COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS

C. Selvaraj, T.R.K. Kumar, G. Thirupathi

Abstract. In the present investigation, we introduce two new subclasses $S T_{\Sigma}(b, \phi)$ and $C V_{\Sigma}(b, \phi)$ of bi-univalent functions defined in the open unit disc $\mathbb{U}=\{z:|z|<1\}$. Besides, we find upper bounds for the second and third coefficients for functions in these new subclasses.

2000 Mathematics Subject Classification: 30C45.
Keywords: bi-univalent functions, starlike and convex functions, coefficient bounds.

1. Introduction, definitions and preliminaries

We let \mathcal{A} to denote the class of functions analytic in \mathbb{U} and having the power series expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

Also we let \mathcal{S} to denote the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}. The Koebe one-quarter theorem [5] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z,(z \in \mathbb{U})$ and

$$
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1).

The coefficient estimate problem for the class \mathcal{S}, known as the Bieberbach conjecture, is settled by de-Branges [3], who proved that for a function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in the class $\mathcal{S},\left|a_{n}\right| \leq n$, for $n=2,3, \cdots$, with equality only for the rotations of the Koebe function

$$
K_{0}(z)=\frac{z}{(1-z)^{2}} .
$$

Lewin [7]investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$ for the functions belonging to Σ. Subsequently, Brannan and Clunie [4] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$.

An analytic function f is subordinate to an analytic function g, written $f(z) \prec$ $g(z)$, provided there is a schwarz function w defined on \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ satisfying $f(z)=g(w(z))$. Ma and Minda [8], unified various subclasses of starlike and convex functions for which either of the quantity $\frac{z f^{\prime}(z)}{f(z)}$ or $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is subordinate to a more general superordinate function. For this purpose, they considered an analytic function ϕ with positive real part in the unit disk $U, \phi(0)=1, \phi^{\prime}(0)>0$ and ϕ maps U onto a region starlike with respect to 1 and symmetric with respect to the real axis. Such a function has a series expansion of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots,\left(B_{1}>0\right) . \tag{3}
\end{equation*}
$$

Definition 1. Let b be a non-zero complex number. A function $f(z)$ given by (1) is said to be in the class $S T_{\Sigma}(b, \phi)$ if the following conditions are satisfied:

$$
\begin{gather*}
f \in \Sigma \quad \text { and } \quad 1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \phi(z), \quad z \in \mathbb{U} \tag{4}\\
\quad \text { and } \quad 1+\frac{1}{b}\left(\frac{w g^{\prime}(w)}{g(w)}-1\right) \prec \phi(w), \quad w \in \mathbb{U}, \tag{5}
\end{gather*}
$$

where the function g is given by

$$
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

Definition 2. Let b be a non-zero complex number. A function $f(z)$ given by (1) is said to be in the class $C V_{\Sigma}(b, \phi)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad 1+\frac{1}{b}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \phi(z), z \in \mathbb{U} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad 1+\frac{1}{b}\left(\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \prec \phi(w), w \in \mathbb{U} \tag{7}
\end{equation*}
$$

where the function g is given by

$$
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

2. Coefficient estimates

Our first result provides estimates for the coefficients a_{2}, a_{3} for functions belonging to the class $S T_{\Sigma}(b, \phi)$.

Theorem 1. If $f \in S T_{\Sigma}(b, \phi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b| B_{1} \sqrt{B_{1}}}{\sqrt{\left|B_{1}^{2} b+B_{1}-B_{2}\right|}} \quad \text { and } \quad\left|a_{3}\right| \leq\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|b| \text {. } \tag{8}
\end{equation*}
$$

Proof. Since $f \in S T_{\Sigma}(b, \phi)$, there exists two analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=0=s(0)$, such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=\phi(r(z)) \quad \text { and } \quad 1+\frac{1}{b}\left(\frac{w g^{\prime}(w)}{g(w)}-1\right)=\phi(s(z)) \tag{9}
\end{equation*}
$$

Define the functions p and q by
$p(z)=\frac{1+r(z)}{1-r(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \quad$ and $\quad q(z)=\frac{1+s(z)}{1-s(z)}=1+q_{1} z+q_{2} z^{2}+\cdots$.
Or equivalently,
$r(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left(p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\left(p_{3}+\frac{p_{1}}{2}\left(\frac{p_{1}^{2}}{2}-p_{2}\right)-\frac{p_{1} p_{2}}{2}\right) z^{3}+\cdots\right)$
and
$s(z)=\frac{q(z)-1}{q(z)+1}=\frac{1}{2}\left(q_{1} z+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) z^{2}+\left(q_{3}+\frac{q_{1}}{2}\left(\frac{q_{1}^{2}}{2}-q_{2}\right)-\frac{q_{1} q_{2}}{2}\right) z^{3}+\cdots\right)$.
It is clear that p and q are analytic in \mathbb{U} and $p(0)=1=q(0)$. Also p and q have positive real part in \mathbb{U} and hence $\left|p_{i}\right| \leq 2$ and $\left|q_{i}\right| \leq 2$. In the view of (9),(11)and (12), clearly,
$1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=\phi\left(\frac{p(z)-1}{p(z)+1}\right) \quad$ and $\quad 1+\frac{1}{b}\left(\frac{w g^{\prime}(w)}{g(w)}-1\right)=\phi\left(\frac{q(w)-1}{q(w)+1}\right)$.
Using (11) and (12) together with (3), one can easily verify that

$$
\begin{equation*}
\phi\left(\frac{p(z)-1}{p(z)+1}\right)=1+\frac{B_{1} p_{1}}{2} z+\left(\frac{B_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}\right) z^{2}+\cdots \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi\left(\frac{q(w)-1}{q(w)+1}\right)=1+\frac{B_{1} q_{1}}{2} w+\left(\frac{B_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{B_{2} q_{1}^{2}}{4}\right) w^{2}+\cdots . \tag{15}
\end{equation*}
$$

Since $f \in \Sigma$ has the Maclaurin series given by (1), computation shows that its inverse $g=f^{-1}$ has the expansion given by (2). It follows from (13),(14) and (15) that

$$
\begin{gather*}
a_{2}=\frac{1}{2} B_{1} b p_{1} \tag{16}\\
2 a_{3}-a_{2}^{2}=\frac{1}{2} B_{1} b\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} b \tag{17}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{2}^{3}-3 a_{2} a_{3}+3 a_{4}=\frac{B_{1} b}{2}\left(2 p_{3}+p_{1}\left(\frac{p_{1}^{2}}{2}-p_{2}\right)-p_{1} p_{2}\right)+\frac{B_{2} p_{1} b}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{B_{3} b p_{1}^{3}}{8} . \tag{18}
\end{equation*}
$$

And

$$
\begin{gather*}
-a_{2}=\frac{1}{2} B_{1} b q_{1}, \tag{19}\\
3 a_{2}^{2}-2 a_{3}=\frac{1}{2} B_{1} b\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} b, \tag{20}\\
5 a_{2}^{3}-15 a_{2}^{2}+12 a_{2} a_{3}-3 a_{4}=\frac{B_{1} b}{2}\left(2 q_{3}+q_{1}\left(\frac{q_{1}^{2}}{2}-q_{2}\right)-q_{1} q_{2}\right)+\frac{B_{2} q_{1} b}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{B_{3} b q_{1}^{3}}{8} . \tag{21}
\end{gather*}
$$

From (16) and (19), it follows that

$$
\begin{equation*}
p_{1}=-q_{1}, \tag{22}
\end{equation*}
$$

and from (17)

$$
\begin{equation*}
a_{3}=\frac{a_{2}^{2}}{2}+\frac{1}{4} B_{1} b p_{2}-\frac{1}{8} B_{1} b p_{1}^{2}+\frac{1}{8} B_{2} p_{1}^{2} b . \tag{23}
\end{equation*}
$$

Now (17),(20) and (23) gives

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3} b^{2}\left(p_{2}+q_{2}\right)}{4\left(B_{1}^{2} b+B_{1}-B_{2}\right)} \tag{24}
\end{equation*}
$$

Using the fact that $\left|p_{2}\right| \leq 2$ and $\left|q_{2}\right| \leq 2$ gives the desired estimate on $\left|a_{2}\right|$,

$$
\left|a_{2}\right| \leq \frac{|b| B_{1} \sqrt{B_{1}}}{\sqrt{\left|B_{1}^{2} b+B_{1}-B_{2}\right|}}
$$

From (17)-(22), gives

$$
a_{3}=\frac{\left(\frac{B_{1} b}{2}\right)\left(3 p_{2}+q_{2}\right)+b p_{1}^{2}\left(B_{2}-B_{1}\right)}{4} .
$$

Using the inequalities $\left|p_{1}\right| \leq 2,\left|p_{2}\right| \leq 2$ and $\left|q_{2}\right| \leq 2$ for functions with positive real part yields

$$
\left|a_{3}\right| \leq\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|b| .
$$

For a choice of $\phi(z)=\frac{1+A z}{1+B z},-1 \leq B<A \leq 1$, we have the following corollary.
Corollary 2. Let $-1 \leq B<A \leq 1$. If $f \in S T_{\Sigma}\left(b, \frac{1+A z}{1+B z}\right)$, then

$$
\left|a_{2}\right| \leq \frac{|b|(A-B)}{\sqrt{|(A-B) b+(1+B)|}}
$$

and

$$
\left|a_{3}\right| \leq|A-B|(1+|1+B|)|b|
$$

If we let $\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\cdots, 0 \leq \alpha<1$, in the above theorem, we get the following corollary.

Corollary 3. Let $0<\alpha \leq 1$. If $f \in S T_{\Sigma}(b, \alpha)$, then

$$
\left|a_{2}\right| \leq \frac{2 \alpha|b|}{\sqrt{|2 \alpha b+(1-\alpha)|}}
$$

and

$$
\left|a_{3}\right| \leq 2 \alpha(1+|\alpha-1|)|b| .
$$

Remark 1. It is interesting to note that several well known and (presumably) new results can be obtained by specializing the function $\phi(z)$. For details see [1], [2].

Analogous to the coefficient estimates obtained for the class $S T_{\Sigma}(b, \phi)$, we now proceed to obtain the coefficient estimates of the class $C V_{\Sigma}(b, \phi)$.

Theorem 4. If $C V_{\Sigma}(b, \phi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b| B_{1} \sqrt{B_{1}}}{\sqrt{2\left|B_{1}^{2} b+2\left(B_{1}-B_{2}\right)\right|}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|b|}{2} \tag{25}
\end{equation*}
$$

Proof. Since $f \in C V_{\Sigma}(b, \phi)$, there exists two analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=0=s(0)$, satisfying

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\phi(r(z)) \quad \text { and } \quad 1+\frac{1}{b}\left(\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)=\phi(s(w)) . \tag{26}
\end{equation*}
$$

Let p and q be defined as in (10), then it is clear from(26),(11) and (12)that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\phi\left(\frac{p(z)-1}{p(z)+1}\right) \quad \text { and } \quad 1+\frac{1}{b}\left(\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)=\phi\left(\frac{q(w)-1}{q(w)+1}\right) . \tag{27}
\end{equation*}
$$

It follows from (27),(15) and (16),

$$
\begin{gather*}
2 a_{2}=\frac{1}{2} B_{1} b p_{1}, \tag{28}\\
6 a_{3}-4 a_{2}^{2}=\frac{1}{2} B_{1} b\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} b, \tag{29}\\
-2 a_{2}=\frac{1}{2} B_{1} b q_{1}, \tag{30}
\end{gather*}
$$

and

$$
\begin{equation*}
8 a_{2}^{2}-6 a_{3}=\frac{1}{2} B_{1} b\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} b . \tag{31}
\end{equation*}
$$

The equations (28) and (30) yield

$$
\begin{equation*}
p_{1}=-q_{1} \tag{32}
\end{equation*}
$$

and from (29) and(31), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3} b^{2}\left(p_{2}+q_{2}\right)}{8\left(B_{1}^{2} b+2\left(B_{1}-B_{2}\right)\right)} \tag{33}
\end{equation*}
$$

which yields the desired estimate on $\left|a_{2}\right|$ as described in 25.
Similarly, it can be obtained from (29)-(31),

$$
a_{3}=\frac{\left(\frac{B_{1} b}{2}\right)\left(2 p_{2}+q_{2}\right)+\left(\frac{3 b p_{1}^{2}}{4}\right)\left(B_{2}-B_{1}\right)}{6}
$$

which yields the estimate (25).
Corollary 5. Let $-1 \leq B<A \leq 1$. If $f \in C V_{\Sigma}\left(b, \frac{1+A z}{1+B z}\right)$, then

$$
\left|a_{2}\right| \leq \frac{|b|(A-B)}{\sqrt{2|(A-B) b+2(1+B)|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|A-B|(1+|1+B|)|b|}{2} .
$$

Corollary 6. Let $0<\alpha \leq 1$. If $f \in C V_{\Sigma}(b, \alpha)$, then

$$
\left|a_{2}\right| \leq \frac{|b| \alpha}{\sqrt{|\alpha b+(1-\alpha)|}}
$$

and

$$
\left|a_{3}\right| \leq \alpha(1+|\alpha-1|)|b| .
$$

3. Coefficients bounds for the function class $M_{\Sigma}(\alpha, \phi)$

Theorem 7. Let f given by (1) be in the class $M_{\Sigma}(\alpha, \phi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b| B_{1} \sqrt{B_{1}}}{\sqrt{(1+\alpha)\left|B_{1}^{2} b+(1+\alpha)\left(B_{1}-B_{2}\right)\right|}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|b|}{(1+\alpha)} . \tag{34}
\end{equation*}
$$

Proof. If $f \in M_{\Sigma}(\alpha, \phi)$, then there are analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=$ $0=s(0)$ such that

$$
\begin{align*}
(1-\alpha)\left(1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right)+\alpha\left(1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\phi(r(z)) \tag{35}\\
(1-\alpha)\left(1+\frac{1}{b}\left(\frac{w g^{\prime}(w)}{g(w)}-1\right)\right)+\alpha\left(1+\frac{1}{b} \frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) & =\phi(s(w)) \tag{36}
\end{align*}
$$

From (14),(15),(35)and(36), it follows that

$$
\begin{gather*}
(1+\alpha) a_{2}=\frac{1}{2} B_{1} b p_{1}, \tag{37}\\
(2+4 \alpha) a_{3}-(1+3 \alpha) a_{2}^{2}=\frac{1}{2} B_{1} b\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} b, \tag{38}\\
-(1+\alpha) a_{2}=\frac{1}{2} B_{1} b q_{1} \tag{39}
\end{gather*}
$$

and

$$
\begin{equation*}
(3+5 \alpha) a_{2}^{2}-(2+4 \alpha) a_{3}=\frac{1}{2} B_{1} b\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} b . \tag{40}
\end{equation*}
$$

From (37),(39),

$$
\begin{equation*}
p_{1}=-q_{1} . \tag{41}
\end{equation*}
$$

The equations (38),(40) and(41), gives

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3} b^{2}\left(p_{2}+q_{2}\right)}{4(1+\alpha)\left(B_{1}^{2} b+(1+\alpha)\left(B_{1}-B_{2}\right)\right)} \tag{42}
\end{equation*}
$$

which yields the desired estimation of $\left|a_{2}\right|$ in (34).
Subtracting (38) from (40), using (41), gives

$$
\begin{equation*}
a_{3}=\frac{\frac{B_{1} b}{2}\left((3+5 \alpha) p_{2}+(1+3 \alpha)\right)+b p_{1}^{2}\left(B_{2}-B_{1}\right)}{4(1+2 \alpha)(1+\alpha)} . \tag{43}
\end{equation*}
$$

Using the familiar inequalities $\left|p_{i}\right| \leq 2$ and $\left|q_{i}\right| \leq 2$, (43) gives

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|b|}{(1+\alpha)} . \tag{44}
\end{equation*}
$$

Remark 2. If we let $b=1$, Theorem 3.1 reduce to the result of R.M.Ali et.al [2].

References

[1] R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p valent functions, Appl. Math. Comput. 187 (2007), no. 1, 35-46.
[2] R. M. Ali et al., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351.
[3] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152.
[4] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22 (1970), 476-485.
[5] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[6] G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl. 329 (2007), no. 2, 922-934.
[7] M. Lewin, On a coefficient problem for bi-unilvalent functions, Appl.MAth.Lett. 24(2011)1569-1573.
[8] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.

Chellapan Selvaraj
Presidency College
Chennai-600 005,
Tamilnadu, India.
email: pamc9439@yahoo.co.in. T.R.K.Kumar
R.M.K.Engineering College
R.S.M.Nagar, Kavaraipettai-601 206,

Tamilnadu, India.
email: kumartrk@yahoo.com. T.R.K.Kumar
R.M.K.Engineering College
R.S.M.Nagar, Kavaraipettai-601 206,

Tamilnadu, India.
email: gt_venkat79@yahoo.com.

