COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS USING SALAGEAN OPERATOR

C. Selvaraj, G. Thirupathi

ABSTRACT. In the present paper, we introduce new subclasses $ST_{\Sigma}(b, \phi)$ and $CV_{\Sigma}(b, \phi)$ of bi-univalent functions defined in the open disk. Furthermore, we find upper bounds for the second and third coefficients for functions in these new subclasses using Salagean operator.

2000 Mathematics Subject Classification: 30C45.

Keywords: keywords, phrases. bi-univalent functions, coefficient estimates, starlike functions, convex function, salagean operator.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
(1)

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathcal{C} : |z| < 1\}$. Further, by \mathcal{S} we shall denote the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U} .

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk U. However, the famous Koebe one-quarter theorem ensures that the image of the unit disk U under every function $f \in \mathcal{A}$ contains a disk of radius 1/4. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z$, $(z \in \mathbb{U})$ and $f(f^{-1}(w)) = w$, $(|w| < r_0(f), r_0(f) \ge \frac{1}{4})$ where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
 (2)

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathbb{U} . We let Σ to denote the class of bi-univalent functions in \mathbb{U} given by (1). If f(z) is bi-univalent, it must be analytic in the boundary of the domain and such that it can be continued across the boundary of the domain so that $f^{-1}(z)$ is defined and analytic throughout |w| < 1. Examples of functions in the class Σ are

$$\frac{z}{1-z}, -\log\left(1-z\right)$$

and so on.

The coefficient estimate problem for the class S, known as the Bieberbach conjecture, is settled by de-Branges [4], who proved that for a function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in the class S, $|a_n| \leq n$, for $n = 2, 3, \cdots$, with equality only for the rotations of the Koebe function

$$K_0(z) = \frac{z}{(1-z)^2}.$$

In 1967, Lewin [7] introduced the class Σ of bi-univalent functions and showed that $|a_2| < 1.51$ for the functions belonging to Σ . It was earlier believed that for $f \in \Sigma$, the bound was $|a_n| < 1$ for every n and the extremal function in the class was $\frac{z}{1-z}$. E.Netanyahu [9] in 1969, ruined this conjecture by proving that in the set Σ , max_{$f \in \Sigma$} $|a_2| \leq 4/3$. In 1969, Suffridge [13] gave an example of $f \in \Sigma$ for which $a_2 = 4/3$ and conjectured that $|a_2| \leq 4/3$. In 1981, Styer and Wright [12] disproved the conjecture that $|a_2| > 4/3$. Brannan and Clunie [2] conjectured that $|a_2| \leq \sqrt{2}$. Kedzierawski [6] in 1985 proved this conjecture for a special case when the function f and f^{-1} are starlike functions. Brannan and Clunie [2] conjectured that $|a_2| \leq \sqrt{2}$. Tan [14] in proved that $|a_2| \leq 1.485$ which is the best known estimate for functions in the class of bi-univalent functions.

Brannan and Taha [3] introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $S^*(\alpha)$ and $C(\alpha)$ of the univalent function class Σ . Recently, Ali et al.[1] extended the results of Brannan and Taha [3] by generalising their classes using subordination.

An analytic function f is subordinate to an analytic function g,written $f(z) \prec g(z)$, provided there is a Schwarz function w defined on \mathbb{U} with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g(w(z)). Ma and Minda [8], unified various subclasses of starlike and convex functions for which either of the quantity $\frac{zf'(z)}{f(z)}$ or $1 + \frac{zf''(z)}{f'(z)}$ is subordinate to a more general superordinate function. For this purpose, they considered an analytic function ϕ with positive real part in the unit disk U, $\phi(0) = 1$, $\phi'(0) > 0$ and ϕ maps U onto a region starlike with respect to 1 and symmetric with respect to the real axis. Such a function has a series expansion of the form

$$\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots, (B_1 > 0). \tag{3}$$

Let a differential operator be defined [11] on a class of analytic functions of the form (1) as follows:

$$D^{0}f(z) = f(z), \quad D^{1}f(z) = Df(z) = zf'(z)$$

and in general

$$D^{n}f(z) = D\left(D^{n-1}f(z)\right) \qquad (n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\})$$

We easily find that

$$D^{k}f(z) = z + \sum_{n=2}^{\infty} n^{k}a_{n}z^{n} \qquad (n \in \mathbb{N}_{0}).$$

$$\tag{4}$$

Definition 1. Let b be a non-zero complex number. A function f(z) given by (1) is said to be in the class $ST_{\Sigma}(b, \phi)$ if the following conditions are satisfied:

$$f \in \Sigma \quad and \quad 1 + \frac{1}{b} \left(\frac{z \left(D^m f(z) \right)'}{D^m f(z)} - 1 \right) \prec \phi(z) \,, \quad z \in \mathbb{U}$$
(5)

and
$$1 + \frac{1}{b} \left(\frac{w \left(D^m g \left(w \right) \right)'}{D^m g(w)} - 1 \right) \prec \phi(w), \quad w \in \mathbb{U},$$
 (6)

where the function g is given by (2).

Definition 2. Let b be a non-zero complex number. A function f(z) given by (1) is said to be in the class $CV_{\Sigma}(b, \phi)$ if the following conditions are satisfied:

$$f \in \Sigma \quad and \quad 1 + \frac{1}{b} \left(\frac{z \left(D^m f(z) \right)''}{\left(D^m f(z) \right)'} \right) \prec \phi(z), z \in \mathbb{U}$$

$$\tag{7}$$

and
$$1 + \frac{1}{b} \left(\frac{w \left(D^m g \left(w \right) \right)''}{\left(D^m g \left(w \right) \right)'} \right) \prec \phi \left(w \right), w \in \mathbb{U},$$
 (8)

where the function g is given by (2).

2. Coefficient estimates

Lemma 1. [10] If $p \in \wp$, then $|c_k| \leq 2$ for each k, where \wp is the family of functions p analytic in \mathbb{U} for which $\Re p(z) > 0$, $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ for $z \in \mathbb{U}$.

Theorem 2. Let the function $f(z) \in \mathcal{A}$ be given by (1). If $f \in ST_{\Sigma}(b, \phi)$, then

$$|a_{2}| \leq \frac{B_{1}\sqrt{B_{1}}|b|}{\sqrt{\left|\left(2(3^{m})-2^{2m}\right)B_{1}^{2}b+\left(B_{1}-B_{2}\right)2^{2m}\right|}} \quad and \quad |a_{3}| \leq \frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|b|}{2(3^{m})-2^{2m}}.$$
(9)

Proof. Since $f \in ST_{\Sigma}(b, \phi)$, there exists two analytic functions $r, s : \mathbb{U} \to \mathbb{U}$, with r(0) = 0 = s(0), such that

$$1 + \frac{1}{b} \left(\frac{z \left(D^m f(z) \right)'}{D^m f(z)} - 1 \right) = \phi \left(r(z) \right) \quad \text{and} \quad 1 + \frac{1}{b} \left(\frac{w \left(D^m g(w) \right)'}{D^m g(w)} - 1 \right) = \phi \left(s(z) \right).$$
(10)

Define the functions p and q by

$$p(z) = \frac{1+r(z)}{1-r(z)} = 1 + p_1 z + p_2 z^2 + \dots \quad \text{and} \quad q(z) = \frac{1+s(z)}{1-s(z)} = 1 + q_1 z + q_2 z^2 + \dots$$
(11)

Or equivalently,

$$r(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left(p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_1}{2} \left(\frac{p_1^2}{2} - p_2 \right) - \frac{p_1 p_2}{2} \right) z^3 + \cdots \right)$$
(12)

and

$$s(z) = \frac{q(z) - 1}{q(z) + 1} = \frac{1}{2} \left(q_1 z + \left(q_2 - \frac{q_1^2}{2} \right) z^2 + \left(q_3 + \frac{q_1}{2} \left(\frac{q_1^2}{2} - q_2 \right) - \frac{q_1 q_2}{2} \right) z^3 + \cdots \right).$$
(13)

It is clear that p and q are analytic in \mathbb{U} and p(0) = 1 = q(0). Also p and q have positive real part in \mathbb{U} and hence $|p_i| \leq 2$ and $|q_i| \leq 2$. In the view of (11), (12) and (13), clearly,

$$1 + \frac{1}{b} \left(\frac{z \left(D^m f(z) \right)'}{D^m f(z)} - 1 \right) = \phi \left(\frac{p(z) - 1}{p(z) + 1} \right) \quad \text{and} \quad 1 + \frac{1}{b} \left(\frac{w \left(D^m g(w) \right)'}{D^m g(w)} - 1 \right) = \phi \left(\frac{q(w) - 1}{q(w) + 1} \right).$$
(14)

Using (13) and (14) together with (3), one can easily verify that

$$\phi\left(\frac{p(z)-1}{p(z)+1}\right) = 1 + \frac{B_1p_1}{2}z + \left(\frac{B_1}{2}\left(p_2 - \frac{p_1^2}{2}\right) + \frac{1}{4}B_2p_1^2\right)z^2 + \cdots$$
(15)

and

$$\phi\left(\frac{q(w)-1}{q(w)+1}\right) = 1 + \frac{B_1q_1}{2}w + \left(\frac{B_1}{2}\left(q_2 - \frac{q_1^2}{2}\right) + \frac{B_2q_1^2}{4}\right)w^2 + \cdots$$
(16)

Since $f \in \Sigma$ has the Maclaurin series given by (1), computation shows that its inverse $g = f^{-1}$ has the expansion given by (2). It follows from (14), (15) and (16) that

$$2^m a_2 = \frac{1}{2} B_1 p_1 b, \tag{17}$$

$$2(3^m)a_3 - (2^{2m})a_2^2 = \frac{1}{2}bB_1\left(p_2 - \frac{1}{2}p_1^2\right) + \frac{1}{4}bB_2p_1^2 \tag{18}$$

and

$$-2^m a_2 = \frac{1}{2} B_1 b q_1, \tag{19}$$

$$\left(4\left(3^{m}\right) - \left(2^{2m}\right)\right)a_{2}^{2} - 2\left(3^{m}\right)a_{3} = \frac{1}{2}bB_{1}\left(q_{2} - \frac{1}{2}q_{1}^{2}\right) + \frac{1}{4}bB_{2}q_{1}^{2}.$$
 (20)

From (17) and (19), it follows that

$$p_1 = -q_1.$$
 (21)

Now (18), (20) and (21) gives

$$a_2^2 = \frac{B_1^3 \left(p_2 + q_2\right) b}{4 \left(\left(2.3^m - 2^{2m}\right) B_1^2 b + 2^{2m} \left(B_1 - B_2\right) \right)}.$$
(22)

Using the fact that $|p_2| \leq 2$ and $|q_2| \leq 2$ gives the desired estimate on $|a_2|$,

$$|a_2| \le \frac{B_1 \sqrt{B_1} |b|}{\sqrt{\left| (2.3^m - 2^{2m}) B_1^2 b + (B_1 - B_2) 2^{2m} \right|}}$$

From (18)-(20), gives

$$a_3 = \frac{\frac{bB_1}{2} \left(\left(4(3^m) - 2^{2m} \right) p_2 + 2^{2m} q_2 \right) + 3^m p_1^2 \left(B_2 - B_1 \right) b}{4 \left(2(3^{2m}) - 3^m 2^{2m} \right)}.$$

Using the inequalities $|p_1| \leq 2$, $|p_2| \leq 2$ and $|q_2| \leq 2$ for functions with positive real part yields the desired estimation of $|a_3|$.

For a choice of $\phi(z) = \frac{1+Az}{1+Bz}$, $-1 \le B < A \le 1$, we have the following corollary.

Corollary 3. Let $-1 \leq B < A \leq 1$. If $f \in ST_{\Sigma}\left(b, \frac{1+Az}{1+Bz}\right)$, then

$$|a_2| \le \frac{|b| (A - B)}{\sqrt{|(2 (3^m) - 2^{2m}) (A - B) b + (1 + B) 2^{2m}|}}$$

and

$$|a_3| \le \frac{|A - B|(1 + |1 + B|)|b|}{(2(3^m) - 2^{2m})}$$

If we let $\phi(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} = 1 + 2\alpha z + 2\alpha^2 z^2 + \cdots, 0 < \alpha \le 1$, in the above theorem, we get the following:

Corollary 4. Let $0 < \alpha \leq 1$. If $f \in ST_{\Sigma}(b, \alpha)$, then

$$|a_2| \le \frac{|b| 2\alpha}{\sqrt{|2\alpha \left(2 \left(3^m\right) - 2^{2m}\right) b + (1 - \alpha) 2^{2m}|}}$$

and

$$|a_3| \le \frac{(1+|\alpha-1|)\,2\alpha\,|b|}{2\,(3^m)-2^{2m}}.$$

Theorem 5. Let the function $f(z) \in \mathcal{A}$ be given by (1). If $f \in CV_{\Sigma}(b, \phi)$, then

$$|a_{2}| \leq \frac{B_{1}\sqrt{B_{1}}|b|}{\sqrt{2\left|\left(3^{m+1}-2^{2m+1}\right)B_{1}^{2}b+2\left(B_{1}-B_{2}\right)2^{2m}\right|}} \quad and \quad |a_{3}| \leq \frac{\left(B_{1}+|B_{2}-B_{1}|\right)|b|}{2\left(3^{m+1}-2^{2m+1}\right)}$$

$$(23)$$

Proof. Since $f \in CV_{\Sigma}(b, \phi)$, there exists two analytic functions $r, s : \mathbb{U} \to \mathbb{U}$, with r(0) = 0 = s(0), such that

$$1 + \frac{1}{b} \left(\frac{z \left(D^m f(z) \right)''}{\left(D^m f(z) \right)'} \right) = \phi \left(r(z) \right) \quad \text{and} \quad 1 + \frac{1}{b} \left(\frac{w \left(D^m g(w) \right)''}{\left(D^m g(w) \right)'} \right) = \phi \left(s(z) \right).$$
(24)

Using (11), (12), (15) and (16), one can easily verified that

$$2^{m+1}a_2 = \frac{1}{2}B_1p_1b,\tag{25}$$

$$6(3^m)a_3 - 4(2^{2m})a_2^2 = \frac{1}{2}bB_1\left(p_2 - \frac{1}{2}p_1^2\right) + \frac{1}{4}bB_2p_1^2$$
(26)

and

$$-2^{m+1}a_2 = \frac{1}{2}B_1bq_1,$$
(27)

$$\left(12\left(3^{m}\right)-4\left(2^{2m}\right)\right)a_{2}^{2}-6\left(3^{m}\right)a_{3}=\frac{1}{2}bB_{1}\left(q_{2}-\frac{1}{2}q_{1}^{2}\right)+\frac{1}{4}bB_{2}q_{1}^{2}.$$
 (28)

From (25) and (27), it follows that

$$p_1 = -q_1.$$
 (29)

Now (26), (28) and (29) gives

$$a_2^2 = \frac{B_1^3 \left(p_2 + q_2\right) b}{8 \left(\left(3.3^m - 2.2^{2m}\right) B_1^2 b + 2 \left(B_1 - B_2\right) \left(2^{2m}\right) \right)}.$$
(30)

Using the fact that $|p_2| \leq 2$ and $|q_2| \leq 2$ gives the desired estimate on $|a_2|$,

$$|a_2| \le \frac{B_1 \sqrt{B_1} |b|}{\sqrt{2 \left| (3^{m+1} - 2^{2m+1}) B_1^2 b + 2 (B_1 - B_2) 2^{2m} \right|}}$$

From (26)-(28), gives

$$a_3 = \frac{\frac{bB_1}{2} \left(\left(12(3^{2m}) - 4(2^{2m}) \right) p_2 + 4(2^{2m})q_2 \right) + (B_2 - B_1) bp_1^2 3^{m+1}}{24(3^m) \left(3^{m+1} - 2^{2m+1} \right)}.$$

Using the inequalities $|p_1| \leq 2$, $|p_2| \leq 2$ and $|q_2| \leq 2$ for functions with positive real part yields

$$|a_3| \le \frac{(B_1 + |B_2 - B_1|)|b|}{2(3^{m+1} - 2^{2m+1})}.$$

For a choice of $\phi(z) = \frac{1 + Az}{1 + Bz}$, $-1 \le B < A \le 1$, we have the following corollary.

Corollary 6. Let $-1 \le B < A \le 1$. If $f \in ST_{\Sigma}\left(b, \frac{1+Az}{1+Bz}\right)$, then

$$|a_2| \le \frac{|b|(A-B)}{\sqrt{2|(3^{m+1}-2^{2m+1})(A-B)b+2(1+B)2^{2m}|}}$$

and

$$|a_3| \le \frac{|A-B|(1+|1+B|)|b|}{2(3^{m+1}-2^{2m+1})}.$$

If we let $\phi(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} = 1 + 2\alpha z + 2\alpha^2 z^2 + \cdots, 0 < \alpha \leq 1$, in the above theorem, we get the following:

Corollary 7. Let $0 < \alpha \leq 1$. If $f \in ST_{\Sigma}(b, \alpha)$, then

$$|a_2| \le \frac{|b|\,\alpha}{\sqrt{|(3^{m+1} - 2^{2m+1})\,\alpha b + (1-\alpha)\,2^{2m}|}}$$

and

$$|a_3| \le \frac{(1+|\alpha-1|)\,\alpha\,|b|}{(3^{m+1}-2^{2m+1})}.$$

Remark 1. If we let b = 1, m = 0, Theorem 2.2 and Theorem 2.5 reduce to the result of R.M.Ali et.al [1], corollary 2.1 and corollary 2.2.

References

[1] R.M. Ali, S.K. Lee, V. Ravichandran, S. Supramaniam. *Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions*. Appl. Math. Lett. 25 (2012), no. 3, 344–351.

[2] D.A. Brannan, J. Clunie, W.E. Kirwan, *Coefficient estimates for a class of star-like functions*. Canad. J. Math. 22 1970 476–485.

[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions. Studia Univ. Babes,-Bolyai Math. 31 (1986), no. 2, 70–77.

[4] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137–152.

[5] P.L. Duren, *Univalent functions*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 259. Springer-Verlag, New York, 1983.

[6] A. Kedzierawski, J. Waniurski, *Bi-univalent polynomials of small degree*. Complex Variables Theory Appl. 10 (1988), no. 2-3, 97–100.

[7] M. Lewin, On a coefficient problem for bi-unilvalent functions, Appl.MAth.Lett. 24(2011)1569-1573.

[8] W.C. Ma, D. Minda, A unified treatment of some special classes of univalent functions. Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.

[9] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1. Arch. Rational Mech. Anal. 32 1969 100–112.

[10] C. Pommerenke, Univalent functions. With a chapter on quadratic differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbcher, Band XXV. Vandenhoeck Ruprecht, Gottingen, 1975. 376 pp

[11] G.S. Salagean, *Subclasses of univalent functions*. Complex analysis fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

[12] D. Styer, D.J. Wright, *Results on bi-univalent functions*. Proc. Amer. Math. Soc. 82 (1981), no. 2, 243–248.

[13] T.J. Suffridge, A coefficient problem for a class of univalent functions. Michigan Math. J. 16 1969 33–42.

[14] Tan De Lin. *Coefficient estimates for bi-univalent functions*. (Chinese) An English summary appears in Chinese Ann. Math. Ser. B 5 (1984), no. 4, 741742.

C. Selvaraj Presidency College, Chennai-600 005, Tamilnadu, India email: pamc9439@yahoo.co.in

G. Thirupathi R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai-601 206, Tamilnadu, India email: *qthirupathi_1979@yahoo.com*.