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Abstract. In the present article, we define a certain type of sequence spaces:-
wfθ [I, p]0, wfθ [I, p] and wfθ [I, p]∞.Which are defined by combining the concepts of
modulus functions, lacunary sequence and I−convergence. We also examined some
topological properties of the resulting sequence spaces. In the last section, we in-
troduce the concept of I−lacunary almost statistical convergence and find out a
condition under which this convergence coincides with wfθ [I, p].
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1. Introduction and Background

Let `∞ and C be the Banach spaces of real bounded and convergent sequences with
the usual supremum norm. In Banach [1], a linear functional £ on `∞ is said to be
a Banach limit if it satisfies the following conditions:

(i) £(x) ≥ 0 when the sequence x = (xk) has xk ≥ 0 for all k, (ii) £(e) = 1,
where e = (1, 1, 1, · · · ), (iii) £(Dx) = £(x), where D is the shift operator defined
by (Dxk = xk+1).

Let B be the set of all Banach limits on `∞. A sequence x is said to be almost
convergent to a number L if £(x) = L for all £ ∈ B. Lorentz[15] has shown that x
is almost convergent to L if and only if

tkm = tkm(x) =
xm + xm+1 + · · ·+ xm+k

k + 1
→ L as k →∞,

uniformly to m.
Maddox[16] and Freedman et.al.[9] introduced the concept of strongly almost

convergence. Further, Das and Sahoo[3] defined the sequence space

[w(p)] = {x ∈W :
1

n+ 1

n∑
k=0

|tkm(x− `)|pk → 0 as n→∞, }
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uniformly to m and investigated some of its properties.
The notion of statistical convergence has been introduced by Fast[8] in 1951

and has been developed extensively in different directions by S̆alát[22], Fridy[10],
Connor[2], Maddox[18] and many others.

A number sequence x = (xk) is said to be statistically convergent to a number
L (denoted by S − limk→∞ xk = L) provided that for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0,

where the vertical bars denote the cardinality of the enclosed set. Let S denotes the
set of all statistically convergent sequences of numbers.

By a lacunary sequence, we mean an increasing sequence θ = (kr) of positive
integers such that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. The intervals
determined by θ will be denoted by Ir = (kr−1, kr], where the ratio kr

kr−1
is denoted

by qr.
Using lacunary sequence, Fridy and Orhan [11] generalized statistical conver-

gence as follows:
Let θ = (kr) be a lacunary sequence. A sequence x = (xk) of numbers is said to

be lacunary statistically convergent to a number L (denoted by Sθ−limk→∞ xk = L)
if for each ε > 0,

lim
r−→∞

1

hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

Let Sθ denotes the set of all lacunary statistically convergent sequences of numbers.
Recently, lacunary sequence it has been studied by various authors (for instance
[12], [20] and [7]).

A family of sets I ⊂ P(N) is called an ideal in N if and only if (i) ∅ ∈ I;(ii) For
each A,B ∈ I we have A ∪B ∈ I; (iii) For A ∈ I and B ⊂ A we have B ∈ I.

A non-empty family of sets F ⊂ P(N) is called a filter on N if and only if (i)
∅ /∈ F ;(ii) For each A,B ∈ F we have A ∩ B ∈ F ;(iii) For A ∈ F and B ⊃ A we
have B ∈ F .

An ideal I is called non-trivial if I 6= ∅ and N /∈ I.
It immediately implies that I ⊂ P(N) is a non-trivial ideal if and only if the

class F = F(I) = {N − A : A ∈ I} is a filter on N. The filter F = F(I) is called
the filter associated with the ideal I.

A non-trivial ideal I ⊂ P(N) is called an admissible ideal in N if and only if it
contains all singletons i.e. if it contains {{n} : n ∈ N}. Throughout the paper, I is
considered as a non-trivial admissible ideal.

Using the above terminology, Kostyrko et.al.[14] defined I−convergence as fol-
lows:
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A sequence x = (xk) in X is said to be I−convergent to ξ ∈ X if for each ε > 0,
the set A(ε) = {k ∈ N : |xk − ξ| ≥ ε} ∈ I. In this case, we write I − limk→∞ xk = ξ.
The detailed history and development of this convergence can be found in ([5], [6],
[13] and [4]).

The following inequality will be used throughout the paper. Let p = (pk) be a
positive sequence of real numbers with 0 < pk ≤ supkpk = H, C = max(1, 2H−1).
Then for ak, bk ∈ C, we have

|ak + bk|pk ≤ C{|ak|pk + |bk|pk}, (1)

for all k ∈ N.
The notion of modulus function was introduced by Nakano[19] and now we recall

that a modulus function f is a function from [0,∞) to [0,∞) such that
(i) f(x) = 0 if and only if x = 0, ii) f(x + y) ≤ f(x) + f(y) for all x, y ≥ 0, iii)

f is increasing, iv) f is continuous from right at 0.
It follows that f must be continuous everywhere on [0,∞). A modulus function

may be bounded or unbounded. Subsequently, the notion of modulus function was
used to define sequence spaces by Ruckle[21], Maddox[17], Pehilvan and Fisher[20],
Savas[23], Et.and Gokhan[7] and many others. The following well-known lemma is
required for establishing a very important result in our article.

Let f be a modulus function and let 0 < δ < 1. Then for each x > δ we have
f(x) ≤ 2.f(1)x

δ .

2. Main Results

In this section, we define a certain type of ideal convergent sequence spaces, where
w(X) denotes the space of all sequences x = (xk) ∈ X.

Definition 1. Let I be an admissible ideal, f be a modulus function and p = (pk)
be any sequence of positive real numbers. For each ε > 0, we define the following
sequence spaces:

wfθ [I, p]0 =

x ∈ w(X) : {r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(x)|)]pk ≥ ε} ∈ I, uniformly in n

 ,

wfθ [I, p] =

x ∈ w(X) : ∃ ` > 0, {r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(x− `)|)]pk ≥ ε} ∈ I

 ,
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and

wfθ [I, p]∞ =

x ∈ w(X) : ∃K > 0 such that {r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(x)|)]pk ≥ K} ∈ I

 ,

uniformly in n. We can write it as x = (xk) ∈ wfθ [I, p] or xk → L(wfθ [I, p]).

Remark 1. If we take particularly f(x) = x in the above definition, then we obtain

wθ[I, p]0, wθ[I, p] instead of wfθ [I, p]0 and wfθ [I, p] respectively.

Remark 2. When we choose pk = 1 for all k ∈ N, then the spaces wfθ [I, p]0, wfθ [I, p]
and wfθ [I, p]∞ reduce to the spaces wfθ [I]0, wfθ [I] and wfθ [I]∞.

Theorem 1. If p = (pk) be a bounded sequence and f be a modulus function, then

wfθ [I, p]0, wfθ [I, p] and wfθ [I, p]∞ are linear spaces over C.

Proof. We have
|ak + bk|pk ≤ C{|ak|pk + |bk|pk}, (2)

where supkpk = H and C = max(1, 2H−1). We shall prove the assertion for wfθ [I, p]0,
the others can be treated similarly. Let x = (xk), y = (yk) ∈ wfθ [I, p]0. Then for
every ε > 0, the sets

Aθ(ε) = {r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(x)|)]pk ≥ ε

2
}, (3)

Bθ(ε) = {r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(y)|)]pk ≥ ε

2
} (4)

belong to I, uniformly in n.
Let α, β ∈ C, then we have

1

hr

∑
k∈Ir

[f(|tkn(α.x+ β.y)|)]pk ≤ 1

hr

∑
k∈Ir

[f(|α|.|tkn(x)|) + f(|β|.|tkn(y)|)]pk

≤ C.(Kα)H .
1

hr

∑
k∈Ir

[f(|tkn(x)|)]pk + C.(Kβ)H .
1

hr

∑
k∈Ir

[f(|tkn(y)|)]pk by (2),

where |α| ≤ Kα and |β| ≤ Kβ.
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Then for given ε > 0, we have the following inclusion relations

{r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(α.x+ β.y)|)]pk ≥ ε}

⊆ {r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(x)|)]pk ≥ ε

2C.(Kα)H
}

∪{r ∈ N :
1

hr

∑
k∈Ir

[f(|tkn(y)|)]pk ≥ ε

2C.(Kβ)H
}

uniformly in n.
By using (3) and (4), the set {r ∈ N : 1

hr

∑
k∈Ir [f(|tkn(α.x+ β.y)|)]pk ≥ ε} ∈ I.

This completes the proof.

Theorem 2. Let f ′ and f ′′ are modulus functions. If

lim sup
t→∞

f ′(t)

f ′′(t)
= M > 0,

then wf
′

θ [I, p] ⊂ wf
′′

θ [I, p].

Proof. We assume that lim supt→∞
f ′(t)
f ′′(t) = M , then there exists an integer K > 0

such that f ′(t) ≥ K.f ′′(t) for all t ≥ 0.
Which implies that

1

hr

∑
k∈Ir

[f ′(|tkn(x− `)|)]pk ≥ (K)H .
1

hr

∑
k∈Ir

[f ′′(|tkn(x− `)|)]pk .

Then for any ε > 0, we have

{r ∈ N :
1

hr

∑
k∈Ir

[f ′′(|tkn(x− `)|)]pk ≥ ε} ⊆ {r ∈ N :
1

hr

∑
k∈Ir

[f ′(|tkn(x− `)|)]pk ≥ ε.(K)H},

uniformly in n.

Since x ∈ wf
′

θ [I, p], therefore by above containment it follows that x ∈ wf
′′

θ [I, p].

Theorem 3. If f, f ′ and f ′′ are modulus functions, then

(i) wf
′

θ [I, p] ⊂ wf◦f
′

θ [I, p],
(ii) wf

′

θ [I, p] ∩ wf
′′

θ [I, p] ⊂ wf
′+f ′′

θ [I, p].
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Proof. (i) We suppose that x = (xk) ∈ wf
′

θ [I, p]. Let ε > 0, we choose δ ∈ (0, 1)

such that f(t) < ε for all 0 < t < δ. Since x ∈ wf
′

θ [I, p] such that

Aθ(δ) = {r ∈ N :
1

hr

∑
k∈Ir

[f ′(|tkn(x− `)|)]pk ≥ δ} ∈ I, (5)

uniformly in n.
On the other hand, we have

1

hr

∑
k∈Ir

[f ◦ f ′(|tkn(x− `)|)]pk =
1

hr

∑
k∈Ir&[f ′(|tkn (x−`)|)]pk<δ

[f ◦ f ′(|tkn(x− `)|)]pk

+
1

hr

∑
k∈Ir&[f ′(|tkn (x−`)|)]pk≥δ

[f ◦ f ′(|tkn(x− `)|)]pk

≤ (ε)H + max(1, (2.
f(1)

δ
)H).

1

hr

∑
k∈Ir

[f ′(|tkn(x− `)|)]pk .

By using (5), we have x ∈ wf◦f
′

θ [I, p].
(ii) The result of the theorem can be proved by using the following inequality

1

hr

∑
k∈Ir

[(f ′ + f ′′)(|tkn(x− `)|)]pk ≤ C

hr

∑
k∈Ir

[f ′(|tkn(x− `)|)]pk

+
C

hr

∑
k∈Ir

[f ′′(|tkn(x− `)|)]pk ,

where supkpk = H and C = max(1, 2H−1).

Theorem 4. Let f be a modulus function. If p = (pk) be a sequence of positive real

numbers, then wθ[I, p] ⊆ wfθ [I, p].

Proof. This result can be proved by using the techniques similar to those used in
theorem 3(i).

Theorem 5. Let f be a modulus function. If lim supt→∞
f(t)
t = L > 0, then

wfθ [I, p] ⊆ wθ[I, p].

Proof. We have lim supt→∞
f(t)
t = L > 0, then there exists a constant K > 0 such

that f(t) ≥ K.t for all t ≥ 0.
Which implies that

1

hr

∑
k∈Ir

[f(|tkn(x− `)|)]pk ≥ (K)H .
1

hr

∑
k∈Ir

[|tkn(x− `)|]pk .
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This gives the result.

Theorem 6. If 0 < pk ≤ qk and ( qkpk ) be bounded, then wfθ [I, q] ⊂ wfθ [I, p].

Proof. The proof of this theorem is omitted.

3. [Sθ(I)]−convergence

In this section, we introduce the concept of I−lacunary almost statistical conver-
gence and also obtain a condition under which the class [Sθ(I)] of all I−lacunary

almost statistically convergent sequences coincides with the sequence space wfθ [I, p].

Definition 2. A sequence x = (xk) is said to be I−lacunary almost statistically
convergent or [Sθ(I)]−convergent to a number ` provided that for every ε > 0 and
δ > 0 {

r ∈ N :
1

hr
|{k ∈ Ir : |tkn(x− `)| ≥ ε}| ≥ δ

}
∈ I, uniformly in n.

In this case, we write xk → `([Sθ(I)]) or [Sθ(I)] − limk→∞ xk = `. The set of all
I−lacunary almost statistically convergent sequences is denoted by [Sθ(I)].

Theorem 7. Let f be a modulus function and p = (pk) be a sequence of positive

real numbers. If 0 < inf kpk = h ≤ pk ≤ supkpk = H <∞, then wfθ [I, p] ⊂ [Sθ(I)].

Proof. Suppose x ∈ wfθ [I, p] and ε > 0 be given. Then we have

1

hr

∑
k∈Ir

[f(|tkn(x− `)|)]pk =
1

hr

∑
k∈Ir&|tkn (x−`)|≥ε

[f(|tkn(x− `)|)]pk

+
1

hr

∑
k∈Ir&|tkn (x−`)|<ε

[f(|tkn(x− `)|)]pk

≥ 1

hr

∑
k∈Ir&|tkn (x−`)|≥ε

[f(|tkn(x− `)|)]pk ≥ 1

hr

∑
k∈Ir

[f(ε)]pk

≥ 1

hr

∑
k∈Ir

min([f(ε)]h, [f(ε)]H) ≥ 1

hr
|{k ∈ Ir : |tkn(x− `)| ≥ ε}|.min([f(ε)]h, [f(ε)]H).

Then for δ > 0 and uniformly in n, we have{
r ∈ N :

1

hr
|{k ∈ Ir : |tkn(x− `)| ≥ ε}| ≥ δ

}
⊆ {r ∈ N :

1

hr

∑
k∈Ir

[f(|tkn(x− `)|)]pk ≥ K.δ},
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where K = min([f(ε)]h, [f(ε)]H).

Since xk → `(wfθ [I, p]) so that [Sθ(I)]− limk→∞ xk = `.

Theorem 8. Let f be a bounded modulus function and 0 < inf kpk = h ≤ pk ≤
supkpk = H <∞, then [Sθ(I)] ⊂ wfθ [I, p].

Proof. Using the same technique of theorem 3.3 of [7], it is easy to prove this theo-
rem.

Theorem 9. If 0 < inf kpk = h ≤ pk ≤ supkpk = H < ∞, then [Sθ(I)] = wfθ [I, p]
if and only if f is bounded.

Proof. This part is the direct consequence of theorem 7 and 8.
Conversely : Suppose f is unbounded defined by f(k) = k for all k ∈ N and θ = (2r)
be a lacunary sequence. We take a fixed A ∈ I and define x = (xk) as follows:

xk =


k, for r /∈ A, 2r−1 + 1 ≤ k ≤ 2r−1 + [

√
hr],

k, for r ∈ A, 2r−1 < k ≤ 2r−1 + hr,
0, otherwise,

where Ir = (2r−1, 2r] and hr = 2r − 2r−1.
Then for given ε > 0, we have

lim
r→∞

1

hr
|{k ∈ Ir : |tkn(x− 0)| ≥ ε}| ≤ [

√
hr]

hr
→ 0

for r /∈ A and uniformly in n.
Hence for δ > 0, there exists a positive integer r0 such that

1

hr
|{k ∈ Ir : |tkn(x− 0)| ≥ ε}| < δ for r /∈ A and r ≥ r0.

Now, we have

{r ∈ N :
1

hr
|{k ∈ Ir : |tkn(x− 0)| ≥ ε}| ≥ δ} ⊂ {A ∪ (1, 2, · · · r0 − 1)} ,

uniformly in n.
Since I be an admissible ideal, It follows that [Sθ(I)]− limk→∞ xk = 0.

If we take pk = 1 for all k = 1, 2, · · · and t0n(x) = xn, then x = (xk) /∈ wfθ [I, p].
This contradicts the fact [Sθ(I)] = wfθ [I, p].
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