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ON A SYSTEM OF FOURTH-ORDER RATIONAL DIFFERENCE
EQUATIONS
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Abstract. In this paper, we study the qualitative behavior of a system of
fourth-order rational difference equations. More precisely, we study the local asymp-
totic stability and global asymptotic character of the unique equilibrium point of
a fourth-order discrete dynamical system of rational form. Moreover, boundedness
behavior and the rate of convergence of the positive solutions which converge to
equilibrium at origin are investigated. Some numerical example are given to verify
our theoretical results.
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1. Introduction and preliminaries

Recently, studying the qualitative behavior of difference equations and systems is a
topic of a great interest. Applications of discrete dynamical systems and difference
equations have appeared recently in many areas such as ecology, population dynam-
ics, queuing problems, statistical problems, stochastic time series, combinatorial
analysis, number theory, geometry, electrical networks, neural networks, quanta in
radiation, genetics in biology, economics, psychology, sociology, physics, engineering,
economics, probability theory and resource management. Unfortunately, these are
only considered as the discrete analogs of differential equations. It is a well-known
fact that difference equations appeared much earlier than differential equations and
were instrumental in paving the way for the development of the latter. It is only
recently that difference equations have started receiving the attention they deserve.
Perhaps this is largely due to the advent of computers where differential equations
are solved by using their approximate difference equation formulations. The theory
of discrete dynamical systems and difference equations developed greatly during the
last twenty-five years of the twentieth century. The theory of difference equations

137

http://www.uab.ro/auajournal/


Q. Din – On a system of fourth-order rational difference equations . . .

occupies a central position in applicable analysis. There is no doubt that the theory
of difference equations will continue to play an important role in mathematics as a
whole. Nonlinear difference equations of order greater than one are of paramount
importance in applications. It is very interesting to investigate the behavior of so-
lutions of a system of higher-order rational difference equations and to discuss the
local asymptotic stability of their equilibrium points. Systems of rational difference
equations have been studied by several authors. Especially there has been a great
interest in the study of the attractivity of the solutions of such systems. For more
results for qualitative behavior of difference equations, we refer the interested reader
to [3, 4, 6, 7, 10, 11, 12].

Zhang et al. [5] studied the dynamics of a system of rational third-order differ-
ence equations

xn+1 =
xn−2

B + ynyn−1yn−2
, yn+1 =

yn−2

A+ xnxn−1xn−2
, n = 0, 1, · · · .

Din et al. [10] investigated the dynamics of a system of fourth-order rational differ-
ence equations

xn+1 =
αxn−3

β + γynyn−1yn−2yn−3
, yn+1 =

α1yn−3

β1 + γ1xnxn−1xn−2xn−3
, n = 0, 1, · · · ,

Our aim in this paper is to investigate the dynamics of a system of fourth-order
rational difference equations:

xn+1 =
α1xn−3

β1 + γ1ynyn−1xn−2xn−3
, yn+1 =

α2yn−3

β2 + γ2xnxn−1yn−2yn−3
, (1)

n = 0, 1, · · · , where the parameters α1, β1, γ1, α2, β2, γ2 and initial conditions x0,
x−1, x−2, x−3, y0, y−1, y−2, y−3 are positive real numbers.

Let us consider eighth-dimensional discrete dynamical system of the form:

xn+1 = f(xn, yn, xn−1, yn−1, xn−2, yn−2, xn−3, yn−3), (2)

yn+1 = g(xn, yn, xn−1, yn−1, xn−2, yn−2, xn−3, yn−3),

n = 0, 1, · · · , where f : I4×J4 → I and g : I4×J4 → J are continuously differentiable
functions and I, J are some intervals of real numbers. Furthermore, a solution
{(xn, yn)}∞n=−3 of system (2) is uniquely determined by initial conditions (xi, yi) ∈
I × J for i ∈ {−3,−2,−1, 0}. Along with system (2) we consider the corresponding
vector map F = (f, g, xn, yn, xn−1, yn−1, xn−2, yn−2). An equilibrium point of (2) is
a point (x̄, ȳ) that satisfies

x̄ = f(x̄, ȳ, x̄, ȳ, x̄, ȳ, x̄, ȳ)

ȳ = g(x̄, ȳ, x̄, ȳ, x̄, ȳ, x̄, ȳ)
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The point (x̄, ȳ) is also called a fixed point of the vector map F .

Definition 1. Let (x̄, ȳ) be an equilibrium point of the system (2).
(i) An equilibrium point (x̄, ȳ) is said to be stable if for every ε > 0 there

exists δ > 0 such that for every initial condition (xi, yi), i ∈ {−3,−2,−1, 0} if

‖
0∑

i=−3

(xi, yi)− (x̄, ȳ)‖ < δ implies ‖(xn, yn)− (x̄, ȳ)‖ < ε for all n > 0, where ‖.‖ is

usual Euclidian norm in R2.
(ii) An equilibrium point (x̄, ȳ) is said to be unstable if it is not stable.
(iii) An equilibrium point (x̄, ȳ) is said to be asymptotically stable if there exists

η > 0 such that ‖
0∑

i=−3

(xi, yi)− (x̄, ȳ)‖ < η and (xn, yn)→ (x̄, ȳ) as n→∞.

(iv) An equilibrium point (x̄, ȳ) is called global attractor if (xn, yn) → (x̄, ȳ) as
n→∞.

(v) An equilibrium point (x̄, ȳ) is called asymptotic global attractor if it is a global
attractor and stable.

Definition 2. Let (x̄, ȳ) be an equilibrium point of a map

F = (f, g, xn, yn, xn−1, yn−1, xn−2, yn−2),

where f and g are continuously differentiable functions at (x̄, ȳ). The linearized
system of (2) about the equilibrium point (x̄, ȳ) is:

Xn+1 = F (Xn) = FJXn,

where Xn =



xn
yn
xn−1

yn−1

xn−2

yn−2

xn−3

yn−3


and FJ is Jacobian matrix of system (2) about the equilib-

rium point (x̄, ȳ).

To construct corresponding linearized form of system (1) we consider the follow-
ing transformation:

(xn, yn, xn−1, yn−1, xn−2, yn−2, xn−3, yn−3) 7→ (f, g, f1, g1, f2, g2, f3, g3), (3)
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where f = α1xn−3

β1+γ1ynyn−1xn−2xn−3
, g = α2yn−3

β2+γ2xnxn−1yn−2yn−3
, f1 = xn, g1 = yn, f2 =

xn−1, g2 = yn−1, f2 = xn−2 and g2 = yn−2. The Jacobian matrix about the fixed
point (x̄, ȳ) under the transformation (3) is given by

FJ(x̄, ȳ) =



0 A1 0 A1 B1 0 C1 0
A2 0 A2 0 0 B2 0 C2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


,

whereA1 = − α1γ1x̄3ȳ
(β1+γ1x̄2ȳ2)2

, B1 = − α1γ1x̄2ȳ2

(β1+γ1x̄2ȳ2)2
, C1 = α1β1

(β1+γ1x̄2ȳ2)2
, A2 = − α2γ2x̄ȳ3

(β2+γ2x̄2ȳ2)2
,

B2 = − α2γ2x̄2ȳ2

(β2+γ2x̄2ȳ2)2
and C2 = α2β2

(β2+γ2x̄2ȳ2)2
. The characteristic polynomial of FJ(x̄, ȳ)

about equilibrium point (x̄, ȳ) is given by

P (λ) = λ8 −A1A2λ
6 −Aλ5 −Bλ4 +B1B2λ

2 + (B1C2 +B2C1)λ+ C1C2, (4)

where A = B1 +B2 + 2A1A2 and B = C1 + C2 +A1A2.

Lemma 1. [1] Suppose that the system Xn+1 = F (Xn), n = 0, 1, · · · , of difference
equations has X̄ as a fixed point of F . If all eigenvalues of the Jacobian matrix JF
about X̄ lie inside the open unit disk |λ| < 1, then X̄ is locally asymptotically stable.
If one of them has a modulus greater than one, then X̄ is unstable.

2. Main results

Let (x̄, ȳ) be an equilibrium point of system (1), then system (1) has only one
equilibrium point which is (0, 0). In this section, we will show that the unique equi-
librium point (0, 0) of system (1) is locally asymptotically stable as well as globally
asymptotically stable under certain parametric conditions. Moreover, boundedness
character and rate of convergence of positive solutions of (1) are also investigated.

Theorem 2. Assume that α1 < β1 and α2 < β2, then every positive solution of
system (1) is bounded.

Proof. It follows from system (1) that

xn+1 ≤
α1xn−3

β1
, yn+1 ≤

α2yn−3

β2
, n = 0, 1, · · · .
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Consider the following linear fourth-order difference equations

un+1 =
α1un−3

β1
, n = 0, 1, · · · , (5)

and
vn+1 =

α2vn−3

β2
, n = 0, 1, · · · . (6)

Then solution of (5) is given by

un = c1

(
ια1

β1

)n
4

+ c2

(
−α1

β1

)n
4

+ c3

(
− ια1

β1

)n
4

+ c4

(
α1

β1

)n
4

,

where c1, c2, c3 and c4 depend on initial values u−3, u−2, u−1 and u0. Similarly,
solution of (6) is given by

vn = r1

(
ια2

β2

)n
4

+ r2

(
−α2

β2

)n
4

+ r3

(
− ια2

β2

)n
4

+ r4

(
α2

β2

)n
4

,

where r1, r2, r3 and r4 depend on initial values v−3, v−2, v−1 and v0. Suppose that
α1 < β1, α2 < β2, ui = xi and vi = yi for i ∈ {−3,−2,−1, 0}, then by comparison

method we obtain that xn ≤
0∑

i=−3

xi and yn ≤
0∑

i=−3

yi for all n = 1, 2, · · · .

Theorem 3. If α1 < β1 and α2 < β2, then the equilibrium (0, 0) of (1) is locally
asymptotically stable.

Proof. It is easy to see that the linearized system of (1) about the equilibrium point
(0, 0) is given by

Φn+1 = DΦn, (7)

where

Φn =



xn
yn
xn−1

yn−1

xn−2

yn−2

xn−3

yn−3


,
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and

D =



0 0 0 0 0 0 α1
β1

0

0 0 0 0 0 0 0 α2
β2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


.

The characteristic polynomial of D is given by

P (λ) = λ8 −
(
α1

β1
+
α2

β2

)
λ4 +

α1α2

β1β2
.

Then roots of this characteristic polynomial are given by

λ1,2 = ±α1

β1
, λ3,4 = ±ια1

β1
, λ5,6 = ±α2

β2
, λ7,8 = ±ια2

β2
.

Now, it is easy to see that |λk| < 1 for all k = 1, 2, · · · , 8. Since all eigenvalues
of Jacobian matrix FJ(0, 0) about (0, 0) lie in open unit disk |λ| < 1. Hence from
Lemma 1 the equilibrium point (0, 0) is locally asymptotically stable.

Theorem 4. If α1 < β1 and α2 < β2, then the equilibrium (0, 0) of system (1) is
globally asymptotically stable.

Proof. We know from Theorem 3 that the equilibrium point (0, 0) of system (1)
is locally asymptotically stable, and so it suffices to show that (0, 0) is a global
attractor. It follows from Theorem 2 that

0 ≤ |xn| ≤ (x−3 + x−2 + x−1 + x0)

(
α1

β1

)n
4

,

and

0 ≤ |yn| ≤ (y−3 + y−2 + y−1 + y0)

(
α2

β2

)n
4

,

for all n = 1, 2, · · · . Assume that α1 < β1 and α2 < β2, then we obtain that

lim
n→∞

xn = 0 and lim
n→∞

yn = 0.

Thus equilibrium point (0, 0) is a global attractor. Using this and the local asymp-
totic stability proven in Theorem 3 the proof follows.
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2.1. Rate of convergence

In this subsection we will determine the rate of convergence of solutions of system
(1) which converge to the equilibrium point (0, 0). The following result gives the
rate of convergence of solutions of a system of difference equations

Xn+1 = (A+B(n))Xn, (8)

where Xn is an m-dimensional vector, A ∈ Cm×m is a constant matrix, and B :
Z+ → Cm×m is a matrix function satisfying

‖B(n)‖ → 0 (9)

as n→∞, where ‖ · ‖ denotes any matrix norm which is associated with the vector
norm

‖(x, y)‖ =
√
x2 + y2.

Lemma 5. (Perron’s Theorem)[2] Suppose that condition (9) holds. If Xn is a
solution of (8), then either Xn = 0 for large n or

ρ = lim
n→∞

(‖Xn‖)1/n, (10)

or

ρ = lim
n→∞

‖Xn+1‖
‖Xn‖

(11)

exists and is equal to the norm of one of the eigenvalues of the matrix A.

Assume that lim
n→∞

xn = x̄ and lim
n→∞

xn = ȳ. First we will find a system of limiting

equations for system (1). The error terms are given as

xn+1 − x̄ =
α1xn−3

β1 + γ1ynyn−1xn−2xn−3
− α1x̄

β1 + γ1x̄2ȳ2

= − α1γ1x̄yn−1xn−2xn−3

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
(yn − ȳ)

− α1γ1x̄ȳxn−2xn−3

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
(yn−1 − ȳ)

− α1γ1x̄ȳ
2xn−3

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
(xn−2 − x̄)

+
α1γ1

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
(xn−3 − x̄),
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and

yn+1 − ȳ =
α2yn−3

β2 + γ2xnxn−1yn−2yn−3
− α2ȳ

β2 + γ2x̄2ȳ2

= − α2γ2ȳxn−1yn−2yn−3

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
(xn − x̄)

− α2γ2x̄ȳyn−2yn−3

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
(xn−1 − x̄)

− α2γ2x̄
2ȳyn−3

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
(yn−2 − ȳ)

+
α2β2

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
(yn−3 − ȳ).

We let e1
n = xn − x̄ and e2

n = yn − ȳ, then one has

e1
n+1 = F1e

2
n + F2e

2
n−1 + F3e

1
n−2 + F4e

1
n−3,

and
e2
n+1 = G1e

1
n +G2e

1
n−1 +G3e

2
n−2 +G4e

2
n−3,

where

F1 = − α1γ1x̄yn−1xn−2xn−3

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
,

F2 = − α1γ1x̄ȳxn−2xn−3

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
,

F3 = − α1γ1x̄ȳ
2xn−3

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
,

F4 =
α1γ1

(β1 + γ1ynyn−1xn−2xn−3)(β1 + γ1x̄2ȳ2)
,

G1 = − α2γ2ȳxn−1yn−2yn−3

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
,

G2 = − α2γ2x̄ȳyn−2yn−3

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
,

G3 = − α2γ2x̄
2ȳyn−3

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
,

G4 =
α2β2

(β2 + γ2xnxn−1yn−2yn−3)(β2 + γ2x̄2ȳ2)
.
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Now, it is easy to see that

lim
n→∞

F1 = lim
n→∞

F2 = − α1γ1x̄
3ȳ

(β1 + γ1x̄2ȳ2)2
,

lim
n→∞

F3 = − α1γ1x̄
2ȳ2

(β1 + γ1x̄2ȳ2)2
, lim
n→∞

F4 =
α1β1

(β1 + γ1x̄2ȳ2)2
,

lim
n→∞

G1 = lim
n→∞

G2 = − α2γ2x̄ȳ
3

(β2 + γ2x̄2ȳ2)2
,

lim
n→∞

G3 = − α2γ2x̄
2ȳ2

(β2 + γ2x̄2ȳ2)2
, lim
n→∞

G4 =
α2β2

(β2 + γ2x̄2ȳ2)2
.

Hence, the limiting system of error terms at (x̄, ȳ) = (0, 0) can be written as

En+1 = KEn, (12)

where

En =



e1
n

e2
n

e1
n−1

e2
n−1

e1
n−2

e2
n−2

e1
n−3

e2
n−3


,

and

K =



0 0 0 0 0 0 α1
β1

0

0 0 0 0 0 0 0 α2
β2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


.

One can observe that (12) is similar to linearized system of (1) about the equi-
librium point (x̄, ȳ) = (0, 0). Using Lemma 5, one has following result.

Theorem 6. Assume that {(xn, yn)} be a positive solution of system (1) such that
lim
n→∞

xn = x̄, and lim
n→∞

yn = ȳ, where (x̄, ȳ) = (0, 0). Then, the error vector En of

every solution of (1) satisfies both of the following asymptotic relations

lim
n→∞

(‖En‖)
1
n = |λFJ(x̄, ȳ)|, lim

n→∞

‖En+1‖
‖En‖

= |λFJ(x̄, ȳ)|,

145



Q. Din – On a system of fourth-order rational difference equations . . .

where λFJ(x̄, ȳ) are the characteristic roots of the Jacobian matrix FJ(x̄, ȳ) about
(0, 0).

3. Examples

In order to verify our theoretical results and to support our theoretical discussions,
we consider some interesting numerical examples in this section. These examples
show that the unique equilibrium point (0, 0) of system (1) is globally asymptotically
stable if and only if α1 < β1 and α2 < β2.

Example 1. Let α1 = 17, β1 = 18, γ1 = 1.5, α2 = 15, β2 = 16 and γ2 = 1.2. Then,
system (1) can be written as:

xn+1 =
17xn−3

18 + 1.5ynyn−1xn−2xn−3
, yn+1 =

15yn−3

16 + 1.2xnxn−1yn−2yn−3
, (13)

with initial conditions x−3 = 1.3, x−2 = 1.8, x−1 = 1.6, x0 = 1.1, y−3 = 0.1,
y−2 = 1.2, y−1 = 0.8, y0 = 0.5. Furthermore, in Fig. 1 plot of xn is shown in Fig.
1a, plot of yn is shown in Fig. 1b and global attractor of system (13) is shown in
Fig. 1c.

Example 2. Let α1 = 1.7, β1 = 1.74, γ1 = 1.1, α2 = 1.5, β2 = 1.54 and γ2 = 1.2.
Then, system (1) can be written as:

xn+1 =
1.7xn−3

1.74 + 1.1ynyn−1xn−2xn−3
, yn+1 =

1.5yn−3

1.54 + 1.2xnxn−1yn−2yn−3
, (14)

with initial conditions x−3 = 0.3, x−2 = 0.8, x−1 = 0.6, x0 = 0.1, y−3 = 0.4,
y−2 = 0.2, y−1 = 0.7, y0 = 0.5. Furthermore, in Fig. 2 plot of xn is shown in Fig.
2a, plot of yn is shown in Fig. 2b and global attractor of system (14) is shown in
Fig. 2c.

Example 3. Let α1 = 80, β1 = 84, γ1 = 7.5, α2 = 150, β2 = 153 and γ2 = 4.5.
Then, system (1) can be written as:

xn+1 =
80xn−3

84 + 7.5ynyn−1xn−2xn−3
, yn+1 =

150yn−3

153 + 4.5xnxn−1yn−2yn−3
, (15)

with initial conditions x−3 = 0.5, x−2 = 0.3, x−1 = 0.1, x0 = 0.2, y−3 = 0.1,
y−2 = 0.4, y−1 = 0.6, y0 = 0.8. Furthermore, in Fig. 3 plot of xn is shown in Fig.
3a, plot of yn is shown in Fig. 3b and global attractor of system (15) is shown in
Fig. 3c.
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(a) Plot of xn for the system (13) (b) Plot of yn for the system (13)

(c) An attractor of the system (13)

Figure 1: Plots for the system (13)
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(a) Plot of xn for the system (14) (b) Plot of yn for the system (14)

(c) An attractor of the system (14)

Figure 2: Plots for the system (14)
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(a) Plot of xn for the system (15) (b) Plot of yn for the system (15)

(c) An attractor of the system (15)

Figure 3: Plots for the system (15)
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