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FUNCTIONS USING SALAGEAN OPERATOR
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Abstract. In the present paper, we introduce new subclasses STΣ(b, φ) and
CVΣ(b, φ) of bi-univalent functions defined in the open disk. Furthermore, we find
upper bounds for the second and third coefficients for functions in these new sub-
classes using Salagean operator.
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1. Introduction,Definitions And Preliminaries

Let A denote the class of functions f (z) of the form

f (z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, by S we
shall denote the class of functions f ∈ A which are univalent in U.

Since univalent functions are one-to-one, they are invertible and the inverse func-
tions need not be defined on the entire unit disk U. However, the famous Koebe
one-quarter theorem ensures that the image of the unit disk U under every function
f ∈ A contains a disk of radius 1/4. Thus every univalent function f has an inverse
f−1 satisfying f−1 (f(z)) = z, (z ∈ U) and f

(
f−1(w)

)
= w,

(
|w| < r0(f), r0(f) ≥ 1

4

)
where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are
univalent in U. We let Σ to denote the class of bi-univalent functions in U given by
(1). If f(z) is bi-univalent, it must be analytic in the boundary of the domain and
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such that it can be continued across the boundary of the domain so that f−1(z) is
defined and analytic throughout |w| < 1. Examples of functions in the class Σ are

z

1− z
,−log (1− z)

and so on.
The coefficient estimate problem for the class S, known as the Bieberbach conjec-

ture, is settled by de-Branges [4], who proved that for a function f (z) = z+
∞∑
n=2

anz
n

in the class S, |an| ≤ n, for n = 2, 3, · · · , with equality only for the rotations of the
Koebe function

K0(z) =
z

(1− z)2
.

In 1967, Lewin [7] introduced the class Σ of bi-univalent functions and showed
that |a2| < 1.51 for the functions belonging to Σ. It was earlier believed that for
f ∈ Σ, the bound was |an| < 1 for every n and the extremal function in the class
was z

1−z . E.Netanyahu [9] in 1969, ruined this conjecture by proving that in the set
Σ, maxf∈Σ |a2| ≤ 4/3. In 1969, Suffridge [13] gave an example of f ∈ Σ for which
a2 = 4/3 and conjectured that |a2| ≤ 4/3. In 1981, Styer and Wright [12] disproved
the conjecture that |a2| > 4/3. Brannan and Clunie [2] conjectured that |a2| ≤

√
2.

Kedzierawski [6] in 1985 proved this conjecture for a special case when the function
f and f−1 are starlike functions. Brannan and Clunie [2] conjectured that |a2| ≤

√
2.

Tan [14] in proved that |a2| ≤ 1.485 which is the best known estimate for functions
in the class of bi-univalent functions.

Brannan and Taha [3] introduced certain subclasses of the bi-univalent function
class Σ similar to the familiar subclasses S∗ (α) and C (α) of the univalent function
class Σ. Recently, Ali et al.[1] extended the results of Brannan and Taha [3] by
generalising their classes using subordination.

An analytic function f is subordinate to an analytic function g,written f(z) ≺
g(z), provided there is a Schwarz function w defined on U with w(0) = 0 and
|w(z)| < 1 satisfying f (z) = g (w(z)). Ma and Minda [8], unified various subclasses

of starlike and convex functions for which either of the quantity
zf ′(z)

f(z)
or 1 +

zf ′′(z)

f ′(z)
is subordinate to a more general superordinate function. For this purpose, they
considered an analytic function φ with positive real part in the unit disk U , φ(0) = 1,
φ′(0) > 0 and φ maps U onto a region starlike with respect to 1 and symmetric with
respect to the real axis. Such a function has a series expansion of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , (B1 > 0). (3)
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Let a differential operator be defined [11] on a class of analytic functions of the
form (1) as follows:

D0f (z) = f (z) , D1f (z) = Df (z) = zf́ (z)

and in general

Dnf (z) = D
(
Dn−1f (z)

)
(n ∈ N0 = N ∪ {0}) .

We easily find that

Dkf (z) = z +

∞∑
n=2

nkanz
n (n ∈ N0) . (4)

Definition 1. Let b be a non-zero complex number. A function f(z) given by (1)
is said to be in the class STΣ (b, φ) if the following conditions are satisfied:

f ∈ Σ and 1 +
1

b

(
z (Dmf (z))′

Dmf(z)
− 1

)
≺ φ (z) , z ∈ U (5)

and 1 +
1

b

(
w (Dmg (w))′

Dmg(w)
− 1

)
≺ φ (w) , w ∈ U, (6)

where the function g is given by (2).

Definition 2. Let b be a non-zero complex number. A function f(z) given by (1)
is said to be in the class CVΣ (b, φ) if the following conditions are satisfied:

f ∈ Σ and 1 +
1

b

(
z (Dmf (z))′′

(Dmf(z))′

)
≺ φ (z) , z ∈ U (7)

and 1 +
1

b

(
w (Dmg (w))′′

(Dmg(w))′

)
≺ φ (w) , w ∈ U, (8)

where the function g is given by (2).

2. Coefficient estimates

Lemma 1. [10] If p ∈ ℘, then |ck| ≤ 2 for each k, where ℘ is the family of functions
p analytic in U for which <p (z) > 0, p (z) = 1 + c1z + c2z

2 + · · · for z ∈ U.
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Theorem 2. Let the function f (z) ∈ A be given by (1). If f ∈ STΣ (b, φ), then

|a2| ≤
B1

√
B1 |b|√∣∣(2(3m)− 22m)B2
1b+ (B1 −B2) 22m

∣∣ and |a3| ≤
(B1 + |B2 −B1|) |b|

2(3m)− 22m
.

(9)

Proof. Since f ∈ STΣ (b, φ), there exists two analytic functions r, s : U → U, with
r(0) = 0 = s(0), such that

1 +
1

b

(
z (Dmf (z))′

Dmf(z)
− 1

)
= φ (r(z)) and 1 +

1

b

(
w (Dmg (w))′

Dmg(w)
− 1

)
= φ (s(z)) .

(10)
Define the functions p and q by

p (z) =
1 + r(z)

1− r(z)
= 1+p1z+p2z

2+· · · and q (z) =
1 + s(z)

1− s(z)
= 1+q1z+q2z

2+· · · .

(11)
Or equivalently,

r (z) =
p(z)− 1

p(z) + 1
=

1

2

(
p1z +

(
p2 −

p2
1

2

)
z2 +

(
p3 +

p1

2

(
p2

1

2
− p2

)
− p1p2

2

)
z3 + · · ·

)
(12)

and

s (z) =
q(z)− 1

q(z) + 1
=

1

2

(
q1z +

(
q2 −

q2
1

2

)
z2 +

(
q3 +

q1

2

(
q2

1

2
− q2

)
− q1q2

2

)
z3 + · · ·

)
.

(13)
It is clear that p and q are analytic in U and p(0) = 1 = q(0). Also p and q have

positive real part in U and hence |pi| ≤ 2 and |qi| ≤ 2. In the view of (11), (12)and
(13), clearly,

1+
1

b

(
z (Dmf (z))

′

Dmf(z)
− 1

)
= φ

(
p(z)− 1

p(z) + 1

)
and 1+

1

b

(
w (Dmg (w))

′

Dmg(w)
− 1

)
= φ

(
q(w)− 1

q(w) + 1

)
.

(14)

Using (13) and (14) together with (3), one can easily verify that

φ

(
p(z)− 1

p(z) + 1

)
= 1 +

B1p1

2
z +

(
B1

2

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1

)
z2 + · · · (15)
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and

φ

(
q(w)− 1

q(w) + 1

)
= 1 +

B1q1

2
w +

(
B1

2

(
q2 −

q2
1

2

)
+
B2q

2
1

4

)
w2 + · · · . (16)

Since f ∈ Σ has the Maclaurin series given by (1), computation shows that its
inverse g = f−1 has the expansion given by (2). It follows from (14), (15) and (16)
that

2ma2 =
1

2
B1p1b, (17)

2 (3m) a3 −
(
22m

)
a2

2 =
1

2
bB1

(
p2 −

1

2
p2

1

)
+

1

4
bB2p

2
1 (18)

and

− 2ma2 =
1

2
B1bq1, (19)

(
4 (3m)−

(
22m

))
a2

2 − 2 (3m) a3 =
1

2
bB1

(
q2 −

1

2
q2

1

)
+

1

4
bB2q

2
1. (20)

From (17) and (19), it follows that

p1 = −q1. (21)

Now (18), (20) and (21) gives

a2
2 =

B3
1 (p2 + q2) b

4
(
(2.3m − 22m)B2

1b+ 22m (B1 −B2)
) . (22)

Using the fact that |p2| ≤ 2 and |q2| ≤ 2 gives the desired estimate on |a2|,

|a2| ≤
B1

√
B1 |b|√∣∣(2.3m − 22m)B2

1b+ (B1 −B2) 22m
∣∣ .

From (18)-(20), gives

a3 =
bB1

2

((
4(3m)− 22m

)
p2 + 22mq2

)
+ 3mp2

1 (B2 −B1) b

4 (2(32m)− 3m22m)
.

Using the inequalities |p1| ≤ 2, |p2| ≤ 2 and |q2| ≤ 2 for functions with positive
real part yields the desired estimation of |a3|.
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For a choice of φ (z) =
1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, we have the following corollary.

Corollary 3. Let −1 ≤ B < A ≤ 1. If f ∈ STΣ

(
b, 1+Az

1+Bz

)
, then

|a2| ≤
|b| (A−B)√

|(2 (3m)− 22m) (A−B) b+ (1 +B) 22m|

and

|a3| ≤
|A−B| (1 + |1 +B|) |b|

(2 (3m)− 22m)
.

If we let φ (z) =

(
1 + z

1− z

)α
= 1 + 2αz + 2α2z2 + · · · , 0 < α ≤ 1, in the above

theorem, we get the following:

Corollary 4. Let 0 < α ≤ 1. If f ∈ STΣ (b, α), then

|a2| ≤
|b| 2α√

|2α (2 (3m)− 22m) b+ (1− α) 22m|

and

|a3| ≤
(1 + |α− 1|) 2α |b|

2 (3m)− 22m
.

Theorem 5. Let the function f (z) ∈ A be given by (1). If f ∈ CVΣ (b, φ), then

|a2| ≤
B1

√
B1 |b|√

2
∣∣(3m+1 − 22m+1)B2

1b+ 2 (B1 −B2) 22m
∣∣ and |a3| ≤

(B1 + |B2 −B1|) |b|
2(3m+1 − 22m+1)

.

(23)

Proof. Since f ∈ CVΣ (b, φ), there exists two analytic functions r, s : U → U, with
r(0) = 0 = s(0), such that

1 +
1

b

(
z (Dmf (z))′′

(Dmf(z))′

)
= φ (r(z)) and 1 +

1

b

(
w (Dmg (w))′′

(Dmg(w))′

)
= φ (s(z)) . (24)

Using (11), (12), (15) and (16), one can easily verified that

2m+1a2 =
1

2
B1p1b, (25)

6 (3m) a3 − 4
(
22m

)
a2

2 =
1

2
bB1

(
p2 −

1

2
p2

1

)
+

1

4
bB2p

2
1 (26)
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and

− 2m+1a2 =
1

2
B1bq1, (27)

(
12 (3m)− 4

(
22m

))
a2

2 − 6 (3m) a3 =
1

2
bB1

(
q2 −

1

2
q2

1

)
+

1

4
bB2q

2
1. (28)

From (25) and (27), it follows that

p1 = −q1. (29)

Now (26), (28) and (29) gives

a2
2 =

B3
1 (p2 + q2) b

8
(
(3.3m − 2.22m)B2

1b+ 2 (B1 −B2) (22m)
) . (30)

Using the fact that |p2| ≤ 2 and |q2| ≤ 2 gives the desired estimate on |a2|,

|a2| ≤
B1

√
B1 |b|√

2
∣∣(3m+1 − 22m+1)B2

1b+ 2 (B1 −B2) 22m
∣∣ .

From (26)-(28), gives

a3 =
bB1

2

((
12(32m)− 4(22m)

)
p2 + 4(22m)q2

)
+ (B2 −B1) bp2

13m+1

24(3m) (3m+1 − 22m+1)
.

Using the inequalities |p1| ≤ 2, |p2| ≤ 2 and |q2| ≤ 2 for functions with positive
real part yields

|a3| ≤
(B1 + |B2 −B1|) |b|

2(3m+1 − 22m+1)
.

For a choice of φ (z) =
1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, we have the following corollary.

Corollary 6. Let −1 ≤ B < A ≤ 1. If f ∈ STΣ

(
b, 1+Az

1+Bz

)
, then

|a2| ≤
|b| (A−B)√

2 |(3m+1 − 22m+1) (A−B) b+ 2 (1 +B) 22m|

and

|a3| ≤
|A−B| (1 + |1 +B|) |b|

2 (3m+1 − 22m+1)
.
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If we let φ (z) =

(
1 + z

1− z

)α
= 1 + 2αz + 2α2z2 + · · · , 0 < α ≤ 1, in the above

theorem, we get the following:

Corollary 7. Let 0 < α ≤ 1. If f ∈ STΣ (b, α), then

|a2| ≤
|b|α√

|(3m+1 − 22m+1)αb+ (1− α) 22m|

and

|a3| ≤
(1 + |α− 1|)α |b|
(3m+1 − 22m+1)

.

Remark 1. If we let b = 1,m = 0, Theorem 2.2 and Theorem 2.5 reduce to the
result of R.M.Ali et.al [1], corollary 2.1 and corollary 2.2.
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