A GENERALIZED CLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN OPERATORS INVOLVING CONVOLUTIONS

P. Sharma, S. Porwal, A. Kanaujia

Abstract. In this paper, we introduce a generalized class $\mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$, $i \in\{0,1\}$ of harmonic univalent functions. A sufficient coefficient condition for the normalized harmonic function to be in this class is obtained. It is also shown that this coefficient condition is necessary for its subclass $\mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$. We further, obtain extreme points, bounds and a covering result for the class $\mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$ and show that this class is closed under convolutions and convex combinations. In proving our results certain conditions on the coefficients of ϕ and ψ are considered which lead various well-known results proved earlier.

2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords: harmonic functions, univalent functions, Salagean operator, Convolution.

1. Introduction

A continuous complex-valued function $f=u+i v$ defined in a simply connected domain \mathbb{D} is said to be harmonic in \mathbb{D} if both u and v are real harmonic in \mathbb{D}. In any simply connected domain \mathbb{D}, we can write $f=h+\bar{g}$, where h and g are analytic in \mathbb{D}. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathbb{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|, \quad z \in \mathbb{D}$ (see [3]).

Denote by \mathcal{S}_{H} the class of function $f=h+\bar{g}$ which are harmonic, univalent and sense-preserving in the open unit disc $\mathbb{U}=\{z:|z|<1\}$ for which $f(0)=f_{z}(0)-1=$ 0 . Then for $f=h+\bar{g} \in \mathcal{S}_{H}$ we may express the analytic functions h and g as

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=1}^{\infty} b_{k} z^{k}, \quad\left|b_{1}\right|<1 . \tag{1}
\end{equation*}
$$

P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...

Note that the class \mathcal{S}_{H} reduces to the class \mathcal{S} of normalized analytic univalent functions if the co-analytic part of f i.e. $g \equiv 0$. For this class $f(z)$ may be expressed as

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} . \tag{2}
\end{equation*}
$$

For more basic results on harmonic functions one may refer to the following introductory text book by Duren [7] (see also [1], [12], [13] and the references there in). For $f=h+\bar{g}$ with h and g are of the form (1), Jahangiri et al. [10] defined the modified Salagean operator \mathcal{D}^{n} for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, by

$$
\begin{equation*}
\mathcal{D}^{n} f(z)=\mathcal{D}^{n} h(z)+(-1)^{n} \overline{\mathcal{D}^{n} g(z)}, \tag{3}
\end{equation*}
$$

where

$$
\mathcal{D}^{n} h(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, \quad \mathcal{D}^{n} g(z)=\sum_{k=1}^{\infty} k^{n} b_{k} z^{k},
$$

(see also [14]).
Several authors such as ([4], [5], [6], [8], [11] and [17]) introduced and studied various new subclasses of analytic univalent as well as harmonic univalent functions with the help of convolution.

Motivated with the earlier introduced subclasses of \mathcal{S}_{H}, in this paper, we define a generalized class $\mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$ of functions $f=h+\bar{g} \in \mathcal{S}_{H}$ satisfying for $i \in\{0,1\}$, the condition

$$
\begin{equation*}
\Re\left\{\frac{D^{m} h(z) * \phi(z)+(-1)^{m+i} \overline{D^{m} g(z) * \psi(z)}}{D^{n} h(z)+(-1)^{n} \overline{D^{n} g(z)}}\right\}>\alpha \tag{4}
\end{equation*}
$$

where $m, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1$, and $\phi(z)=z+\sum_{k=2}^{\infty} \lambda_{k} z^{k}$ and $\psi(z)=$ $z+\sum_{k=2}^{\infty} \mu_{k} z^{k}$ are analytic in \mathbb{U} with the conditions $\lambda_{k} \geq 1, \mu_{k} \geq 1$. The operator "*" stands for the Hadamard product or convolution of two power series.

We further denote by $\mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$, a subclass of $\mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$ consisting of functions $f=h+\bar{g} \in \mathcal{S}_{H}$ such that h and g are of the form

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}, g(z)=(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k}\right| z^{k}, \quad\left|b_{1}\right|<1 . \tag{5}
\end{equation*}
$$

It is interesting to note that by specializing the parameters we obtain the following known subclasses of \mathcal{S}_{H} studied earlier by various researchers.
(i) $\mathcal{S}_{H}^{0}\left(m, n, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{S}_{H}(m, n ; \alpha)$ and $\mathcal{T} \mathcal{S}_{H}^{0}\left(m, n, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv$ $\mathcal{T} \mathcal{S}_{H}(m, n ; \alpha)$ studied by Yalcin [17].
P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic . . .
(ii) $\mathcal{S}_{H}^{0}\left(n+1, n, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{S}_{H}(n ; \alpha)$ and $\mathcal{T} \mathcal{S}_{H}^{0}\left(n+1, n, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv$ $\mathcal{T} \mathcal{S}_{H}(n ; \alpha)$ studied by Jahangiri et al. [10].
(iii) $\mathcal{S}_{H}^{0}\left(1,0, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{S}_{H}^{1}\left(0,0, \frac{z}{(1-z)^{2}}, \frac{z}{(1-z)^{2}} ; \alpha\right) \equiv \mathcal{S}_{H}^{*}(\alpha)$ and $\mathcal{T} \mathcal{S}_{H}^{0}\left(1,0, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{T} \mathcal{S}_{H}^{1}\left(0,0, \frac{z}{(1-z)^{2}}, \frac{z}{(1-z)^{2}} ; \alpha\right) \equiv \mathcal{T} \mathcal{S}_{H}^{*}(\alpha)$ studied by Jahangiri [9].
(iv) $\mathcal{S}_{H}^{0}\left(2,1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{K}_{H}(\alpha)$ and $\mathcal{T} \mathcal{S}_{H}^{0}\left(2,1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{T} \mathcal{K}_{H}(\alpha)$ studied by Jahangiri [9].
(v) $\mathcal{S}_{H}^{1}(0,0, \phi, \psi ; \alpha) \equiv \mathcal{S}_{H}(\phi, \psi ; \alpha)$ and $\mathcal{T} \mathcal{S}_{H}^{1}(0,0, \phi, \psi ; \alpha) \equiv \mathcal{T} \mathcal{S}_{H}(\phi, \psi ; \alpha)$ studied by Frasin [8].
(vi) $\mathcal{S}_{H}^{0}\left(2,1, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv \mathcal{K}_{H}, \mathcal{T} \mathcal{S}_{H}^{0}\left(2,1, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv \mathcal{T} \mathcal{K}_{H}$,
$\mathcal{S}_{H}^{0}\left(1,0, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv \mathcal{S}_{H}^{*}$ and $\mathcal{T} \mathcal{S}_{H}^{0}\left(1,0, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv \mathcal{T} \mathcal{S}_{H}^{*}$ studied by Silverman [15], Silverman and Silvia [16](see also [2]).

In the present paper, we prove a number of sharp results including, coefficient inequality, bounds, extreme points, convolution and convex combination for functions in $\mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$ under certain conditions on the coefficients of ϕ and ψ.

2. Main Results

We begin with a sufficient coefficient condition for functions to be in class $\mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$.
Theorem 1. Let a function $f=h+\bar{g}$, where h and g are of the form (1), satisfies

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right| \leq 1, \tag{6}
\end{equation*}
$$

where $i \in\{0,1\}, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, \lambda_{k}, \mu_{k} \geq 1, k \geq 1,0 \leq \alpha<1$ and in case $m=0=n, \lambda_{k}, \mu_{k} \geq k, k \geq 1$. Then f is sense-preserving, harmonic univalent in \mathbb{U} and $f \in \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$.

Proof. Under the given hypothesis, we note that for $k \geq 1$,

$$
\begin{equation*}
k \leq \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}, k \leq \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha} . \tag{7}
\end{equation*}
$$

P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...

Hence, for $f=h+\bar{g}$, where h and g are of the form (1), we get that

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{k=2}^{\infty} k\left|a_{k}\right| r^{k-1}>1-\sum_{k=2}^{\infty} k\left|a_{k}\right|>1-\sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right| \\
& \geq \sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right| \geq \sum_{k=1}^{\infty} k\left|b_{k}\right|>\sum_{k=1}^{\infty} k\left|b_{k}\right| r^{k-1} \geq\left|g^{\prime}(z)\right|
\end{aligned}
$$

which proves that f is sense-preserving in \mathbb{U}. To show that f is univalent in \mathbb{U}, suppose $z_{1}, z_{2} \in \mathbb{U}$ such that $z_{1} \neq z_{2}$, then

$$
\begin{aligned}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| & \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \\
& =1-\left|\frac{\sum_{k=1}^{\infty} b_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}{\left(z_{1}-z_{2}\right)+\sum_{k=2}^{\infty} a_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}\right| \\
& >1-\left|\frac{\sum_{k=1}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} k\left|a_{k}\right|}\right| \geq 1-\frac{\sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|} \geq 0 .
\end{aligned}
$$

Now, to show that $f \in \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$, we use the fact that $\operatorname{Re}\{\omega\} \geq \alpha$, if and only if $|1-\alpha+\omega| \geq|1+\alpha-\omega|$.

Hence, it suffices to show that

$$
\begin{equation*}
Q(z):=|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \geq 0 \tag{8}
\end{equation*}
$$

where $A(z)=D^{m} h(z) * \phi(z)+(-1)^{m+i} \overline{D^{m} g(z) * \psi(z)}$ and $B(z)=D^{n} h(z)+(-1)^{n} \overline{D^{n} g(z)}$.

Substituting the corresponding series expansions in the expressions of $A(z)$ and
$B(z)$, we obtain from (8), that

$$
\begin{aligned}
Q(z)= & \mid(2-\alpha) z+\sum_{k=2}^{\infty}\left(k^{m} \lambda_{k}+(1-\alpha) k^{n}\right) a_{k} z^{k}+ \\
& (-1)^{m+i} \sum_{k=1}^{\infty}\left[k^{m} \mu_{k}+(-1)^{m+i-n}(1-\alpha) k^{n}\right] \overline{b_{k} z^{k}} \mid \\
& -\mid-\alpha z+\sum_{k=2}^{\infty}\left[k^{m} \lambda_{k}-(1+\alpha) k^{n}\right] a_{k} z^{k}+ \\
& (-1)^{m+i} \sum_{k=1}^{\infty}\left[k^{m} \mu_{k}-(-1)^{m+i-n}(1+\alpha) k^{n}\right] \overline{b_{k} z^{k}} \mid \\
> & 2|z|\left[(1-\alpha)-\sum_{k=2}^{\infty}\left(k^{m} \lambda_{k}-\alpha k^{n}\right)\left|a_{k}\right|-\sum_{k=1}^{\infty}\left[k^{m} \mu_{k}-(-1)^{m+i-n} \alpha k^{n}\right]\left|b_{k}\right|\right] \\
\geq & 0,
\end{aligned}
$$

if (6) holds. This proves the Theorem 1.
Sharpness of the coefficient inequality (6) can be seen by the function

$$
f(z)=z+\sum_{k=2}^{\infty} \frac{1-\alpha}{\lambda_{k} k^{m}-\alpha k^{n}} x_{k} z^{k}+\sum_{k=1}^{\infty} \frac{1-\alpha}{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}} \overline{y_{k} z^{k}}
$$

where $i \in\{0,1\}, 0 \leq \alpha<1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, \lambda_{k}, \mu_{k} \geq 1, k \geq 1$ in case $m=0=n, \lambda_{k}, \mu_{k} \geq k, k \geq 1$ and $\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$.

We next show that the above sufficient coefficient condition is also necessary for functions in the class $\mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$.
Theorem 2. Let the function $f=h+\bar{g}$ be such that h and g are given by (5). Then, $f \in \mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|+\frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right|\right) \leq 2 \tag{9}
\end{equation*}
$$

where $a_{1}=1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, \lambda_{k}, \mu_{k} \geq 1, k \geq 1,0 \leq \alpha<1$ and in case $m=0=n, \quad \lambda_{k}, \mu_{k} \geq k, k \geq 1$.

Proof. The if part, follows from Theorem 1. To prove the "only if" part, let $f \in$ $\mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$, then from (4), we have

$$
\Re\left\{\frac{D^{m} h(z) * \phi(z)+(-1)^{m+i} \overline{D^{m} g(z) * \psi(z)}}{D^{n} h(z)+(-1)^{n} \overline{D^{n} g(z)}}-\alpha\right\}>0, z \in \mathbb{U}
$$

P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...
which is equivalent to

$$
\Re\left\{\frac{(-1)^{2 m+2 i-1} \sum_{k=1}^{\infty}\left(\sum_{k}^{\infty} k^{m}-(-1)^{m+i-n} \alpha k^{n}\right)\left|b_{k}\right| \bar{z}^{k}}{z-\sum_{k=2}^{\infty} k^{n}\left|a_{k}\right| z^{k}+(-1)^{m+i-1+n} \sum_{k=1}^{\infty} k^{n}\left|b_{k}\right| \bar{z}^{k}}\right\}>0 .
$$

If we choose z to be real and $z \rightarrow 1^{-}$, we get

$$
\frac{(1-\alpha)-\sum_{k=2}^{\infty}\left(\lambda_{k} k^{m}-\alpha k^{n}\right)\left|a_{k}\right|-\sum_{k=1}^{\infty}\left(\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}\right)\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} k^{n}\left|a_{k}\right|+(-1)^{m+i-1+n} \sum_{k=1}^{\infty} k^{n}\left|b_{k}\right|} \geq 0
$$

or, equivalently,

$$
\sum_{k=2}^{\infty}\left(\lambda_{k} k^{m}-\alpha k^{n}\right)\left|a_{k}\right|+\sum_{k=1}^{\infty}\left(\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}\right)\left|b_{k}\right| \leq 1-\alpha
$$

which is the required condition (9).
For the classes $\mathcal{T} \mathcal{S}_{H}(m, n ; \alpha)$ and $\mathcal{T} \mathcal{S}_{H}(\phi, \psi ; \alpha)$ mentioned in Section 1, Theorem 2 yields following results which include the results for other known classes discussed in Section 1.

Corollary 3. [17] Let the function $f=h+\bar{g}$ be such that h and g are given by (5). Then, $f \in \mathcal{T S}_{H}(m, n ; \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|+\frac{k^{m}-(-1)^{m-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right|\right) \leq 2 \tag{10}
\end{equation*}
$$

where $a_{1}=1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1$.
Corollary 4. Let the function $f=h+\bar{g}$ be such that h and g are given by (5). Then, $f \in \mathcal{T S}_{H}(\phi, \psi ; \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{\lambda_{k}-\alpha}{1-\alpha}\left|a_{k}\right|+\frac{\mu_{k}+\alpha}{1-\alpha}\left|b_{k}\right|\right) \leq 2, \tag{11}
\end{equation*}
$$

where $a_{1}=1, \lambda_{k}, \mu_{k} \geq k, k \geq 1,0 \leq \alpha<1$.
P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...

3. Bounds

Our next theorem provides the bounds for the functions in $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ which is followed by a covering result for this class.

Theorem 5. Let $f=h+\bar{g}$ with h and g are of the form (5) belongs to the class $\mathcal{T} \mathcal{S}_{H}^{i}(m, n, \phi, \psi ; \alpha)$ for functions ϕ and ψ with non-decreasing sequences $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$ satisfying $\lambda_{k}, \mu_{k} \geq \lambda_{2}, k \geq 2$, then

$$
\begin{equation*}
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left(1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}}, \quad|z|=r<1 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left(1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}}, \quad|z|=r<1 \tag{13}
\end{equation*}
$$

Proof. We only prove the result for upper bound. The result for the lower bound can similarly be obtained.

Let $f \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$, then on taking the absolute value of f, we get for $|z|=r<1$,

$$
\begin{aligned}
|f(z)| & \leq\left(1+\left|b_{1}\right|\right) r+\sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \\
& \leq\left(1+\left|b_{1}\right|\right) r+r^{2} \sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \\
& \leq\left(1+\left|b_{1}\right|\right) r+\frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}} \sum_{k=2}^{\infty}\left(\frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|+\frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right|\right) \\
& \leq\left(1+\left|b_{1}\right|\right) r+\left(1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}}, \quad \text { by }(9) .
\end{aligned}
$$

The bounds (12) and (13) are sharp for the function given by

$$
\begin{equation*}
f(z)=z+\left|b_{1}\right| \bar{z}+\left(1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) \bar{z}^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}} \tag{14}
\end{equation*}
$$

for $\left|b_{1}\right|<(1-\alpha) /\left(1-(-1)^{m+i-n} \alpha\right)$.
A covering result follows from (13).
P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...

Corollary 6. Let $f \in \mathcal{T S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$, then for functions ϕ and ψ with nondecreasing sequences $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$ satisfying $\lambda_{k}, \mu_{k} \geq \lambda_{2}, k \geq 2$,

$$
\left\{\omega:|\omega|<\left(1-\frac{(1-\alpha)}{2^{m} \lambda_{2}-\alpha 2^{n}}\right)+\left(\frac{1-(-1)^{m+i-n} \alpha}{2^{m} \lambda_{2}-\alpha 2^{n}}-1\right)\left|b_{1}\right|\right\} \subset f(\mathbb{U})
$$

Further, for the classes $\mathcal{T} \mathcal{S}_{H}(m, n ; \alpha)$ and $\mathcal{T} \mathcal{S}_{H}(\phi, \psi ; \alpha)$, Theorem 5 yields following results which include the results for other known classes discussed in Section 1.

Corollary 7. [17] Let $f=h+\bar{g}$ with h and g are of the form (5) belongs to the class $\mathcal{T} \mathcal{S}_{H}(m, n ; \alpha)$, then

$$
\begin{equation*}
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left(1-\frac{1-(-1)^{m-n} \alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) r^{2}}{2^{m}-\alpha 2^{n}}, \quad|z|=r<1 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left(1-\frac{1-(-1)^{m-n} \alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) r^{2}}{2^{m}-\alpha 2^{n}}, \quad|z|=r<1 \tag{16}
\end{equation*}
$$

Further,

$$
\left\{\omega:|\omega|<\left(1-\frac{1-\alpha}{2^{m}-\alpha 2^{n}}\right)+\left(\frac{1-(-1)^{m-n} \alpha}{2^{m}-\alpha 2^{n}}-1\right)\left|b_{1}\right|\right\} \subset f(\mathbb{U})
$$

Corollary 8. Let $f=h+\bar{g}$ with h and g are of the form (5) belongs to the class $\mathcal{T} \mathcal{S}_{H}(\phi, \psi ; \alpha)$ for functions ϕ and ψ with non-decreasing sequences $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$ satisfying $\lambda_{k}, \mu_{k} \geq \lambda_{2}, k \geq 2$, then

$$
\begin{equation*}
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) r^{2}}{\lambda_{2}-\alpha}, \quad|z|=r<1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{1}\right|\right) \frac{(1-\alpha) r^{2}}{\lambda_{2}-\alpha}, \quad|z|=r<1 \tag{18}
\end{equation*}
$$

Further,

$$
\left\{\omega:|\omega|<\frac{1}{\lambda_{2}-\alpha}\left(\lambda_{2}-1+\left(1-\lambda_{2}+2 \alpha\right)\left|b_{1}\right|\right)\right\} \subset f(\mathbb{U})
$$

P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...

4. Extreme Points

In this section we determine the extreme points of $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$.
Theorem 9. Let $h_{1}(z)=z, h_{k}(z)=z-\frac{1-\alpha}{\lambda_{k} k^{m}-\alpha k^{n}} z^{k}(k \geq 2)$ and $g_{k}(z)=z+$ $\frac{(-1)^{m+i-1}(1-\alpha)}{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}} \bar{z}^{k}(k \geq 1)$. Then $f \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$, if and only if it can be expressed as

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right) \tag{19}
\end{equation*}
$$

where $x_{k} \geq 0, y_{k} \geq 0$ and $\sum_{k=1}^{\infty}\left(x_{k}+y_{k}\right)=1$. In particular, the extreme points of $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ are $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$.

Proof. Suppose that

$$
f(z)=\sum_{k=1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right)
$$

Then,

$$
\begin{aligned}
f(z) & =\sum_{k=1}^{\infty}\left(x_{k}+y_{k}\right) z-\sum_{k=2}^{\infty} \frac{1-\alpha}{\lambda_{k} k^{m}-\alpha k^{n}} x_{k} z^{k}+ \\
& (-1)^{m+i-1} \sum_{k=1}^{\infty} \frac{1-\alpha}{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}} y_{k} \bar{z}^{k} \\
& =z-\sum_{k=2}^{\infty} \frac{1-\alpha}{\lambda_{k} k^{m}-\alpha k^{n}} x_{k} z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty} \frac{1-\alpha}{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}} y_{k} \bar{z}^{k} \\
& \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)
\end{aligned}
$$

Since,

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha} \frac{1-\alpha}{\lambda_{k} k^{m}-\alpha k^{n}} x_{k} \\
+ & \sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha} \frac{1-\alpha}{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}} y_{k} \\
= & \sum_{k=2}^{\infty} x_{k}+\sum_{k=1}^{\infty} y_{k} \\
= & 1-x_{1} \leq 1 .
\end{aligned}
$$

Conversely, if $f \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$, then $\left|a_{k}\right| \leq \frac{1-\alpha}{\lambda_{k} k^{m}-\alpha k^{n}}, k \geq 2$ and $\left|b_{k}\right| \leq \frac{1-\alpha}{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}, k \geq 1$. Setting $x_{k}=\frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|, k \geq 2$ and $y_{k}=$
P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic . . .
$\frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right|, k \geq 1$.Then, by Theorem $2, \sum_{k=2}^{\infty} x_{k}+\sum_{k=1}^{\infty} y_{k} \leq 1$. We define $x_{1}=1-\sum_{k=2}^{\infty} x_{k}-\sum_{k=1}^{\infty} y_{k} \geq 0$. Consequently, we can see that $f(z)$ can be expressed in the form (19).

This completes the proof of Theorem 9.

5. Convolution and Convex Combinations

In this section, we show that the class $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ is invariant under convolution and convex combinations of its members.

For harmonic functions of the form

$$
f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k}\right| \bar{z}^{k}
$$

and

$$
F(z)=z-\sum_{k=2}^{\infty}\left|A_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|B_{k}\right| \bar{z}^{k}
$$

we define the convolution

$$
(f * F)(z)=f(z) * F(z)=z-\sum_{k=2}^{\infty}\left|a_{k} A_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k} B_{k}\right| \bar{z}^{k}
$$

Theorem 10. If $f \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ and $F \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ then $f * F \in$ $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$.
Proof. Let $f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k}\right| z^{k}$ and $F(z)=z-\sum_{k=2}^{\infty}\left|A_{k}\right| z^{k}+$ $(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|B_{k}\right| z^{k}$ be in $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$. Then by Theorem 2 , we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right| \leq 1 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|A_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|B_{k}\right| \leq 1 \tag{21}
\end{equation*}
$$

From (21), we conclude that $\left|A_{k}\right| \leq 1, k=2,3, \ldots$ and $\left|B_{k}\right| \leq 1, k=1,2, \ldots$
So, for $f * F$, we may write

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k} A_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k} B_{k}\right| \\
\leq & \sum_{k=2}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right| \leq 1
\end{aligned}
$$

P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...

Thus $f * F \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$.
Finally, we prove that $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ is closed under convex combination of its members.

Theorem 11. The class $\mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ is closed under convex combination.
Proof. For $j=1,2, \ldots$ suppose that $f_{j} \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$ where $f_{j}(z)$ is given by

$$
f_{j}(z)=z-\sum_{k=2}^{\infty}\left|a_{j, k}\right| z^{k}+(-1)^{m+i-n} \sum_{k=1}^{\infty}\left|b_{j, k}\right| z^{k}
$$

Then, by Theorem 2, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{j_{, k}}\right|+\frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{j, k}\right|\right) \leq 2 \tag{22}
\end{equation*}
$$

For $\sum_{j=1}^{\infty} t_{j}=1,0 \leq t_{j} \leq 1$, the convex combination of $f_{j}(z)$ may be written as

$$
\sum_{j=1}^{\infty} t_{j} f_{j}(z)=z-\sum_{k=2}^{\infty} \sum_{j=1}^{\infty} t_{j}\left|a_{j_{k}}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} t_{j}\left|b_{j_{, k}}\right| z^{k}
$$

Now

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left(\frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha} \sum_{j=1}^{\infty} t_{j}\left|a_{j_{, k}}\right|+\frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha} \sum_{j=1}^{\infty} t_{j}\left|b_{j, k}\right|\right) \\
= & \sum_{j=1}^{\infty} t_{i} \sum_{k=1}^{\infty}\left(\frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{j_{, k}}\right|+\frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{j_{, k}}\right|\right) \\
\leq & 2 \sum_{j=1}^{\infty} t_{i}=2
\end{aligned}
$$

and so by Theorem 2, we have $\sum_{j=1}^{\infty} t_{i} f_{i}(z) \in \mathcal{T} \mathcal{S}^{i}{ }_{H}(m, n, \phi, \psi ; \alpha)$.
Acknowledgement. The authors are thankful to Prof. K.K. Dixit (Director, Gwalior Institute of Information Technology, Gwalior, (M.P.), India) for many helpful suggestions and encouragement.
P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...

References

[1] O.P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6 (4) (2005), Art. 122, 1-18.
[2] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska, Sect., A 44 (1990), 1-7.
[3] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fen. Series AI Math., 9 (3) (1984), 3-25.
[4] K.K. Dixit and Saurabh Porwal, Some properties of harmonic functions defined by convolution, Kyungpook Math. J., 49 (2009),751-761.
[5] K.K. Dixit, A.L. Pathak, S. Porwal and S.B. Joshi, A family of harmonic univalent functions associated with convolution operator, Mathematica (Cluj), Romania, 53 (76) (1), (2011), 35-44.
[6] K.K. Dixit, A.L. Pathak, S. Porwal and R. Agrawal, On a new Subclass of harmonic univalent functions defined by convolution and integral convolution, International J. Pure Appl. Math., 69 (3) (2011), 255-264.
[7] P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, Vol.156, Cambridge University Press, Cambridge,(2004), ISBN 0-521-64121-7.
[8] B.A. Frasin, Comprehensive family of harmonic univalent functions, SUT J. Math., 42 (1) (2006), 145-155.
[9] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470-477.
[10] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002), 77-82.
[11] O.P. Juneja, T.R. Reddy and M.L. Mogra, A convolution approach for analytic functions with negative coefficients, Soochow J. Math., 11 (1985), 69-81.
[12] S. Ponnusamy and A. Rasila, Planar harmonic mappings, RMS Mathematics Newsletter, 17 (2) (2007), 40-57.
[13] S. Ponnusamy and A. Rasila, Planar harmonic and quasiconformal mappings, RMS Mathematics Newsletter, 17 (3) (2007), 85-101.
[14] G.S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1 (1983), 362-372.
[15] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283-289.
[16] H. Silverman and E.M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28 (1999), 275-284.
[17] Poonam Sharma, A Goodman-Rønning type class of harmonic univalent functions involving convolutional operators, Int. J. Math. Arch., 3 (3), (2012), 1211-1221.
P. Sharma, S. Porwal, A. Kanaujia - A generalized class of harmonic ...
[18] S. Yalcin, A new class of Salagean-type harmonic univalent functions, Appl. Math. Lett., 18 (2005), 191-198.

Poonam Sharma
Department of Mathematics and Astronomy, University of Lucknow, Lucknow 226007, India email: sharma_poonam@lkouniv.ac.in

Saurabh Porwal
Department of Mathematics,
U.I.E.T. Campus, C.S.J.M. University, Kanpur 208024 India
email: saurabhjcb@rediffmail.com
Alka Kanaujia
Department of Mathematics,
U.I.E.T. Campus, C.S.J.M. University, Kanpur 208024 India
email: alka_uiet@rediffmail.com

