ON $(\in, \in \lor Q_K)$ -FUZZY KU-IDEALS OF KU-ALGEBRAS

M. Gulistan, M. Shahzad, N. Yaqoob

ABSTRACT. We define $(\in, \in \lor q_k)$ -fuzzy KU-ideals of KU-algebras and then some related results have been provided.

2000 Mathematics Subject Classification: 03G25.

Keywords: KU-algebras, KU-ideals, $(\in, \in \lor q_k)$ -fuzzy KU-ideals.

1. INTRODUCTION

Fuzzy set theory was first introduced by Zadeh [9] in 1965. The concept of KUalgebras was given by Prabpayak and Leerawat [6, 7] in 2009. The study of fuzzy KU-algebras was first initiated by Mostafa et al. [4]. They also studied KU-algebras in terms of interval-valued fuzzy sets in [5]. Akram et al. [2] introduced the concept of interval valued ($\tilde{\theta}, \tilde{\delta}$)-fuzzy KU-ideals of KU-algebras and Yaqoob et al. [8] introduced the concept of cubic KU-ideals of KU-algebras.

In this article, we study the concept of $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra and $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of KU-algebras.

2. Review of literature

Now we recall some known concepts related to KU-algebra from the literature which will be helpful in further study of this article.

Definition 1. [6] By a KU-algebra we mean an algebra with a binary operation "*", satisfying the following conditions:

 $\begin{array}{l} (i):\,(l*m)*[(m*n)*(l*n)]=0,\\ (ii):\,l*0=0,\,\forall\;l\in\mathbf{X},\\ (iii):\,0*l=l,\,\forall\;l\in\mathbf{X},\\ (iv):\,l*m=0=m*l\;implies\;l=m,\,\forall\;l,m,n\in\mathbf{X}. \end{array}$

We call it an algebra $(\mathbf{X}, *, 0)$ of type (2, 0). In further study of this article we denote a KU-algebra by \mathbf{X} . We define " \leq " in \mathbf{X} as if $l \leq m$ if and only if m * l = 0.

Definition 2. [7] A subset S of KU-algebra **X** is called KU-subalgebra of **X** if $l * m \in S$, whenever $l, m \in S$.

Definition 3. [7] A non-empty subset A of a KU-algebra **X** is called a KU-ideal of **X** if it satisfies the following conditions:

- (1) $0 \in A$,
- (2) $l * (m * n) \in A, m \in A \text{ implies } l * n \in A, \text{ for all } l, m, n \in \mathbf{X}.$

Definition 4. Fuzzy point in a KU-algebra **X** is defined as

$$\psi\left(z\right) = \begin{cases} t & \text{if } z = x\\ 0 & \text{otherwise} \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t . The notation $x_t \alpha \psi$ means that $\psi(x) \ge t$ and $x_t q \psi$ means that $\psi(x) + t > 1$ and $x_t q_k \psi \Rightarrow \psi(x) + t + k > 1$, while the notation $x_t \overline{\alpha} \psi \Rightarrow x_t \alpha \psi$ does not hold.

3. $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideals in KU-algebras

In this section we study the properties of $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideals.

Definition 5. A fuzzy subset $\psi : \mathbf{X} \to [0,1]$ is said to be $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra of \mathbf{X} if it satisfy the following conditions:

- (i) $[x, t] \in \psi \Rightarrow [0, t] \in \lor \mathbf{q}_k \psi$,
- (*ii*) $[x * y, t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x, t_1 \land t_2] \in \lor \mathbf{q}_k \psi.$

Example 1. Let us consider the KU-algebra (X, *, 0) in which * is defined as follows:

*	0	l	m	n	p
0	0	l	m	n	p
l	0	0	m	n	p
m	0	l	0	n	n
n	0	0	m	0	m
p	0	0	0	0	0

Let us define $\psi(0) = 0.9$, $\psi(l) = 0.8$, $\psi(m) = 0.7$, $\psi(n) = 0.6$, $\psi(p) = 0.5$. Let t = 0.49 and k = 0.48 then by routine calculation it is clear that ψ is an $(\in, \in \lor \mathbf{q}_{0.48})$ -fuzzy KU-subalgebra of \mathbf{X} .

Definition 6. A fuzzy subset $\psi : \mathbf{X} \to [0,1]$ is said to be an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KUideal of \mathbf{X} if it satisfy the following conditions:

- (i) $[x, t] \in \psi \Rightarrow [0, t] \in \lor \mathbf{q}_k \psi$,
- $(ii) \ [x*(y*z), \ t_1] \in \psi, [y, \ t_2] \in \psi \Rightarrow [x*z, \ t_1 \wedge t_2] \in \lor \mathbf{q}_k \psi.$

Theorem 1. A fuzzy subset ψ of **X** is said to be an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of X if and only if it satisfy:

(i) $\psi(0) \ge \min\left\{\psi(x), \frac{1-k}{2}\right\},\$

 $(ii) \ \psi (x * z) \ge \min \left\{ \psi(x * (y * z)), \ \psi (y), \ \frac{1-k}{2} \right\} \ \forall x, y, z \in \mathbf{X}.$

Proof. Let ψ of **X** is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X**. Let there exist some x, y, z in **X** such that

(i) $\psi(0) < \min\left\{\psi(x), \frac{1-k}{2}\right\},\$

(*ii*) $\psi(x * z) < \min\left\{\psi(x * (y * z)), \psi(y), \frac{1-k}{2}\right\}.$

Now consider (i) and if $\psi(x) < \frac{1-k}{2} \Rightarrow \psi(0) < \psi(x)$ and $\psi(0) < t \le \psi(x)$ for some $t \in (0,1) \Rightarrow [x, t] \in \psi$ but $[0, t] \overline{\in} \psi$. Moreover $\psi(0) + t < 2t < 1 - k$ which implies that $[0, t] \overline{q}_k \psi$. Hence $[0, t] \overline{\in} \nabla \overline{q}_k \psi$, which contradicts the given hypothesis. Now if $\psi(x) \ge \frac{1-k}{2}$ then it will imply that $[x, \frac{1-k}{2}] \in \psi$ and then $\psi(0) < \frac{1-k}{2} \Rightarrow [0, \frac{1-k}{2}] \overline{\in} \psi$. Moreover if $\psi(0) + \frac{1-k}{2} < 1 - k \Rightarrow [0, \frac{1-k}{2}] \overline{q}_k \psi$ and consequently $[0, \frac{1-k}{2}] \overline{\in} \nabla \overline{q}_k \psi$, which contradicts the given hypothesis and thus $\psi(0) \ge \min\left\{\psi(x), \frac{1-k}{2}\right\}$. Now consider (*ii*) and if

$$\min\left\{\psi(x*(y*z)), \ \psi(y)\right\} < \frac{1-k}{2} \Rightarrow \psi(x*z) < \min\left\{\psi(x*(y*z)), \ \psi(y)\right\}$$

and for some $t \in (0, 1)$ we have

$$\psi(x * z) < t \le \min\{\psi(x * (y * z)), \psi(y)\}.$$

Which implies that $[x * (y * z), t] \in \psi$ and $[y, t] \in \psi$ but $[x * z, t] \in \psi$. And if $\psi(x * z) + t < 2t < 1-k$ and thus $[x * z, t] \overline{\mathbf{q}_k} \psi$. Consequently $[x * z, t] \in \nabla \mathbf{q}_k \psi$ which is contradiction and if min $\{\psi(x * (y * z)), \psi(y)\} \geq \frac{1-k}{2}$ we get again $[x * z, t] \in \nabla \mathbf{q}_k \psi$, which again contradicts the given hypothesis and thus

$$\psi(x * z) \ge \min \left\{ \psi(x * (y * z)), \ \psi(y), \ \frac{1-k}{2} \right\}.$$

Conversely assume that (i) and (ii) are valid and we have to prove that ψ of **X** is $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X**. For this let $[x,t] \in \psi$ for $x \in \mathbf{X}$ and $t \in [0,1]$. Which implies that $\psi(x) \ge t$. But $\psi(0) \ge \min\{\psi(x), \frac{1-k}{2}\} \ge \min\{t, \frac{1-k}{2}\}$. Now if $t > \frac{1-k}{2}$ then $\psi(0) \ge \frac{1-k}{2} \Rightarrow \psi(0) + t > 1 - k \Rightarrow [0, t] q_k \psi$ and if $t > \frac{1-k}{2}$ then it is obvious that $[0, t] \in \psi$, thus $[0, t] \in \lor \mathbf{q}_k \psi$. Hence $[x, t] \in \psi \Rightarrow [0, t] \in \lor \mathbf{q}_k \psi$. Similarly we can show that

$$[x * (y * z), t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x * z, t_1 \land t_2] \in \lor \mathbf{q}_k \psi.$$

This completes the proof.

Corollary 2. A fuzzy subset ψ of **X** is said to be an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra of X if and only if it satisfies:

- (i) $\psi(0) \ge \min\left\{\psi(x), \frac{1-k}{2}\right\},\$
- (ii) $\psi(x) \ge \min\left\{\psi(x * y), \psi(y), \frac{1-k}{2}\right\} \forall x, y \in \mathbf{X}.$

Proof. By putting z = 0 in the proof of the above theorem we can easily prove it.

Next we characterize $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X** in terms of level sets.

Theorem 3. A fuzzy subset ψ of \mathbf{X} is said to be $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} if and only if the following set $U[\psi, t] = \{x \in \mathbf{X} | \psi(x) \ge t\}$ is a KU-ideal of \mathbf{X} where $t \in (0, \frac{1-k}{2}]$.

Proof. Assume that ψ of **X** is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X** and let $x \in U[\psi, t]$ which implies by definition that $\psi(x) \ge t$ for some $t \in (0, \frac{1-k}{2}]$. But $\psi(0) \ge \min \{\psi(x), \frac{1-k}{2}\} \ge \min \{t, \frac{1-k}{2}\} = t$, which implies that $0 \in U[\psi, t]$. Now again let $(x * (y * z)) \in U[\psi, t]$ and $y \in U[\psi, t]$ then by definition we get $\psi(x * (y * z)) \ge t$ and $\psi(y) \ge t$ but

$$\psi(x*z) \ge \min\left\{\psi(x*(y*z)), \ \psi(y), \ \frac{1-k}{2}\right\} \ge \min\left\{t, \ t, \ \frac{1-k}{2}\right\} = t,$$

which implies that $x * z \in U[\psi, t]$. Hence $U[\psi, t]$ is a KU-ideal of **X** where $t \in (0, \frac{1-k}{2}]$.

Conversely let $U[\psi, t]$ is a KU-ideal of **X** where $t \in (0, \frac{1-k}{2}]$ and we show that ψ of **X** is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X**. For this let there exist some $t \in (0, \frac{1-k}{2}]$ such that $\psi(0) < t \le \min \{\psi(x), \frac{1-k}{2}\}$ which implies that $x \in U[\psi, t]$ but $0 \in U[\psi, t]$ which is contradiction and hence $\psi(0) \ge \min \{\psi(x), \frac{1-k}{2}\}$. Similarly we can prove that $\psi(x * z) \ge \min \{\psi(x * (y * z)), \psi(y), \frac{1-k}{2}\}$. This completes the proof.

Example 2. Let us consider the KU-algebra $(\mathbf{X}, *, 0)$ in which * is defined as follows

*	0	l	m	n	p	q
0	0	l	m	n	p	q
l	0	0	m	m	p	q
m	0	0	0	l	p	q
n	0	0	0	0	p	q
p	0	0	0	l	0	q
q	0	0	0	0	0	0

Define a fuzzy subset ψ of **X** as $\psi(0) = 0.9$, $\psi(l) = 0.8$, $\psi(m) = 0.75$, $\psi(n) = 0.7$, $\psi(p) = 0.65$, $\psi(q) = 0.3$. Then

$$U[\psi, t] = \begin{cases} \mathbf{X} & \text{if } t \in (0, 0.3] \text{ for } k = 0.4 \\ \{0, l, m, n, p\} & \text{if } t \in (0.3, 0.4] \text{ for } k = 0.2 \end{cases}$$

As **X** and $\{0, l, m, n, p\}$ are KU-ideals of **X**, so by Theorem 3, ψ of **X** is $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X**.

Corollary 4. A fuzzy subset ψ of **X** is said to be $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra of **X** if and only if $U[\psi, t] = \{x \in \mathbf{X} | \psi(x) \ge t\}$ is a KU-subalgebra of **X** where $t \in (0, \frac{1-k}{2}]$.

Proof. By putting z = 0 in the proof of the above theorem we can easily prove it.

Theorem 5. Every (\in, \in) -fuzzy KU-subalgebra (resp., KU-ideal) implies $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra (resp., KU-ideal) of **X**.

Proof. The proof is straightforward.

Definition 7. A fuzzy subset $\psi : \mathbf{X} \to [0, 1]$ is said to be (\in, \mathbf{q}_k) -fuzzy KU-algebra of \mathbf{X} if it satisfy the following conditions:

(i) $[x, t] \in \psi \Rightarrow [0, t] \in \mathbf{q}_k \psi$,

(*ii*) $[x * y, t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x, t_1 \land t_2] \in \mathbf{q}_k \psi.$

Definition 8. A fuzzy subset $\psi : \mathbf{X} \to [0, 1]$ is said to be (\in, \mathbf{q}_k) -fuzzy KU-ideal of **X** if it satisfy the following conditions:

- (i) $[x, t] \in \psi \Rightarrow [0, t] \in \mathbf{q}_k \psi$,
- (*ii*) $[x * (y * z), t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x * z, t_1 \land t_2] \in \mathbf{q}_k \psi.$

Theorem 6. Every (\in, \mathbf{q}_k) -fuzzy KU-subalgebra (resp., KU-ideal) implies $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra (resp., KU-ideal) of **X**.

Proof. The proof is straightforward.

Example 3. Let us consider the KU-algebra $(\mathbf{X}, *, 0)$ in which * is defined as follows

*	0	l	m	n	p
0	0	l	m	n	p
l	0	0	m	n	p
m	0	l	0	n	n
n	0	0	m	0	m
p	0	0	0	0	0

Define a fuzzy subset ψ as

$$\psi(x) = \begin{cases} 0.65 & \text{if } x = 0\\ 0.74 & \text{if } x = l\\ 0.55 & \text{if } x \in \{m, n\}\\ 0.35 & \text{if } x = p \end{cases}$$

then ψ is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} for k = 0.2 but ψ is not an (\in, q_k) -fuzzy KU-ideal of \mathbf{X} because $l_{0.7} \in \psi$ but $0_{0.7} \notin \psi$.

Theorem 7. Let $\emptyset \neq A \subset \mathbf{X}$, the characteristic function ψ_A of A is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra (resp., KU-ideal) of \mathbf{X} if and only if A is a KU-subalgebra (resp., KU-ideal) of \mathbf{X} .

Proof. Let A be a KU-ideal of **X**, then it is obviously an (\in, \in) -fuzzy KU-ideal of **X** which then implies that A is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X**.

Conversely assume that A is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X** and we show that A is a KU-ideal of **X**. For this let $x * (y * z) \in A$, $y \in A$ then by definition $\psi_A(x * (y * z)) = 1$ and $\psi_A(y) = 1 \Rightarrow [(x * (y * z)), 1] \in \psi_A$ and $[y, 1] \in \psi_A$. But by hypothesis

$$\psi_A(x*z) \ge \min\left\{\psi_A(x*(y*z)), \ \psi_A(y), \ \frac{1-k}{2}\right\} = \min\left\{1, 1, \frac{1-k}{2}\right\} = \frac{1-k}{2}$$

and as $k \in [0, 1)$ so $\frac{1-k}{2} \neq 0$ and hence $\psi_A(x * z) \geq 1 \Rightarrow x * z \in A$. Moreover in the same way $\psi_A(0) \geq \min \{\psi_A(x), \frac{1-k}{2}\} = 1 \Rightarrow 0 \in A$. Hence A is a KU-ideal of **X**. The other case can be seen in a similar way.

Theorem 8. If $\{\psi_i : i \in \wedge\}$ be a family of $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra (resp., KU-ideal) of \mathbf{X} then so is their intersection $\psi = \bigcap_{i \in \land} \psi_i$.

Proof. Let $\{\psi_i : i \in \land\}$ be a family of $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} and we have to show that $\psi = \bigcap_{i \in \land} \psi_i$ is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} . For this let $[x, t] \in \psi$ and we have to show that $[0, t] \in \lor \mathbf{q}_k \psi$. Assume that $[0, t] \in \lor \mathbf{q}_k \psi \Rightarrow \psi(0) < t$ and $\psi(0) + t < 1 - k$. Which implies that $\psi(0) < \frac{1-k}{2}$. Now let

$$\Delta_1 = \{ i \in \land | \ [0, \ t] \in \lor \psi_i \}$$

and

$$\Delta_2 = \{i \in \land | \ [0, \ t] \, \mathbf{q}_k \psi_i\} \cap \{i \in \land \mid \ [0, \ t] \, \overline{\in} \psi_i\}$$

then we have $\wedge = \Delta_1 \cup \Delta_2$ and $\Delta_1 \cap \Delta_2 = \emptyset$. Let us suppose that if $\Delta_2 = \emptyset$, then

$$[0, t] \in \forall \psi_i \forall i \in \land \Rightarrow \psi_i(0) \ge t, \ \forall i \in \land \Rightarrow \psi(0) = \bigcap_{i \in \land} \psi_i(0) \ge t.$$

which contradicts the assumption and so $\Delta_2 \neq \emptyset$. Thus for each $i \in \Delta_2$ we have $[0, t]+t \ge 1-k$ and [0, t] < t, it implies that $t > \frac{1-k}{2}$. Now since $[x, t] \in \psi \Rightarrow \psi(x) \ge t$ and we can write it as $\psi(x) \ge t > \frac{1-k}{2} \forall i \in \wedge$. Next assume that $\psi_i(0) < \frac{1-k}{2} = t_1$ and let $t_1 < r < \frac{1-k}{2}$ which implies $[x, r] \in \psi_i$, but $[0, t] \in \nabla \mathbf{q}_k \psi_i$, which contradicts the fact that ψ_i is given to be an $(\in, \in \vee \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} . Thus $\psi_i(0) \ge \frac{1-k}{2} \Rightarrow i \in \wedge$ and hence $\psi(0) \ge \frac{1-k}{2} \Rightarrow [0, t] \in \vee \mathbf{q}_k \psi$. Similarly we can show that if $[x * (y * z), t_1] \in \psi, [y, t_2] \in \psi$, then it implies that $[x * z, t_1 \wedge t_2] \in \vee \mathbf{q}_k \psi$. Which shows that $\psi = \bigcap_{i \in \wedge} \psi_i$ is $(\in, \in \vee \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} . The other case can be seen in a similar way.

For any fuzzy subset ψ in **X** and $t \in (0, 1]$, we denote $\psi_t = \{x \in \mathbf{X} | [x, t] \mathbf{q}_k \psi\}$ and $[\psi]_t = \{x \in \mathbf{X} | [x, t] \in \lor \mathbf{q}_k \psi\}$ then it is clear that $[\psi]_t = U[x, t] \cup \psi_t$.

Theorem 9. Let $\psi : \mathbf{X} \to [0, 1]$ be a fuzzy subset of \mathbf{X} then ψ is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra (resp., KU-ideal) of \mathbf{X} if and only if $[\psi]_t$ is a KU-subalgebra (resp., KU-ideal) of \mathbf{X} for all $t \in (0, 1]$.

Proof. Let us assume that ψ is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} and we aim to prove that $[\psi]_t$ is a KU-ideal of \mathbf{X} for all $t \in (0, 1]$. For this let $x \in [\psi]_t = U[x, t] \cup \psi_t$, which then implies that $[x, t] \in \lor \mathbf{q}_k \psi \Rightarrow \psi(x) \ge t$ or $\psi(x) + t > 1 - k$. As $\psi(0) \ge \min\left\{\psi(x), \frac{1-k}{2}\right\}$, so we have the following cases.

(i) If $\psi(x) \ge t$ and $t > \frac{1-k}{2}$ then $\psi(0) \ge \frac{1-k}{2} \Rightarrow \psi(0) + t > \frac{1-k}{2} + \frac{1-k}{2} = 1 - k$, which implies that $[0,t] \mathbf{q}_k \psi$ and if $t \le \frac{1-k}{2}$ then $\psi(0) \ge t \Rightarrow [0,t] \in \psi$. Hence $[0,t] \in \forall \mathbf{q}_k \psi$.

(ii) If $\psi(x)+t > 1-k$ and $t > \frac{1-k}{2}$ then $\psi(0) \ge (1-k-t)\wedge \frac{1-k}{2} \Rightarrow \psi(0) \ge 1-k-t$, which implies that $[0,t] \mathbf{q}_k \psi$ and if $t \le \frac{1-k}{2}$ then $\psi(0) \ge (1-k-t)\wedge \frac{1-k}{2} = \frac{1-k}{2} = t \Rightarrow [0,t] \in \psi$. Hence $[0,t] \in \forall \mathbf{q}_k \psi$. Thus form both cases we get $0 \in [\psi]_t$.

Again let $(x * (y * z)) \in [\psi]_t$ and $y \in [\psi]_t \Rightarrow [x * (y * z), t] \in \forall \mathbf{q}_k \psi$ and $[y, t] \in \forall \mathbf{q}_k \psi \Rightarrow [x * (y * z), t] \in \psi$ or $[x * (y * z), t] \mathbf{q}_k \psi$ and $[y, t] \in \psi$ or $[y, t] \mathbf{q}_k \psi \Rightarrow \psi (x * (y * z)) \ge t$ or $\psi (x * (y * z)) + t + k > 1$ and $\psi (y) \ge t$ or $\psi (y) + t + k > 1$. So we discuss the following cases.

(i) If $\psi(x*(y*z)) \geq t$ and $\psi(y) \geq t$. So $\psi(x*z) \geq \min\left\{t, t, \frac{1-k}{2}\right\}$ and if $t > \frac{1-k}{2} \Rightarrow \psi(x) \geq \frac{1-k}{2}$ and hence $\psi(x*z) + t > 1 - k \Rightarrow [x*z,t]q_k\psi$ and if $t \leq \frac{1-k}{2}$ then $\psi(x*z) \geq t \Rightarrow [x*z,t] \in \psi$. Hence $[x*z,t] \in \forall \mathbf{q}_k \psi$.

Similarly from all other cases we get $[x * z, t] \in \forall \mathbf{q}_k \psi$. Which shows that $[\psi]_t$ is a KU-ideal of **X** for all $t \in (0, 1]$.

Conversely assume that $[\psi]_t$ is a KU-ideal of **X** for all $t \in (0, 1]$ and we have to show that ψ is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X**. Suppose there exist some $t \in (0, 1]$ such that

$$\begin{split} \psi\left(0\right) &< t \le \min\left\{\psi\left(x\right), \frac{1-k}{2}\right\}, \psi\left(x*z\right) < t\\ &\le \min\left\{\psi(x*(y*z)), \ \psi\left(y\right), \ \frac{1-k}{2}\right\} \Rightarrow x \in U\left[\psi, t\right] \subseteq [\psi]_t \Rightarrow 0 \in [\psi]_t \end{split}$$

by hypothesis. Which then implies that $\psi(0) \ge t$ or $\psi(0) + t + k > 1$, this is a contradiction. Similarly

$$\psi(x * z) < t \le \min\left\{\psi(x * (y * z)), \ \psi(y), \ \frac{1-k}{2}\right\}$$

leads to a contradiction. Thus $\forall x, y, z \in \mathbf{X}$ we have

$$\psi(0) \ge \min\left\{\psi(x), \frac{1-k}{2}\right\} \text{ and } \psi(x*z) \ge \min\left\{\psi(x*y)*z, \ \psi(y), \ \frac{1-k}{2}\right\},$$

which shows that ψ is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of **X**. The other case can be seen in a similar way.

Theorem 10. Let there is an $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra (resp., KU-ideal) of X such that $\{\psi(x) \mid \psi(x) < \frac{1-k}{2}\} \geq 2$ then ψ can be expressed as the union of two proper non-equivalent $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-subalgebra (resp., KU-ideal) of **X**.

Proof. Let us define the fuzzy sets as

$$\mu\left(x\right) = \begin{cases} t_{1} & \text{if } x \in [\psi]_{t_{1}} \,, \\ t_{2} & \text{if } x \in [\psi]_{t_{2}} \setminus [\psi]_{t_{1}} \,, \\ \vdots & \vdots \\ t_{r} & \text{if } x \in [\psi]_{t_{r}} \setminus [\psi]_{t_{r-1}} \,, \end{cases}$$

and

$$\psi(x) = \begin{cases} \psi(x) & \text{if } x \in [\psi]_{\frac{1-k}{2}}, \\ t_2 & \text{if } x \in [\psi]_{t_2} \setminus [\psi]_{\frac{1-k}{2}}, \\ \vdots & \vdots \\ t_r & \text{if } x \in [\psi]_{t_r} \setminus [\psi]_{t_{r-1}}. \end{cases}$$

for $[\psi]_{\frac{1-k}{2}} \subseteq [\psi]_{t_1} \subseteq ... \subseteq [\Psi]_{t_r} = \mathbf{X}$ and $\{\psi(x) \mid \psi(x) < \frac{1-k}{2}\} = \{t_1, t_2, ..., t_r\}$ for $t_1 > t_2 > ... > t_r$ with $r \ge 2$. Then by level cut theorem μ and λ are $(\in, \in \lor \mathbf{q}_k)$ -fuzzy KU-ideal of \mathbf{X} and the chain of $(\in, \in \lor \mathbf{q}_k)$ -level KU-ideals μ and λ are given by respectively as $[\psi]_{t_1} \subseteq [\psi]_{t_2} \subseteq ... \subseteq [\psi]_{t_r}$ and $[\psi]_{\frac{1-k}{2}} \subseteq [\psi]_{t_2} \subseteq ... \subseteq [\psi]_{t_r}$. They are non-equivalent and $\psi = \mu \cup \lambda$. This completes the proof. The other case can be seen in a similar way.

References

[1] S. Abdullah, *N*-dimensional (α, β) -fuzzy *H*-ideals in hemirings, Int. J. Mach. Learn. Cyber. (2012), 1-11, DOI:10.1007/s13042-012-0141-5.

[2] M. Akram, N. Yaqoob, J. Kavikumar, Interval valued (θ, δ) -fuzzy KU-ideals of KU-algebras, Int. J. Pure Appl. Math. 92, 3 (2014), 335-349.

[3] F.M. Khan, N.H. Sarmin, A. Khan, Some study of (α, β) -fuzzy ideals in ordered semigroups, Ann. Fuzzy Math. Inform. 3, 2 (2012), 213-227.

[4] S.M. Mostafa, M.A. Abd-Elnaby, M.M. Yousef, Fuzzy ideals of KU-algebras, Int. Math. Forum. 6, 63 (2011), 3139-3149.

[5] S.M. Mostafa, M.A. Abd-Elnaby, O.R. Elgendy, *Interval-valued fuzzy KU-ideals* in KU-algebras, Int. Math. Forum. 6, 64 (2011), 3151-3159.

[6] C. Prabpayak, U. Leerawat, On ideas and congurences in KU-algebras, Scientia Magna J. 5, 1 (2009), 54-57.

[7] C. Prabpayak, U. Leerawat, On isomorphisms of KU-algebras, Scientia Magna J. 5, 3 (2009), 25-31.

[8] N. Yaqoob, S.M. Mostafa, M.A. Ansari, On cubic KU-ideals of KU-algebras, ISRN Algebra, Article ID 935905 (2013), 10 pages.

[9] L.A. Zadeh, *Fuzzy sets*, Inform. Control, 8 (1965), 338-353.

Muhammad Gulistan Department of Mathematics, Hazara University, Mansehra, Pakistan email: gulistanmath@hu.edu.pk

Muhammad Shahzad Department of Mathematics, Hazara University, Mansehra, Pakistan email: shahzadmaths@hu.edu.pk

Naveed Yaqoob Department of Mathematics, Quaid-i-Azam University Islamabad, Pakistan email: nayaqoob@ymail.com