SOME SUBORDINATION THEOREMS FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING A LINEAR OPERATOR

T.M. SEOUDY

ABSTRACT. By using the subordination theorem for analytic functions we derive interesting subordination results for certain class of analytic functions defined by new linear operator.

2000 Mathematics Subject Classification: 30C45.

Keywords: Analytic functions, Hadamard product, subordinating factor sequence, linear operator.

1. INTRODUCTION

Let \mathcal{A} denote the class of functions f(z) of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1}$$

which are analytic and univalent in the open unit disk $\mathbf{U} = \{z \in \mathbb{C} : |z| < 1\}$. If f(z) and g(z) are analytic in \mathbf{U} , we say that f(z) is subordinate to g(z), written $f \prec g$ or $f(z) \prec g(z)$ ($z \in \mathbf{U}$), if there exists a Schwarz function w(z) in \mathbf{U} with w(0) = 0 and |w(z)| < 1 ($z \in \mathbf{U}$), such that f(z) = g(w(z)), ($z \in \mathbf{U}$). In particular, if g(z) is univalent in \mathbf{U} , then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(\mathbf{U}) \subset g(\mathbf{U})$ (see [16] and [17]).

For the functions $f \in \mathcal{A}$ given by (1) and $g \in \mathcal{A}$ given by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k,$$
(2)

the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$
(3)

Let CV and ST be the subclasses of \mathcal{A} which are starlike and convex functions, respectively. A function $f(z) \in \mathcal{A}$ is said to be in the class of uniformly starlike functions of order γ and type β , denoted by $SP(\beta, \gamma)$ if

$$\Re\left\{\frac{zf'(z)}{f(z)} - \gamma\right\} > \beta \left|\frac{zf'(z)}{f(z)} - 1\right|,\tag{4}$$

where $\beta \ge 0, -1 \le \gamma < 1, \beta + \gamma \ge 0$. Similarly, if $f(z) \in \mathcal{A}$ satisfies

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)} - \gamma\right\} > \beta \left|\frac{zf''(z)}{f'(z)}\right|,\tag{5}$$

where $\beta \geq 0, -1 \leq \gamma < 1, \beta + \gamma \geq 0$, then f(z) is said to be in the class of uniformly convex functions of order γ and type β , and is denoted by $UCV(\beta, \gamma)$. The classes $SP(\beta, \gamma)$ and $UCV(\beta, \gamma)$ were studied by Bharti et al. [8].

For functions $f, g \in \mathcal{A}$, we define the linear operator $D_{\lambda}^{n} : \mathcal{A} \to \mathcal{A} \ (\lambda \geq 0, n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, ...\})$ by:

$$D^0_{\lambda}(f * g)(z) = (f * g)(z),$$

$$D_{\lambda}^{1}(f * g)(z) = D_{\lambda}(f * g)(z) = (1 - \lambda)(f * g)(z) + \lambda z ((f * g)(z))',$$

and (in general)

$$D^n_{\lambda}(f*g)(z) = D_{\lambda}(D^{n-1}_{\lambda}(f*g)(z)) \quad (\lambda \ge 0; n \in \mathbb{N}).$$
(6)

If f and g are given by (1) and (2), respectively, then from (6), we see that

$$D_{\lambda}^{n}(f * g)(z) = z + \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^{n} a_{k} b_{k} z^{k} \quad (\lambda \ge 0; n \in \mathbb{N}_{0}).$$
(7)

From (7), we can easily deduce that

$$\lambda z \left(D_{\lambda}^{n}(f \ast g)(z) \right)' = D_{\lambda}^{n+1}(f \ast g)(z) - (1-\lambda)D_{\lambda}^{n}(f \ast g)(z) \ (\lambda > 0).$$
(8)

The operator $D_{\lambda}^{n}(f * g)(z)$ was introduced by Aouf and Seoudy [5]. We observe that the linear operator $D_{\lambda}^{n}(f * g)(z)$ reduces to several interesting many other linear operators considered earlier for different choices of n, λ and the function g(z):

operators considered earlier for different choices of n, λ and the function g(z): (i) For $b_k = 1$ (or $g(z) = \frac{z}{1-z}$), we have $D_{\lambda}^n(f * g)(z) = D_{\lambda}^n f(z)$, where D_{λ}^n is the generalized Sălăgean operator (or Al-Oboudi operator [1]) which yield Sălăgean operator D^n for $\lambda = 1$ introduced and studied by Sălăgean [22]; (ii) For n = 0 and

$$b_k = \Gamma_k = \frac{(a_1)_{k-1}\dots(a_l)_{k-1}}{(b_1)_{k-1}\dots(b_m)_{k-1}(1)_{k-1}}$$
(9)

 $(a_i \in \mathbb{C}; i = 1, ..., l; b_j \in \mathbb{C} \setminus \mathbb{Z}_0^- = \{0, -1, ..\}; j = 1, ..., m; l \le m + 1; l, m \in \mathbb{N}_0),$

where

$$(x)_k = \frac{\Gamma(x+k)}{\Gamma(x)} = \begin{cases} 1 & (k=0; x \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}) \\ x(x+1)\dots(x+k-1) & (k \in \mathbb{N}; x \in \mathbb{C}), \end{cases}$$

we have $D^{0}_{\lambda}(f*g)(z) = (f*g)(z) = H_{l,m}(a_{1};b_{1}) f(z)$, where the operator $H_{l,m}(a_{1};b_{1})$ is the Dziok-Srivastava operator introduced and studied by Dziok and Srivastava [10] (see also [11] and [12]). The operator $H_{l,m}(a_{1};b_{1})$, contains in turn many interesting operators such as, Hohlov linear operator (see [13]), the Carlson-Shaffer linear operator (see [9] and [21]), the Ruscheweyh derivative operator (see [20]), the Bernardi-Libera-Livingston operator (see [7], [14] and [15]) and Owa-Srivastava fractional derivative operator (see [18]);

(*iii*) For g(z) of the form (9), the operator $D_{\lambda}^{n}(f * g)(z) = D_{\lambda}^{n}(a_{1}, b_{1})f(z)$, introduced and studied by Selvaraj and Karthikeyan [23];

(iv) For

$$b_{k} = \left[\frac{\Gamma\left(k+1\right)\Gamma\left(2-\alpha\right)}{\Gamma\left(k+1-\alpha\right)}\right]^{n} \quad \left(\alpha \neq 2, 3, 4, \ldots\right),$$

we have $D_{\lambda}^{n}(f * g)(z) = D_{\lambda}^{n,\alpha}f(z)$, where $D_{\lambda}^{n,\alpha}f(z)$ is a linear operator which was introduced and studied by Al-Oboudi and Al-Amoudi ([2] and [3], see also [4]);

(v) For

S

$$b_k = \left[\frac{(a)_{k-1}}{(c)_{k-1}}\right]^n \quad (a, c \in \mathbb{R}^+),$$

we note that $D_{\lambda}^{n}(f*g)(z) = I_{a,c,\lambda}^{n}f(z)$, where $I_{a,c,\lambda}^{n}f(z)$ is a linear multiplier operator which introduced by Prajapat and Riana [19];

(vi) For $b_k = [\Gamma_k]^n$, where Γ_k is given by (1.9), we obtain the linear operator $D^n_{\lambda}(f * g)(z) = L^n_{\lambda,l,m}(a_1;b_1) f(z)$, where $L^n_{\lambda,l,m}(a_1;b_1)$ is defined by Srivastava et al. [24]. The operator $L^n_{\lambda,l,m}(a_1;b_1)$ contains Al-Oboudi and Al-Amoudi operator [2, 3] and Prajapat and Riana operator [19].

Let $SP_{\lambda}^{n}(f, g; \gamma, \beta)$ be the class of functions $f, g \in \mathcal{A}$ satisfying the following condition:

$$\Re\left\{\frac{z(D^n_{\lambda}(f*g)(z))'}{D^n_{\lambda}(f*g)(z)} - \gamma\right\} > \beta \left|\frac{z(D^n_{\lambda}(f*g)(z))'}{D^n_{\lambda}(f*g)(z)} - 1\right| \quad (z \in \mathbf{U}),$$
(10)

where $-1 \leq \gamma < 1$, $\beta \geq 0$, $\beta + \gamma \geq 0$, $\lambda \geq 0$ and $n \in \mathbb{N}_0$.

Let $UCV_{\lambda}^n(f,g;\gamma,\beta)$ be the class of function $f,g\in A$ satisfying the following condition:

$$\Re\left\{1+\frac{z(D_{\lambda}^{n}(f\ast g)(z))^{''}}{\left(D_{\lambda}^{n}(f\ast g)(z)\right)^{'}}-\gamma\right\}>\beta\left|\frac{z(D_{\lambda}^{n}(f\ast g)(z))^{''}}{\left(D_{\lambda}^{n}(f\ast g)(z)\right)^{'}}\right|\quad(z\in\mathbf{U}),\qquad(11)$$

where $-1 \leq \gamma < 1$, $\beta \geq 0$, $\beta + \gamma \geq 0$, $\lambda \geq 0$ and $n \in \mathbb{N}_0$.

From
$$(10)$$
 and (11) , we have

$$f(z) \in UCV_{\lambda}^{n}(f,g;\gamma,\beta) \Leftrightarrow zf'(z) \in SP_{\lambda}^{n}(f,g;\gamma,\beta).$$
(12)

Taking $b_k = [\Gamma_k]^n$, where Γ_k is given by (9), we note that $SP^n_{\lambda}(f, g; \gamma, \beta) = SP^n_{\lambda,l,m}(a_1; b_1; \gamma, \beta)$ and $UCV^n_{\lambda}(f, g; \gamma, \beta) = UCV^n_{\lambda,l,m}(a_1; b_1; \gamma, \beta)$.

Definition 1. [25] A sequence $\{c_k\}_{k=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if whenever f(z) of the form (1) is analytic, univalent and convex in **U**, we have

$$\sum_{k=1}^{\infty} a_k c_k z^k \prec f(z) \qquad (z \in \mathbf{U}; a_1 = 1) .$$
(13)

2. MAIN RESULTS

To state and prove our main results, we need the following lemma.

Lemma 1. [25] The sequence $\{c_k\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$\Re\left(1+2\sum_{k=1}^{\infty}c_k z^k\right) > 0 \qquad (z \in \mathbf{U}) .$$
(14)

Theorem 2. A function $f(z) \in \mathcal{A}$ of the form (1) is in the class $SP_{\lambda}^{n}(f, g; \gamma, \beta)$ if

$$\sum_{k=2}^{\infty} \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \lambda(k-1) \right]^n |b_k| |a_k| \le 1 - \gamma,$$
(15)

where g(z) is given by $(2), -1 \leq \gamma < 1, \beta \geq 0, \lambda \geq 0$ and $n \in \mathbb{N}_0$.

Proof. It suffices to show that

$$\beta \left| \frac{z(D_{\lambda}^{n}(f \ast g)(z))'}{D_{\lambda}^{n}(f \ast g)(z)} - 1 \right| - \Re \left\{ \frac{z(D_{\lambda}^{n}(f \ast g)(z))'}{D_{\lambda}^{n}(f \ast g)(z)} - 1 \right\} < 1 - \gamma \quad (z \in \mathbf{U}),$$

we have

$$\begin{split} \beta \left| \frac{z(D_{\lambda}^{n}(f*g)(z))'}{D_{\lambda}^{n}(f*g)(z)} - 1 \right| &- \Re \left\{ \frac{z(D_{\lambda}^{n}(f*g)(z))'}{D_{\lambda}^{n}(f*g)(z)} - 1 \right\} \\ &\leq \left. (1+\beta) \left| \frac{z(D_{\lambda}^{n}(f*g)(z))'}{D_{\lambda}^{n}(f*g)(z)} - 1 \right| \\ &\leq \left. \frac{(1+\beta) \sum_{k=2}^{\infty} (k-1) \left[1 + \lambda(k-1) \right]^{n} |b_{k}| \left| a_{k} \right| \left| z \right|^{k-1}}{1 - \sum_{k=2}^{\infty} \left[1 + \lambda(k-1) \right]^{n} |b_{k}| \left| a_{k} \right| \left| z \right|^{k-1}} \\ &< \left. \frac{(1+\beta) \sum_{k=2}^{\infty} (k-1) \left[1 + \lambda(k-1) \right]^{n} |b_{k}| \left| a_{k} \right|}{1 - \sum_{k=2}^{\infty} \left[1 + \lambda(k-1) \right]^{n} |b_{k}| \left| a_{k} \right|} \right]. \end{split}$$

This last expression is bounded above by $(1 - \gamma)$ if (14) is satisfied.

By virture of (12) and Theorem 2, we have

Corollary 3. A function $f(z) \in \mathcal{A}$ of the form (1) is in the class $UCV_{\lambda}^{n}(f, g; \gamma, \beta)$ if

$$\sum_{k=2}^{\infty} k \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \lambda(k-1) \right]^n |b_k| |a_k| \le 1 - \gamma,$$

where g(z) is given by (2), $-1 \leq \gamma < 1$, $\beta \geq 0$, $\lambda \geq 0$ and $n \in \mathbb{N}_0$.

Let $SP_{\lambda}^{n*}(f,g;\gamma,\beta)$ and $UCV_{\lambda}^{n*}(f,g;\gamma,\beta)$ denote the classes of functions $f(z) \in \mathcal{A}$ of the form (1) whose coefficients satisfy the conditions (15) and (16), respectively. We note that $SP_{\lambda}^{n*}(f,g;\gamma,\beta) \subseteq SP_{\lambda}^{n}(f,g;\gamma,\beta)$ and $UCV_{\lambda}^{n*}(f,g;\gamma,\beta) \subseteq UCV_{\lambda}^{n}(f,g;\gamma,\beta)$.

Theorem 4. Let the function f(z) defined by (1) be in the class $SP_{\lambda}^{n*}(f, g; \gamma, \beta)$, where g(z) is given by (2), $\beta \ge 0, -1 \le \gamma < 1, \lambda \ge 0$ and $n \in \mathbb{N}_0$. Then

$$\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n |b_2|]} (f*h)(z) \prec h(z) \quad (z \in \mathbf{U}; h \in CV)$$
(16)

and

$$\Re(f(z)) > -\frac{1 - \gamma + (2 + \beta - \gamma)(1 + \lambda)^n |b_2|}{(2 + \beta - \gamma)(1 + \lambda)^n |b_2|} \quad (z \in \mathbf{U}).$$
(17)

The constant $\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n |b_2|]}$ is the best estimate.

Proof. Let $f(z) \in SP_{\lambda}^{n*}(f, g; \gamma, \beta)$ and suppose that $h(z) = z + \sum_{k=2}^{\infty} c_k z^k \in CV$. Then we readily have

$$\frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|]}(f*h)(z)$$

$$=\frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|]}\left(z+\sum_{k=2}^{\infty}a_{k}c_{k}z^{k}\right).$$
(18)

Thus, by Definition 1, the assertion of our theorem will hold if the sequence

$$\left\{\frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|]}a_{k}\right\}_{k=1}^{\infty}$$
(19)

is a subordinating factor sequence, with $a_1 = 1$. In view of Lemma 1, this is equivalent to the following inequality

$$\Re\left\{1+\sum_{k=1}^{\infty}\frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}a_{k}z^{k}\right\}>0\quad(z\in\mathbf{U}).$$
(20)

Now since

$$[k(1+\beta) - (\gamma+\beta)] [1+\lambda(k-1)]^n \quad (\beta \ge 0; -1 \le \gamma < 1; \lambda > 0; n \in \mathbb{N}_0)$$

is an increasing function of k, we have

$$\Re\left\{1+\sum_{k=1}^{\infty}\frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}a_{k}z^{k}\right\}$$

$$= \Re\left\{1+\frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}z+\frac{\sum_{k=2}^{\infty}(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|a_{k}z^{k}}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}\right\}$$

$$\geq 1-\frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}r-\frac{\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\lambda(k-1)]^{n}|b_{k}||a_{k}|r^{k}}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}$$

$$> 1 - \frac{(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}r - \frac{1-\gamma}{1-\gamma+(2+\beta-\gamma)(1+\lambda)^{n}|b_{2}|}r = 1-r > 0 \quad (|z|=r<1),$$
(21)

where we have used the assertion (15) of Theorem 2. Thus (20) holds true in **U**. This proves the first assertion. The inequality (17) follows from (16) by taking

$$h(z) = \frac{z}{1-z} = z + \sum_{k=2}^{\infty} z^k \in CV .$$
(22)

To prove the sharpness of the constant $\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n |b_2|]}$, we consider the function $f_0(z)$ defined by

$$f_0(z) = z - \frac{1 - \gamma}{(2 + \beta - \gamma)(1 + \lambda)^n |b_2|} z^2 \quad (\beta \ge 0; -1 \le \gamma < 1; \lambda > 0; n \in \mathbb{N}_0), \quad (23)$$

which is a member of the class $SP_{\lambda}^{n*}(f,g;\gamma,\beta)$. Then from the relation (16), we obtain

$$\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n |b_2|]} f_0(z) \prec \frac{z}{1-z} .$$
(24)

It can be easily verified that

$$\min_{|z| \le 1} \Re\left(\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n |b_2|]}\right) = -\frac{1}{2},\tag{25}$$

this shows that the constant $\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n |b_2|]}$ is best possible, and the proof of Theorem 4 is completed.

Similarly from (12) and Theorem 4, we can prove the following theorem.

Theorem 5. Let the function f(z) defined by (1) be in the class $UCV_{\lambda}^{n*}(f, g; \gamma, \beta)$, where g(z) is given by (2), $\beta \ge 0, -1 \le \gamma < 1, \lambda \ge 0$ and $n \in \mathbb{N}_0$. Then

$$\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{1-\gamma+2(2+\beta-\gamma)(1+\lambda)^n |b_2|} (f*h)(z) \prec h(z) \quad (z \in \mathbf{U}; h \in CV)$$
(26)

and

$$\Re(f(z)) > -\frac{1 - \gamma + 2(2 + \beta - \gamma)(1 + \lambda)^n |b_2|}{2(2 + \beta - \gamma)(1 + \lambda)^n |b_2|} \quad (z \in \mathbf{U}).$$
(27)

The constant $\frac{(2+\beta-\gamma)(1+\lambda)^n |b_2|}{1-\gamma+2(2+\beta-\gamma)(1+\lambda)^n |b_2|}$ is the best estimate.

Remark 1. (i) Taking $b_k = 1$ in Theorem 4, we obtain the result of Aouf et al. [6, Theorem 1];

(ii) Taking

$$b_{k} = \left[\frac{\Gamma\left(k+1\right)\Gamma\left(2-\alpha\right)}{\Gamma\left(k+1-\alpha\right)}\right]^{n} \quad \left(\alpha \neq 2, 3, 4, \ldots\right),$$

in Theorems 4 and 4, respectively, we obtain the results of Aouf and Mostafa [4, Theorems 2.4 and 2.8, respectively];

(iii) Taking

$$b_k = \left[\frac{(a)_{k-1}}{(c)_{k-1}}\right]^n \quad (a, c \in \mathbb{R}^+),$$

in Theorem 4, we obtain the result of Prajapat and Riana [19, Theorem 1].

Taking $b_k = [\Gamma_k]^n$, where Γ_k is given by (9), in Theorems 4 and 5, we obtain the following results for the classes $SP^n_{\lambda,l,m}(a_1;b_1;\gamma,\beta)$ and $UCV^{n*}_{\lambda,l,m}(a_1;b_1;\gamma,\beta)$, respectively.

Corollary 6. Let the function f(z) defined by (1) be in the class $SP^n_{\lambda,l,m}(a_1; b_1; \gamma, \beta)$, where g(z) is given by (2), $\beta \ge 0, -1 \le \gamma < 1, \lambda \ge 0$ and $n \in \mathbb{N}_0$. Then

$$\frac{(2+\beta-\gamma)(1+\lambda)^n \left| \left[\Gamma_2\right]^n \right|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n \left| \left[\Gamma_2\right]^n \right|]} (f*h)(z) \prec h(z) \quad (z \in \mathbf{U}; h \in CV)$$

and

$$\Re(f(z)) > -\frac{1 - \gamma + (2 + \beta - \gamma)(1 + \lambda)^n \left| [\Gamma_2]^n \right|}{(2 + \beta - \gamma)(1 + \lambda)^n \left| [\Gamma_2]^n \right|} \quad (z \in \mathbf{U})$$

The constant $\frac{(2+\beta-\gamma)(1+\lambda)^n |[\Gamma_2]^n|}{2[1-\gamma+(2+\beta-\gamma)(1+\lambda)^n |[\Gamma_2]^n|]}$ is the best estimate.

Corollary 7. Let the function f(z) defined by (1) be in the class $UCV_{\lambda,l,m}^{n*}(a_1; b_1; \gamma, \beta)$, where g(z) is given by (2), $\beta \ge 0, -1 \le \gamma < 1, \lambda \ge 0$ and $n \in \mathbb{N}_0$. Then

$$\frac{(2+\beta-\gamma)(1+\lambda)^n \left| \left[\Gamma_2\right]^n \right|}{1-\gamma+2(2+\beta-\gamma)(1+\lambda)^n \left| \left[\Gamma_2\right]^n \right|} (f*h)(z) \prec h(z) \quad (z \in \mathbf{U}; h \in CV)$$

and

$$\Re(f(z)) > -\frac{1-\gamma+2(2+\beta-\gamma)(1+\lambda)^n \left|\left[\Gamma_2\right]^n\right|}{2(2+\beta-\gamma)(1+\lambda)^n \left|\left[\Gamma_2\right]^n\right|} \quad (z \in \mathbf{U})$$

The constant $\frac{(2+\beta-\gamma)(1+\lambda)^n |[\Gamma_2]^n|}{1-\gamma+2(2+\beta-\gamma)(1+\lambda)^n |[\Gamma_2]^n|}$ is the best estimate.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci., 27(2004), 1429-1436.

[2] F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339(2008), 655-667.

[3] F. M. Al-Oboudi and K. A. Al-Amoudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl., 354(2009), 412-420.

[4] M. K. Aouf and A. O. Mostafa, Some subordination results for classes of analytic functions defined the Al-Oboudi-Al-Amoudi operator, Arch. Math. 92(2009), 279-289.

[5] M. K. Aouf and T. M. Seoudy, On differential sandwich theorems of analytic functions defined by certain linear operator, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 64 (2010), no. 2, 1-14..

[6] M. K. Aouf, S. Shamandy, A. O. Mostafa and F. El-Emam, Subordination results associated with β -uniformly convex and starlike functions, Proc. Pakistan Acad. Sci., 46(2009), no. 2, 97-101.

[7] S. D. Bernardi, *Convex and starlike univalent functions*, Trans. Amer. Math. Soc. 135 (1969), 429–446.

[8] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1999), no. 1, 17-32.

[9] B. C. Carlson and D. B. Shaffer, *Starlike and prestarlike hypergeometric functions*, SIAM J. Math. Anal., 15 (1984), 737-745.

[10] J. Dziok and H. M. Srivastava, *Classes of analytic functions associated with the generalized hypergeometric function*, Appl. Math. Comput., 103 (1999), 1-13.

[11] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5 (2002), 115-125.

[12] J. Dziok and H. M. Srivastava, *Certain subclasses of analytic functions associated with the generalized hypergeometric function*, Integral Transform. Spec. Funct., 14 (2003), 7-18.

[13] Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vysŝh. Učebn. Zaved. Mat., 10 (1978), 83-89 (in Russian).

[14] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-658.

[15] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357. [16] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications, Serieson Monographs and Textbooks in Pure and Applied Mathematics*, Vol. 225, Marcel Dekker, New York and Basel, 2000.

[17] S. S. Miller and P.T. Mocanu, *Subordinats of differential superordinations*, Complex Var., 48(2003), 815-826.

[18] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.

[19] J. K. Prejapat and R. K. Raina, Subordination theorem for a certain subclass of analytic functions involving a linear multipler operator, Indian J. Math., 51(2009), no. 2, 267-276.

[20] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Sco., 49 (1975), 109-115.

[21] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon. 44 (1996), 31-38.

[22] G. S. Sălăgean, *Subclasses of univalent functions*, Lecture Notes in Math. (Springer-Verlag) 1013, (1983), 362 - 372.

[23] C. Selvaraj and K. R. Karthikeyan, *Differential subordination and superordination for certain subclasses of analytic functions*, Far East J. Math. Sci. (FJMS), 29 (2008), no. 2, 419-430.

[24] H. M. Srivastava, S.-H. Li and H. Tang, Certain Classes of k-uniformly Closeto-Convex Functions and Other Related Functions Defined by Using the Dziok-Srivastava Operator, Bull. Math. Anal. Appl., 1(2009), no. 3, 49-63.

[25] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12(1961), 689-693.

Tamer M. Seoudy Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt email: tms00@fayoum.edu.eg