal{I},p] = \left\{ x \in w(X) : \exists \ell > 0, \{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x-\ell)|)]^{p_k} \ge \epsilon \} \in \mathcal{I} \right\},$$

and

$$w_{\theta}^{f}[\mathcal{I},p]_{\infty} = \left\{ x \in w(X) : \exists K > 0 \text{ such that } \{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x)|)]^{p_k} \ge K \} \in \mathcal{I} \right\}$$

uniformly in n. We can write it as $x = (x_k) \in w^f_{\theta}[\mathcal{I}, p]$ or $x_k \to L(w^f_{\theta}[\mathcal{I}, p])$.

Remark 1. If we take particularly f(x) = x in the above definition, then we obtain $w_{\theta}[\mathcal{I}, p]_0, w_{\theta}[\mathcal{I}, p]$ instead of $w_{\theta}^f[\mathcal{I}, p]_0$ and $w_{\theta}^f[\mathcal{I}, p]$ respectively.

Remark 2. When we choose $p_k = 1$ for all $k \in \mathbb{N}$, then the spaces $w_{\theta}^f[\mathcal{I}, p]_0$, $w_{\theta}^f[\mathcal{I}, p]$ and $w_{\theta}^f[\mathcal{I}, p]_{\infty}$ reduce to the spaces $w_{\theta}^f[\mathcal{I}]_0$, $w_{\theta}^f[\mathcal{I}]$ and $w_{\theta}^f[\mathcal{I}]_{\infty}$.

Theorem 1. If $p = (p_k)$ be a bounded sequence and f be a modulus function, then $w^f_{\theta}[\mathcal{I}, p]_0, w^f_{\theta}[\mathcal{I}, p]$ and $w^f_{\theta}[\mathcal{I}, p]_{\infty}$ are linear spaces over \mathbb{C} .

Proof. We have

$$|a_k + b_k|^{p_k} \le C\{|a_k|^{p_k} + |b_k|^{p_k}\},\tag{2}$$

where $\sup_k p_k = H$ and $C = \max(1, 2^{H-1})$. We shall prove the assertion for $w_{\theta}^f[\mathcal{I}, p]_0$, the others can be treated similarly. Let $x = (x_k), y = (y_k) \in w_{\theta}^f[\mathcal{I}, p]_0$. Then for every $\epsilon > 0$, the sets

$$A_{\theta}(\epsilon) = \{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x)|)]^{p_k} \ge \frac{\epsilon}{2} \},$$
(3)

$$B_{\theta}(\epsilon) = \{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(y)|)]^{p_k} \ge \frac{\epsilon}{2}\}$$

$$\tag{4}$$

belong to \mathcal{I} , uniformly in n.

Let $\alpha, \beta \in \mathbb{C}$, then we have

$$\frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(\alpha.x + \beta.y)|)]^{p_k} \leq \frac{1}{h_r} \sum_{k \in I_r} [f(|\alpha|.|t_{k_n}(x)|) + f(|\beta|.|t_{k_n}(y)|)]^{p_k} \\
\leq C.(K_\alpha)^H \cdot \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x)|)]^{p_k} + C.(K_\beta)^H \cdot \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(y)|)]^{p_k} \quad \text{by (2),}$$

where $|\alpha| \leq K_{\alpha}$ and $|\beta| \leq K_{\beta}$.

Then for given $\epsilon > 0$, we have the following inclusion relations

$$\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(\alpha . x + \beta . y)|)]^{p_k} \ge \epsilon\}$$
$$\subseteq \{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x)|)]^{p_k} \ge \frac{\epsilon}{2C \cdot (K_\alpha)^H}\}$$
$$\cup \{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(y)|)]^{p_k} \ge \frac{\epsilon}{2C \cdot (K_\beta)^H}\}$$

uniformly in n.

By using (3) and (4), the set $\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(\alpha . x + \beta . y)|)]^{p_k} \ge \epsilon\} \in \mathcal{I}.$ This completes the proof.

Theorem 2. Let f' and f'' are modulus functions. If

$$\limsup_{t \to \infty} \frac{f'(t)}{f''(t)} = M > 0,$$

then $w_{\theta}^{f'}[\mathcal{I},p] \subset w_{\theta}^{f''}[\mathcal{I},p].$

Proof. We assume that $\limsup_{t\to\infty} \frac{f'(t)}{f''(t)} = M$, then there exists an integer K > 0 such that $f'(t) \ge K \cdot f''(t)$ for all $t \ge 0$. Which implies that

$$\frac{1}{h_r} \sum_{k \in I_r} [f'(|t_{k_n}(x-\ell)|)]^{p_k} \ge (K)^H \cdot \frac{1}{h_r} \sum_{k \in I_r} [f''(|t_{k_n}(x-\ell)|)]^{p_k}.$$

Then for any $\epsilon > 0$, we have

$$\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f''(|t_{k_n}(x-\ell)|)]^{p_k} \ge \epsilon\} \subseteq \{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f'(|t_{k_n}(x-\ell)|)]^{p_k} \ge \epsilon.(K)^H\},\$$

uniformly in n.

Since $x \in w_{\theta}^{f'}[\mathcal{I}, p]$, therefore by above containment it follows that $x \in w_{\theta}^{f''}[\mathcal{I}, p]$.

Theorem 3. If f, f' and f'' are modulus functions, then (i) $w_{\theta}^{f'}[\mathcal{I}, p] \subset w_{\theta}^{f \circ f'}[\mathcal{I}, p],$ (ii) $w_{\theta}^{f'}[\mathcal{I}, p] \cap w_{\theta}^{f''}[\mathcal{I}, p] \subset w_{\theta}^{f'+f''}[\mathcal{I}, p].$ *Proof.* (i) We suppose that $x = (x_k) \in w_{\theta}^{f'}[\mathcal{I}, p]$. Let $\epsilon > 0$, we choose $\delta \in (0, 1)$ such that $f(t) < \epsilon$ for all $0 < t < \delta$. Since $x \in w_{\theta}^{f'}[\mathcal{I}, p]$ such that

$$A_{\theta}(\delta) = \{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f'(|t_{k_n}(x-\ell)|)]^{p_k} \ge \delta\} \in \mathcal{I},$$
(5)

uniformly in n.

On the other hand, we have

$$\frac{1}{h_r} \sum_{k \in I_r} [f \circ f'(|t_{k_n}(x-\ell)|)]^{p_k} = \frac{1}{h_r} \sum_{k \in I_r \& [f'(|t_{k_n}(x-\ell)|)]^{p_k} < \delta} [f \circ f'(|t_{k_n}(x-\ell)|)]^{p_k} + \frac{1}{h_r} \sum_{k \in I_r \& [f'(|t_{k_n}(x-\ell)|)]^{p_k} \ge \delta} [f \circ f'(|t_{k_n}(x-\ell)|)]^{p_k} \le (\epsilon)^H + \max(1, (2 \cdot \frac{f(1)}{\delta})^H) \cdot \frac{1}{h_r} \sum_{k \in I_r} [f'(|t_{k_n}(x-\ell)|)]^{p_k}.$$

By using (5), we have $x \in w_{\theta}^{f \circ f'}[\mathcal{I}, p]$.

(ii) The result of the theorem can be proved by using the following inequality

$$\frac{1}{h_r} \sum_{k \in I_r} [(f' + f'')(|t_{k_n}(x - \ell)|)]^{p_k} \le \frac{C}{h_r} \sum_{k \in I_r} [f'(|t_{k_n}(x - \ell)|)]^{p_k} + \frac{C}{h_r} \sum_{k \in I_r} [f''(|t_{k_n}(x - \ell)|)]^{p_k},$$

where $\sup_k p_k = H$ and $C = \max(1, 2^{H-1})$.

Theorem 4. Let f be a modulus function. If $p = (p_k)$ be a sequence of positive real numbers, then $w_{\theta}[\mathcal{I}, p] \subseteq w_{\theta}^f[\mathcal{I}, p]$.

Proof. This result can be proved by using the techniques similar to those used in theorem 3(i).

Theorem 5. Let f be a modulus function. If $\limsup_{t\to\infty} \frac{f(t)}{t} = L > 0$, then

$$w_{\theta}^{f}[\mathcal{I},p] \subseteq w_{\theta}[\mathcal{I},p].$$

Proof. We have $\limsup_{t\to\infty} \frac{f(t)}{t} = L > 0$, then there exists a constant K > 0 such that $f(t) \ge K \cdot t$ for all $t \ge 0$. Which implies that

Which implies that

$$\frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x-\ell)|)]^{p_k} \ge (K)^H \cdot \frac{1}{h_r} \sum_{k \in I_r} [|t_{k_n}(x-\ell)|]^{p_k} \cdot \frac{1}{h_r} \sum_$$

This gives the result.

Theorem 6. If $0 < p_k \leq q_k$ and $(\frac{q_k}{p_k})$ be bounded, then $w_{\theta}^f[\mathcal{I}, q] \subset w_{\theta}^f[\mathcal{I}, p]$. *Proof.* The proof of this theorem is omitted.

3. $[S_{\theta}(\mathcal{I})]$ -convergence

In this section, we introduce the concept of \mathcal{I} -lacunary almost statistical convergence and also obtain a condition under which the class $[S_{\theta}(\mathcal{I})]$ of all \mathcal{I} -lacunary almost statistically convergent sequences coincides with the sequence space $w_{\theta}^{f}[\mathcal{I}, p]$.

Definition 2. A sequence $x = (x_k)$ is said to be \mathcal{I} -lacunary almost statistically convergent or $[S_{\theta}(\mathcal{I})]$ -convergent to a number ℓ provided that for every $\epsilon > 0$ and $\delta > 0$

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} |\{k \in I_r : |t_{k_n}(x-\ell)| \ge \epsilon\}| \ge \delta\right\} \in \mathcal{I}, uniformly in n.$$

In this case, we write $x_k \to \ell([S_{\theta}(\mathcal{I})])$ or $[S_{\theta}(\mathcal{I})] - \lim_{k \to \infty} x_k = \ell$. The set of all \mathcal{I} -lacunary almost statistically convergent sequences is denoted by $[S_{\theta}(\mathcal{I})]$.

Theorem 7. Let f be a modulus function and $p = (p_k)$ be a sequence of positive real numbers. If $0 < \inf_k p_k = h \le p_k \le \sup_k p_k = H < \infty$, then $w_{\theta}^f[\mathcal{I}, p] \subset [S_{\theta}(\mathcal{I})]$.

Proof. Suppose $x \in w^f_{\theta}[\mathcal{I}, p]$ and $\epsilon > 0$ be given. Then we have

$$\frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x-\ell)|)]^{p_k} = \frac{1}{h_r} \sum_{k \in I_r \& |t_{k_n}(x-\ell)| \ge \epsilon} [f(|t_{k_n}(x-\ell)|)]^{p_k} + \frac{1}{h_r} \sum_{k \in I_r \& |t_{k_n}(x-\ell)| < \epsilon} [f(|t_{k_n}(x-\ell)|)]^{p_k}$$

$$\geq \frac{1}{h_r} \sum_{k \in I_r \& |t_{k_n}(x-\ell)| \geq \epsilon} [f(|t_{k_n}(x-\ell)|)]^{p_k} \geq \frac{1}{h_r} \sum_{k \in I_r} [f(\epsilon)]^{p_k}$$
$$\geq \frac{1}{h_r} \sum_{k \in I_r} \min([f(\epsilon)]^h, [f(\epsilon)]^H) \geq \frac{1}{h_r} |\{k \in I_r : |t_{k_n}(x-\ell)| \geq \epsilon\}|.\min([f(\epsilon)]^h, [f(\epsilon)]^H).$$

Then for $\delta > 0$ and uniformly in *n*, we have

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} |\{k \in I_r : |t_{k_n}(x-\ell)| \ge \epsilon\}| \ge \delta\right\} \subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} [f(|t_{k_n}(x-\ell)|)]^{p_k} \ge K.\delta\right\}$$

where $K = \min([f(\epsilon)]^h, [f(\epsilon)]^H)$. Since $x_k \to \ell(w_{\theta}^f[\mathcal{I}, p])$ so that $[S_{\theta}(\mathcal{I})] - \lim_{k \to \infty} x_k = \ell$.

Theorem 8. Let f be a bounded modulus function and $0 < inf_k p_k = h \le p_k \le sup_k p_k = H < \infty$, then $[S_{\theta}(\mathcal{I})] \subset w_{\theta}^f[\mathcal{I}, p]$.

Proof. Using the same technique of theorem 3.3 of [7], it is easy to prove this theorem.

Theorem 9. If $0 < inf_k p_k = h \le p_k \le sup_k p_k = H < \infty$, then $[S_{\theta}(\mathcal{I})] = w_{\theta}^f[\mathcal{I}, p]$ if and only if f is bounded.

Proof. This part is the direct consequence of theorem 7 and 8. *Conversely*: Suppose f is unbounded defined by f(k) = k for all $k \in \mathbb{N}$ and $\theta = (2^r)$ be a lacunary sequence. We take a fixed $A \in \mathcal{I}$ and define $x = (x_k)$ as follows:

$$x_k = \begin{cases} k, & \text{for } r \notin A, \ 2^{r-1} + 1 \le k \le 2^{r-1} + [\sqrt{h_r}], \\ k, & \text{for } r \in A, \ 2^{r-1} < k \le 2^{r-1} + h_r, \\ 0, & \text{otherwise,} \end{cases}$$

where $I_r = (2^{r-1}, 2^r]$ and $h_r = 2^r - 2^{r-1}$. Then for given $\epsilon > 0$, we have

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |t_{k_n}(x-0)| \ge \epsilon\}| \le \frac{\left[\sqrt{h_r}\right]}{h_r} \to 0$$

for $r \notin A$ and uniformly in n.

Hence for $\delta > 0$, there exists a positive integer r_0 such that

$$\frac{1}{h_r}|\{k \in I_r : |t_{k_n}(x-0)| \ge \epsilon\}| < \delta \text{ for } r \notin A \text{ and } r \ge r_0.$$

Now, we have

$$\{r \in \mathbb{N} : \frac{1}{h_r} | \{k \in I_r : |t_{k_n}(x-0)| \ge \epsilon\} | \ge \delta\} \subset \{A \cup (1, 2, \dots r_0 - 1)\},\$$

uniformly in n.

Since \mathcal{I} be an admissible ideal, It follows that $[S_{\theta}(\mathcal{I})] - \lim_{k \to \infty} x_k = 0.$

If we take $p_k = 1$ for all $k = 1, 2, \cdots$ and $t_{0_n}(x) = x_n$, then $x = (x_k) \notin w_{\theta}^f[\mathcal{I}, p]$. This contradicts the fact $[S_{\theta}(\mathcal{I})] = w_{\theta}^f[\mathcal{I}, p]$.

Acknowledgements. The authors are thankful to the editorial board and the reviewers for the their valuable comments and support to present research. Which enhanced the quality and presentation of this paper.

References

[1] S. Banach, *Theorie operations lineaires*, Chelsea publishing Co. Newyork, (1955).

[2] J. Connor, The statistical and strong p - Cesa'ro convergence of sequences, Analysis. 8(1988), 47-63.

[3] G. Das and S. K. Sahoo, *On some sequence spaces*, J. Math. Anal. Appl. 164(1992), 381-398.

[4] P. Das, E. Savas and S. K. Ghosal, On generalizations of certain summability methods using ideals, Appl Math Letters. 24(2011), 1509-1514.

[5] K. Demirci, \mathcal{I} -limit superior and inferior, Math. Commun. 6(2001), 165-172.

[6] K. Dems, On *I*-Cauchy sequences, Real Analysis Exchange. 30(2004), 123-128.

[7] M. Et and A. Gokhan, *Lacunary strongly almost summable sequences*, Studia Univ."Babes-Bolyai"Mathematica. 53(4)(2008), 29-38.

[8] H. Fast, Surla convergence statistique, Colloq Math. 2(1951), 241-244.

[9] A. R. Freedman, J. J. Sember and M. Raphael, *Some Cesa'ro type summability spaces*, Proc. London Math. Soc. 37(1978), 508-520.

[10] J. A. Fridy, On statistical convergence, Analysis. 5(1985), 301-313.

[11] J. A. Fridy and C. Orhan, *Lacunary statistical convergence*, Pacific J. Math. 160(1993), 43-51.

[12] J. A. Fridy and C. Orhan, *Lacunary statistical summability*, J. Math. Anal. Appl. 173(1993), 497-504.

[13] F. Gezer and S. Karakus, \mathcal{I} and \mathcal{I}^* convergent function sequences, Math. Commun. 10(2005), 71-80.

[14] P. Kostyrko, T. Šalát and W. Wilczynski, \mathcal{I} -convergence, Real Anal Exchange 26(2000), 669-686.

[15] G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80(1948), 167-190.

[16] I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc. 83(1978), 61-64.

[17] I. J. Maddox, Sequence spaces defined by a modulus, Mat. Proc. Camb. Phil. Soc. 100(1986), 161-166.

[18] I. J. Maddox, *Statistical convergence in a locally convex sequence space*, Math. Proc. Cambridge Philos. Soc. 104(1988), 141-145.

[19] H. Nakano, *Concave modulars*, J. Math. Soc. Japan 5(1953), 29-49.

[20] S. Pehilvan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment Math. Univ. Carolin. 36(1995), 69-76. [21] W.H. Ruckle, *FK spaces in which the sequence on coordinate vectors in bounded*, Canad. J. Math. 25(1973), 973-978.

[22] T. Šalát, On statistically convergent sequences of real numbers, Math Slovaca. 30(1980), 139-150.

[23] E. Savas, On some generalized sequence spaces defined by a modulus functions, Indian J. Pure and appl. Math. 5(1999), 459-464.

S. Kumar(Corresponding author) School of Mathematics and Computer Applications, Thapar University, Patiala(Punjab), India email: sudhirgd@yahoo.in

S. S. Bhatia School of Mathematics and Computer Applications, Thapar University, Patiala, India email: ssbhatia63@yahoo.com

V. Kumar Department of Mathematics, Haryana College of Technology and Management, Kaithal, India email: vjy_kauhik@yahoo.com