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COMPLEX WAVE BEHAVIOR TO THE TDB AND (2 +1)-DZ
EQUATIONS

A. Neirameh

Abstract. In this present study by means of our method we extract new
application of the homogeneous balance method for obtaining the new complex
solutions to the (2 + 1)-dimensional Zoomeron equation and the Tzitzeica–Dodd–
Bullough (TDB) equation. Under some parameter conditions, exact solitary wave
solutions are obtained. Note that it is always useful and desirable to construct exact
solutions especially soliton-type (dark, bright, kink, anti-kink, etc.) envelope for the
understanding of most nonlinear physical phenomena.
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1. Introduction

The study of exact solutions of nonlinear evolution equations plays an important
role in soliton theory and explicit formulas of NPDEs. Also, explicit formulas may
provide physical information and help us to understand the mechanism of related
physical models. A large number of such equations have been studied in these
contexts, and numerous analytic and computational effective techniques have been
proposed to investigate these types of equations.
The aim of this article is to look for new study relating to the homogeneous balance
method for solving the renowned Tzitzeica–Dodd– Bullough equation

uxy − e−u − e−2u = 0,

and the (2 + 1)-dimensional Zoomeron equation(uxy
u

)
tt
−

(uxy
u

)
xx

+ 2
(
u2

)
xt

= 0,

to demonstrate the suitability and straightforwardness of the method.
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The investigation of the travelling wave solutions for nonlinear partial differential
equations plays an important role in the study of nonlinear physical phenomena.
Nonlinear wave phenomena appears in various scientific and engineering fields, such
as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chem-
ical kinematics, chemical physics and geochemistry. Nonlinear wave phenomena of
dispersion, dissipation, diffusion, reaction and convection are very important in non-
linear wave equations. In the past several decades, new exact solutions may help
to find new phenomena. A variety of powerful methods, such as inverse scattering
method [1,9], Hirota bilinear transformation[5,12], the tanh–sech method [6,11,13,8],
sine–cosine method [10,2] and Exp-function method [3,7,14,4] were used to develop
nonlinear dispersive and dissipative problems.

2. An Analysis Of The Method

For a given partial differential equation

G(u, ux, ut, uxx, utt, ....), (1)

our method mainly consists of four steps:
Step 1 : We seek complex solutions of Eq. (1) as the following form:

u = u(ξ), ξ = ik(x− ct), (2)

Where k and c are real constants. Under the transformation (2), Eq. (1) becomes
an ordinary differential equation

N(u, iku′,−ikcu′,−k2u′′, .....), (3)

Whereu′ = du
dξ .

Step 2 : We assume that the solution of Eq. (3) is of the form

u(ξ) =

n∑
i=0

aiϕ
i(ξ), (4)

Where ai(i = 1, 2, .., n) are real constants to be determined later and ϕ satisfy the
Riccati equation

ϕ′ = aϕ2 + bϕ+ c (5)

Eq. (5) admits the following solutions:
Case1:whena = 1, b = 0,the Riccati Eq. (5) has the following solutions

ϕ = −
√
−c tanh

(√
−cξ

)
, c < 0

ϕ = −1
ξ , c < 0

ϕ =
√
c tan (

√
cξ) , c > 0.

(6)
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Case2: Let ϕ =
∑n

i=0 bi tanh
i ξ,Balancing ϕ′with ϕ2 in Eq.(5) givesm = 1 so

ϕ = b0 + b1 tanh ξ, (7)

Substituting Eq. (7) into Eq. (5), we obtain the following solution of Eq. (5)

ϕ = − 1

2a
(b+ 2 tanh ξ) , ac =

b2

4
− 1. (8)

Case3: We suppose that the Riccati Eq. (5) have the following solutions of the
form:

ϕ = A0 +

n∑
i=1

sinhi−1 (Ai sinhω +Bi coshω) , (9)

Where dω
dξ = sinhω ordωdξ = coshω. It is easy to find that m = 1 by balancing ϕ′

with ϕ2. So we choose

ϕ = A0 +A1 sinhω +B1 coshω, (10)

Where dω
dξ = sinhω, we substitute (10) and dω

dξ = sinhω, into (5) and set the co-

efficients of sinhi ω, coshi ω (i = 0, 1, 2; j0, 1) to zero. We obtain a set of algebraic
equations and solving these equations we have the following solutions

A0 = − b

2a
,A1 = 0, B1 =

1

2a
(11)

Where c = b2−4
4a and

A0 = − b

2a
,A1 = ±

√
1

2a
,B1 =

1

2a
(12)

Wherec = b2−1
4a . To dω

dξ = sinhω we have

sinhω = − cschξ, coshω = − coth ξ (13)

From (11)–(13), we obtain

ϕ = −b+ 2 coth ξ

2a
(14)

Where c = b2−4
4a and

ϕ = −b± cschξ + coth ξ

2a
(15)

Wherec = b2−1
4a .

Step3. Substituting (6-15) into (3) along with (5), then the left hand side of Eq. (3)
is converted into a polynomial in F (ξ); equating each coefficient of the polynomial
to zero yields a set of algebraic equations.
Step4. Solving the algebraic equations obtained in step 3, and substituting the
results into (4), then we obtain the exact traveling wave solutions for Eq. (1).
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3. The Tzitzeica–Dodd–Bullough (TDB) equation

In this sub-section, we will exert the MSE method to obtain new and more general
exact solutions and then the solitary wave solutions of the Tzitzeica–Dodd–Bullough
equation,

uxy − e−u − e−2u = 0 (16)

Using the transformation v = e−u Eq. (16) transforms into the following partial
differential equation,

vvxt − vxvt + v3 + v4 = 0. (17)

We use the wave transformation v = v(ξ), with wave complex variable ξ = ik(x−ct),
where k and c are real constants. System (17) takes the form as

ck2vv′′ − ck2(v′)2 + v3 + v4 = 0. (18)

Considering the homogeneous balance between vv′′ and v4in (18), we required that
3m = m+ 2 ⇒ m = 1. So the solution takes the form

v = a1F + a0, (19)

Substituting (19) into Eq. (18) yields a set of algebraic equations for a1, a0, k, c and
solving these equations with Maple package we have

a1 = ±2(3−2k)2+
√
−c(3−2k)

8ck2

a0 = ±1
2

√
−cb (3− 2k)

a = ±2(3−2k)2+
√
−c(3−2k)

8ck3
√
−c

(20)

From (5),(19) and (20), we obtain the complex travelling wave solutions of (6) as
follows

v1 = ±2 (3− 2k)2 +
√
−c (3− 2k)

8ck2
[
−
√
−c tanh

(√
−cik(x− ct)

)]
±1

2

√
−cb (3− 2k) ,

So we have

u1 = − ln

[
±2 (3− 2k)2 +

√
−c (3− 2k)

8ck2
[
−
√
−c tanh

(√
−cik(x− ct)

)]
± 1

2

√
−cb (3− 2k)

]

Where c ≺ 0 and k is an arbitrary real constant. And

u2 = − ln

[
±2 (3− 2k)2 +

√
−c (3− 2k)

8ck2

[
− 1

ik(x− ct)

]
± 1

2

√
−cb (3− 2k)

]
Where c ≺ 0and k is an arbitrary real constant.
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u3 = − ln

[
±2 (3− 2k)2 +

√
−c (3− 2k)

8ck2
[√

c tan
(√

cik(x− ct)
)]

± 1

2

√
−cb (3− 2k)

]
Where c ≻ 0 and k is an arbitrary real constant and from (8),(19) and (20) we have
the complex travelling wave solutions of (6) as follows

u4 = − ln

[
±2 (3− 2k)2 +

√
−c (3− 2k)

8ck2

[
− 1

2a
(b+ 2 tanh ik(x− ct))

]
± 1

2

√
−cb (3− 2k)

]

From (14),(19) and (20) we obtain the complex travelling wave solutions of (6) as
follows

u5 = − ln

[
±2 (3− 2k)2 +

√
−c (3− 2k)

8ck2

[
−b+ 2 coth ik(x− ct)

2a

]
± 1

2

√
−cb (3− 2k)

]

In these cases if assume u1,2,3,4,5 = ln [D] , D Must be greaterthan zero (or D > 0 ).

4. The (2 +1)-dimensional Zoomeron equation

Let us consider the Zoomeron equation(uxy
u

)
tt
−

(uxy
u

)
xx

+ 2
(
u2

)
xt

= 0 (21)

where u(x, y, t) is the amplitude of the relative wave mode. The traveling wave
transformation

u = u(ξ), ξ = ik(x+ y − ωt) (22)

Reduces Eq. (21) into the following ODE:
k2(1− ω2)u′′ − 2ωu3 +R = 0. (23)

whereR is a constant of integration.Balancing the highest order derivative u′′ and
nonlinear term of the highest order u3, yields m = 1.So the solution takes the form

u = a1F + a0, (24)

Substituting (22) into Eq. (23) yields a set of algebraic equations for a1, a0, k, c and
solving these equations with Maple package we have

a1 = ±k
√

1−ω2

ω

a0 = ±k
(1−ω2)ab
2
√

ω(1−ω)

(25)

275



A. Neirameh – Complex Wave Behavior . . .

From (5),(24) and (25), we obtain the complex travelling wave solutions of (21) as
follows
So we have

u1 = ±k

√
1− ω2

ω

[
−
√
−c tanh

(√
−cik(x+ y − ωt)

)]
± k

(
1− ω2

)
ab

2
√
ω (1− ω)

Where c ≺ 0and k is an arbitrary real constant. And

u2 = ±k

√
1− ω2

ω

[
− 1

ik(x+ y − ωt)

]
± k

(
1− ω2

)
ab

2
√

ω (1− ω)

Where c ≺ 0and k is an arbitrary real constant.

u3 = ±k

√
1− ω2

ω

[√
c tan

(√
cik(x+ y − ωt)

)]
± k

(
1− ω2

)
ab

2
√

ω (1− ω)

Where c ≻ 0and k is an arbitrary real constant and from (8), (24) and (25) we have

u4 = ±k

√
1− ω2

ω

[
− 1

2a
(b+ 2 tanh ik(x+ y − ωt))

]
± k

(
1− ω2

)
ab

2
√

ω (1− ω)

Finally we have the complex travelling wave solutions of (6)from (14), (24) and
(25)as follows

u5 = ±k

√
1− ω2

ω

[
−b+ 2 coth ik(x+ y − ωt)

2a

]
± k

(
1− ω2

)
ab

2
√

ω (1− ω)
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Figure a

Figure b

Figure c
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Figure d

5. Conclusions

Exact solutions can serve as a basis for perfecting and testing computer algebra soft-
ware packages for solving NLEEs. It is significant that many equations of physics,
chemistry, and biology contain empirical parameters or empirical functions.The ho-
mogeneous balance method is applied successfully for solving the system of non-
linear evolution equations. The performance of this method is reliable and effective
and gives more solutions. This method has more advantages: it is direct and concise.
Thus, we deduce that the proposed method can be extended to solve many systems
of non-linear fractional partial differential equations.
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