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SINC-GALERKIN METHOD FOR SOLUTION OF BURGERS’
EQUATION
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Abstract. We develop a numerical algorithm for solving one dimensional Burg-
ers’ equation. The equation converted to the system of nonlinear ordinary differential
equations by discretization first in time and subsequently in each time level we ap-
plied the Galerkin method based on sinc function in spatial direction. We proved
the convergence analysis, it is shown that the approximate solution converges ex-
ponentially. The presented method is applied to two test problems, the obtained
results have been compared with the exact solutions and some published numerical
results in the literatures. The different measures of error in the solution verify the
efficiency of sinc-Galerkin method.
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1. Introduction

We consider one-dimensional Burgers’ equation:

ut + uux = νuxx, a < x < b, t > 0 (1)

with boundary and initial conditions:

u(a, t) = f1(t), u(b, t) = f2(t) u(x, 0) = g(x), (2)

where u(x, t) indicates the velocity for space x and time t, ν is the kinematic viscosity
, f1, f2 and g are known functions of their arguments. This equation was first
introduced by Bateman [6]. It was later treated by Burgers [7, 8] after which this
equation is widely referred to as Burgers, equation. It plays an important role
in the study of nonlinear waves motion since behavior of many physical systems
encountered in model of traffic and fluid flow leads to Burgers’ equation.
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Burgers’ equation has been studied by many researchers for the following reasons:
first, it contain the simplest form of nonlinear advection term uux for simulating the
physical phenomena of waves motion. Secondly, for small ν, solution can exhibit
shock wave-like behavior. The exact solution of Burgers, equation has been derived
by Cole [9] which is an infinite series. Many numerical methods for Burgers equation
have been developed such as finite difference methods [10, 21, 28, 26, 32], spline
collocation methods [11, 30], B-spline Galerkin methods [2, 4, 12, 13, 29], B-spline
collocation methods [3, 14] and spectral least-squares methods [15, 16, 17, 22].

In this paper we discretize the Burgers’ equation in the time direction and then
the sinc-Galerkin method is applied. In this approach we do not need to use Hopf-
Cole transformation to linearize the given equation. In the sinc method the test
functions are translated by the sinc-function s(x) = sin(πx)/(πx). The sinc method
, which was developed by F. Stenger [33], is based on the Whittaker-Shannon-Kotel’
nikov sampling theorem for entire functions. This method has many advantages over
classical methods that use polynomials as bases. For example, in the presence of
singularities, it gives a much better rate of convergence and greater accuracy than
polynomial methods. In recent years, a lot of attention has been devoted to the
study of the sinc method to investigate various scientific models. The efficiency of
the method has been formally proved by many researchers[5, 18, 35].

2. Preliminaries of Sinc Method

In this section, we state preliminaries of the Sinc interpolation together with some
essential definitions and theorems.

The Sinc function is defined on −∞ < x <∞ by

Sinc(x) =

{
sin(πx)
πx , x ̸= 0,

1, x = 0.

For h > 0 we will denote the Sinc basis functions by

S(j, h)(x) = sinc(
x− jh

h
), j = 0,±1,±2, . . .

let f be a function defined on R then for h > 0 the series

C(f, h)(x) =

∞∑
j=−∞

f(jh)S(j, h)(x),

is called the Whittaker cardinal expansion of f whenever this series converges. The
properties of Whittaker cardinal expansions have been studied and are thoroughly
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surveyed in Stenger [33]. These properties are derived in the infinite strip Dd of the
complex plane where d > 0

Dd = {ζ = ξ + iη : |η| < d ≤ π

2
}.

Approximations can be constructed for infinite, semi-finite, and finite intervals. But
in this paper we construct approximation on the interval (0, 1),we consider the con-
formal map

ϕ(z) = ln(
z

z − 1
), (3)

which maps the eye-shaped region

DE = {z = x+ iy; | arg( z

1− z
)| < d ≤ π

2
},

onto the infinite strip Dd.
For the Sinc method, the basis functions on the interval (0, 1) for z ∈ DE are

derived from the composite translated Sinc function:

Sj(z) = S(j, h) ◦ ϕ(z) = sinc(
ϕ(z)− jh

h
). (4)

The function

z = ϕ−1(ω) =
eω

1 + eω
,

is an inverse mapping of ω = ϕ(z). We define the range of ϕ−1 on the real line as

Γ = {ψ(u) = ϕ−1(u) ∈ DE : −∞ < u <∞} = (0, 1).

The sinc grid points zk ∈ (0, 1) in DE will be denoted by xk because they are real.
For the evenly spaced nodes {kh}∞k=−∞ on the real line, the image which corresponds
to these nodes is denoted by

xk = ϕ−1(kh) =
ekh

1 + ekh
, k = 0,±1,±2, .... (5)

Definition 1. Let B(DE) is the class of functions f which are analytic in DE such
that ∫

ψ(u+Σ)
|f(z)|dz → 0, as u→ ±∞ (6)

where Σ = {iη : |η| < d ≤ π
2 } and satisfy

ℵ(f) ≡
∫
∂DE

|f(z)|dz <∞, (7)

where ∂DE represents the boundary of DE.
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Theorem 1. [27] Let F ∈ B(DE) and ϕ be a conformal map with constants α and
C2 so that ∣∣∣∣F (x)ϕ′(x)

∣∣∣∣ ≤ C2 exp(−α|ϕ(x)|), x ∈ Γ,

by selecting h =
√
πd/αN , then the Sinc trapezoidal quadrature rule is

∫ 1

0
F (x)dx = h

N∑
j=−N

F (xj)

ϕ′(xj)
+ o(exp(−(πdαN)1/2)).

The Sinc-Galerkin method requires that the derivatives of composite Sinc func-
tion be evaluated at the nodes. We need to recall the following lemma.

Lemma 2. [27] Let ϕ be the conformal one-to-one mapping of the simply connected
domain DE onto Dd, given by (4). Then

δ
(0)
jk = [S(j, h) ◦ ϕ(x)]|x=xk =

{
1, j = k,
0, j ̸= k,

(8)

δ
(1)
jk = h

d

dϕ
[S(j, h) ◦ ϕ(x)]|x=xk =

{
0, j = k,

(−1)(k−j)

k−j , j ̸= k,
(9)

δ
(2)
jk = h2

d2

dϕ2
[S(j, h) ◦ ϕ(x)]|x=xk =

{
−π2

3 , j = k,
−2(−1)(k−j)

(k−j)2 , j ̸= k,
(10)

in relations (8-10) h is step size and xk is sinc grid given by (5).

3. Description of the method

We discretize the problem in time direction , therefore the solution of equation (1)
with initial and boundary conditions is converted to the solution of p nonlinear or-
dinary differential equations with corresponding boundary conditions. Finally, we
apply the sinc-Galerkin method to solve such nonlinear ordinary differential equa-
tions.

3.1. Temporal discretization

The method of discretization in time consists of the following steps:

1. The interval [0, T ] is divided into p subintervals of lengths ∆t = T/p where T
is total time and p is chosen as a positive integer.
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2. The derivative ut is replace by the difference quotient
u(x,tj)−u(x,tj−1)

∆t at each of
points of division tj = j∆t, (j = 1, 2, . . . , p), for simplicity we denote zj(x) =
u(x, tj).

3. Starting with the function z0(x) = u(x, 0), successively for j = 1, 2, . . . , p, the
solutions of the ordinary differential equations with boundary conditions are
obtained [31].

Let us consider the Burgers’ equation (1) with a = 0, b = 1 and with the
boundary conditions in case of f1 = f2 = 0 at equations of (2). The method of
discretization in time leads to the problem of finding, successively for j = 1, 2, . . . , p,
the functions zj(x) which are the solutions of the problems

− νz
′′
j (x) + zj(x)z

′
j(x) +

1

∆t
(zj(x)− zj−1(x)) = 0, (11)

zj(0) = 0, zj(1) = 0, (12)

where z0(x) = g(x). Therefore in each time level we have a nonlinear ordinary
differential equation in the form of (11) with boundary conditions (12).

Now in each time level we can apply the sinc-Galerkin method to approximate
the solution of nonlinear boundary value problem (11) and (12).

3.2. Sinc-Galerkin in spatial direction

The approximate solution for zj(x)(j = 1, 2, . . . , p) is represented by

zjm(x) =

N∑
r=−N

cjrSr(x), m = 2N + 1, (13)

where Sr(x) is function S(r, h) ◦ ϕ(x) for some fixed step size h. The unknown
coefficient cjr in relation (13) are determined by orthogonalizing the residual with
respect to the basis function, i.e,

⟨−νz′′
j (x), Sk⟩+ ⟨1

2
(z2j (x))

′
, Sk⟩+

1

∆t
⟨zj(x), Sk⟩ =

1

∆t
⟨zj−1(x), Sk⟩, (14)

where ⟨., .⟩ represents the inner product defined by

⟨f, η⟩ =
∫ 1

0
f(x).η(x)ω(x)dx. (15)

Using integrating by parts for the first two integral terms in the left hand side of
(14) we have

⟨z′
j(x)zj(x), Sk⟩ = BT1 −

1

2

∫ 1

0
z2j (x)(Sk(x)ω(x))

′
dx, (16)

15



J. Rashidinia, A. Barati – Sinc-Galerkin method . . .

⟨−νz′′
j (x), Sk⟩ = BT2 +

∫ 1

0
zj(x) (−νSk(x)ω(x))

′′
dx, (17)

where

BT1 =

[
1

2
z2jSkω

]1
x=0

,

BT2 = {z′
jSkω − zj(Skω)

′}(x)|10.

Suppose that BTi = 0, i = 1, 2, then we apply the Sinc quadrature rule in Theorem
1 to the last two integrals in the right hand side of (14) and the integrals in the right
hand side of (16) and (17), we can obtain the following approximations:

⟨−νz′′
j (x), Sk⟩ ≈ h

N∑
r=−N

2∑
i=0

zj(xr)

ϕ′(xr)hi
δ
(i)
kr g2,i(xr), (18)

⟨z′
j(x)zj(x), Sk⟩ ≈ −h

N∑
r=−N

1∑
i=0

z2j (xr)

ϕ′(xr)hi
δ
(i)
kr g1,i(xr), (19)

and

⟨G,Sk⟩ ≈ h
G(xk)ω(xk)

ϕ′(xk)
, (20)

where

g2,2 = −νω(ϕ′
)2, g2,1 = −νωϕ′′ − 2νω

′
ϕ

′
g2,0 = −νω′′

g1,1 =
1

2
ωϕ

′
, g1,0 =

1

2
ω

′
, G =

1

∆t
zj(x), or

1

∆t
zj−1(x).

for j = 1, 2, . . . , p.
The weight function ω(x) in the Sinc-Galerkin inner product (15) may be chosen
for a variety of reasons. Although other reasons exist, a choice we make here is
due to the requirement that the boundary terms BTi, i = 1, 2 vanish. For the case
of second-order problem in the sinc-Galerkin method, a convenient choice for the
weight function is given by Stenger [33] as

ω(x) =
1

ϕ′(x)
.

Now replacing each term of (14) with the approximations defined in (18-20) and
replacing zj(xr) by c

j
r and dividing by h, finally we obtain the discrete sinc-Galerkin
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system for determination of the unknown coefficients {cjr}Nr=−N for j = 1, 2, . . . , p as

N∑
r=−N

{
2∑
i=0

1

hi
δ
(i)
kr

g2,i(xr)

ϕ′(xr)
cjr −

1∑
i=0

1

hi
δ
(i)
kr

g1,i(xr)

ϕ′(xr)
(cjr)

2

}

+
1

∆t

ω(xk)

ϕ′(xk)
cjk =

1

∆t

ω(xk)

ϕ′(xk)
zj−1(xk) −N ≤ k ≤ N. (21)

To obtain a matrix representation of the equations (21), let I(i), 0 ≤ i ≤ 2
the m × m matrixes whose jk- th entry is given by (8-10). Note that the matrix
I(2) and I(1) are symmetric and skew-symmetric matrixes respectively, also I(0) is
identity matrix. We define the m×m diagonal matrix as follow:

D(g(x))ij =

{
g(xi), i = j,
0, i ̸= j,

Therefore, by using the above definitions the system (21) can be denoted by the the
following matrix form:

AjCj +B(Cj)2 = Ej−1 j = 1, 2, . . . , p, (22)

where
Cj is m-vector and Aj ,Bj are m×m matrixes and Ej−1 is an m-vector as:

Cj = (cj−M , c
j
−M+1, . . . , c

j
N )

t

Aj =
1

h2
I(2)D(

g2,2
ϕ′ ) +

1

h
I(1)D(

g2,1
ϕ′ ) +D(

g2,0
ϕ′ +

1

∆t

ω

ϕ′ )

Bj = D(
−g1,0
ϕ′ ) +

1

h
I(1)D(

−g1,1
ϕ′ )

Ej−1 = D(
ωzj−1

ϕ′ ).1,

where 1 is the m-vector each of whose components are 1.
For each j, system (22) is a nonlinear system of equations which consists of

m equations and m unknowns. We can obtain the coefficients in the approximate
solution by solving this nonlinear system by Newton’s method.
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4. Convergence analysis

In this section, the convergence of sinc-galerkin method for the problem (11) with
boundary conditions (12)will discuss . For this purpose, we apply the sinc- Galerkin
method for the linear boundary value problem

(Ly)(x) ≡ −y′′
(x)+p(x)y

′
(x)+q(x)y(x) = σ(x), a < x < b, y(a) = y(b) = 0. (23)

Consider the sinc approximation by

y(x) ≈ ym(x) =

N∑
r=−N

crSr(x), m = 2N + 1 (24)

according to concepts of section 3.2 the discrete sinc-Galerkin system for the deter-
mination of the unknown coefficient {cr}Nr=−M is given by:

{− 1

h2
I2D(φ

′
ω)− 1

h
I(1)D(

φ
′′
ω

φ′ + 2ω
′
+ pω)−D(

ω
′′
+ (pω)

′ − qω

φ′ )}C = D(
ωσ

φ′ )1,

(25)
where 1 is a m-vector each of whose components are 1 and ω(x) = 1

φ
′ .

The error analysis in approximating the exact solution of (23) by (24) can be
proved by the following theorem in [33].

Theorem 3. Assume that the functions of p, q and σ are analytic in DE and that
problem (23) has a unique solution y(x) which is analytic in DE, moreover we as-
sume that σ

φ
′ ∈ B(DE) and yF ∈ B(DE) where

F = (
1

φ′ )
′′
, (
φ

′′

φ′ ), φ
′
, (
p

φ′ )
′
, p,

q

φ′ ,

and also there are positive constants C,α and β such that:

|y(x)| ≤ K

{
exp(−α|ϕ(x)|), x ∈ ψ((−∞, 0)),
exp(−β|ϕ(x)|), x ∈ ψ((0,∞)),

if we make the selections h =
√

πd
αN , and the coefficient {cr}Nr=−N in (24) are deter-

mined from (25),Then:

∥y(x)− ym(x)∥∞ ≤ KN2 exp(−(πdαN)1/2),

where K is a constant.
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By using the above theorem we can discuss convergence of sinc-Galerkin method
for the equation (11). At first, we rewrite equation (11) as:

− νy
′′
(x) + y

′
(x)y(x) +

1

∆t
y(x) = f(x), (26)

where, y(x) ≡ zj(x), f(x) =
1
∆tzj−1(x), with boundary conditions y(0) = y(1) = 0.

The error bound in the solution can be obtained by using following lemma.

Lemma 4. Let y be the exact solution of nonlinear equation

Ly +G(y) = 0

where (Ly)(x) = −νy′′
(x)+ 1

∆ty(x)−f(x) is a linear operator and G(y) = y
′
(x)y(x)

is a nonlinear operator. Let y ∈ B(DE), G
′
(y) and G

′′
(y) are well defined and

bounded on the ball B(y0, r). Also , let (L+G
′
(y))−1 and (L+G

′
(y0))−1(Ly0+G(y0))

are bounded on B(y0, r), and

∥Ly0 +G(y0)∥∞ ≤ H0, ∥(L+G
′
(y))−1∥∞ ≤ H1, ∥G′′

(y)∥∞ ≤ H2, y ∈ B(y0, r).
(27)

if h̃ = H2
1H2H0 < 2 and r > H1H0

∑∞
k=0(

h̃
2 )

2k−1, then the sequence

yn+1 = yn −
(
L+G

′
(yn)

)−1
(Lyn +G(yn)) (28)

is well defined, also yn+1 ∈ B(DE)for every positive integer n and the sequence yn

converges to y∗, furthermore,

∥yn − y∗∥∞ ≤ H1H0
(h̃/2)2

n−1

1− (h̃/2)2n
. (29)

Proof. By applying Kantorovich’s Theorem [25], we can prove the existence of the
sequence {yn}n≥0 and the bound (29).

Theorem 5. Let us consider all assumptions in Lemma 4 and let, the discrete
equivalent of G

′
(y),G

′′
(y) and (L + G

′
(y))−1 are well defined and bounded on the

ball B(y0, r), let the sequence vnm be the discrete equivalent of (28), then: (a)
{vnm}n≥0 converges to v∗m and vnm − v∗m has a bound as defined in (29).

(b) There exists a constant C1 independent of m such that:

∥v∗m − y∗∥∞ ≤ C1N
2 exp(−(πdαN)1/2). (30)
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Proof. (a) Let {vnm}n≥0 be the discrete sequence by the sinc-Galerkin method that
defined by the discrete equivalent of (28), similarly by using Lemma 4, the sequence
{vnm}n≥0 exist and converges to v∗m and moreover we have

∥vnm − v∗m∥∞ ≤ H1H0
(h̃/2)2

n−1

1− (h̃/2)2n
, (31)

where H0,H1 and h̃ are defined in Lemma 4.
(b) Let the sequence yn defined by (28), by using Lemma 4 we know that the

sequence yn exists and converges to y∗ and also

∥yn − y∗∥∞ ≤ H1H0
(h̃/2)2

n−1

1− (h̃/2)2n
, (32)

by considering bound (L+G
′
(y))−1 on the ball B(y0, r) and theorem 2, we have:

∥vnm − yn∥∞ ≤ C2N
2 exp(−(πdαN)1/2), (33)

Now, we consider the following inequality :

∥v∗m − y∗∥∞ ≤ ∥v∗m − vnm∥∞ + ∥vnm − yn∥∞ + ∥yn − y∗∥∞, (34)

by using theorem 5 in [37] , the following inequality can be made for n large enough,

H1H0
(h̃/2)2

n−1

1− (h̃/2)2n
≤ C3N

2 exp(−(πdαN)1/2), (35)

By applied the relations (31)− (35) , we obtain :

∥v∗m − y∗∥∞ ≤ C1N
2 exp(−(πdαN)1/2).2

Now, if we suppose that u(x, t) be the exact solution and U(x, t) be the numerical
approximation (1) by our numerical process, then we have:

∥u(x, t)− U(x, t)∥∞ ≤ ρ(exp(−(πdαN)1/2) + ∆t),

where ρ is a constant.
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5. Numerical results

In this section, the application of the presented method for Burgers’ equation are
tested on two standard problems to validate the current numerical scheme. Since the
exact solution is known for these test cases, we can demonstrate the effectiveness
of method and measure its accuracy. The results are also compared with other
methods found in the literature. In all of the problems considered in this paper, we
choose α = β = 1 and d = π

2 which yield h = π√
2N

. To measure the accuracy of our

method, we compute the error under the following norms:

∥e∥1 =
1

n

n∑
i=1

|u(yi, tk)− uki |
|u(yi, tk)|

,

∥e∥2 =

√√√√ 1

n

n∑
i=1

|u(yi, tk)− uki |2

∥e∥∞ = max
1≤i≤n

|u(yi, tk)− uki |,

where yis are uniform grids on interval (0, 1).

Problem 1. This problem corresponds to (1) on 0 ≤ x ≤ 1 with boundary condi-
tions u(0, t) = u(1, t) = 0, and initial condition

u(x, 0) = g(x) =
2νπ sin(πx)

a+ cos(πx)
, a > 1.

Exact solution for this problem has the following nice compact closed-form, as given
by Wood[34]:

u(x, t) =
2νπe−π

2νt sin(πx)

a+ e−π2νt cos(πx)
, a > 1.

This problem has been solved by using Taylor series expansion in [1]. We applying
our method for the various values of ν = 1, 0.1, 0.01 and a = 2. We compared
our computed solution with [1] and exact solution, the maximum absolute errors
obtained in Tables 1-3, the obtained results verified effectiveness and accuracy of
our method and we observe that the error will decrease if we use the smaller values
ν. Convergence curve for this problem is plotted for ν = 0.01,∆t = 0.0001 at
t = 0.001 in Fig. 1 (left graph). This figure indicates that the maximum pointwise
errors decrease at an exponential rate with respect to N and verifies the theoretical
results obtained in Section 4. Also Fig.2 depicts the exact solution with approximate
results, this figure shows that treatment of the approximate solution and the exact
solution is remarkably identical.
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Problem 2. The initial condition for this problem is:

u(x, 0) = g(x) = sinπx, 0 < x < 1,

with the homogeneous boundary conditions:

u(0, t) = u(1, t) = 0,

and exact solution given by :

u(x, t) = 2πν

∑∞
n=1 anexp(−n2π2νt)n sin(nπx)

a0 +
∑∞

n=1 anexp(−n2π2νt) cos(nπx)
,

with the Fourier coefficient:

a0 =

∫ 1

0
exp{−(2πν)−1[1− cos(πx)]}dx,

an = 2

∫ 1

0
exp{−(2πν)−1[1− cos(πx)]} cos(nπx)dx, n = 1, 2, 3, . . . .

The numerical results for this problem are shown in tables 4-6 for ν = 1, 0.1, 0.01.
We compared our results with [1, 14, 19, 20, 23, 24, 36], the tabulated results show
that our method is accurate in comparison with the other method. The convergence
curve is plotted for ν = 0.1,∆t = 0.0001 at t = 0.1 in Fig. 1 (right graph). This
figure shows that the treatment of maximum errors is exponential with increasing
N . Of course, due to the complexity of the calculations and the round of errors for
N ≥ 32 this behavior is almost near to exponential. Fig. 3 states the numerical
results at different time levels t = 0.4, 0.6, 0.8, and t = 1. In order to demonstrate
the stability of the this method for ν = 0.1, practically exhibit the correct physical
behavior of the problem.

6. Conclusions

A numerical method is developed to solve Burgers’ equation. This method is based
on temporal discretization and the sinc-Galerkin method in the spatial direction.
The exponential convergence analysis of the method has been proved theoretically
and verified numerically. The compared results show that our method is efficient
with respected to the methods given in [1, 14, 19, 20, 23, 24, 36].

Acknowledgements. The authors are very grateful to the anonymous referees
for their careful reading of this paper.
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Table 1: Problem1- The errors for various values of N and ν = 1, a = 2,∆t = 0.0001 at t = 0.001.

x Our method

[1] N=8 N=16 N=64

0.1 4.4× 10−5 8.9× 10−4 8.9× 10−5 7.8× 10−7

0.2 7.7× 10−5 9.2× 10−4 2.1× 10−5 1.0× 10−6

0.3 1.2× 10−4 7.4× 10−6 5.5× 10−6 3.0× 10−6

0.4 1.7× 10−4 1.0× 10−3 2.1× 10−5 7.0× 10−6

0.5 2.5× 10−4 4.0× 10−4 1.3× 10−5 1.5× 10−5

0.6 3.5× 10−4 2.3× 10−4 7.8× 10−5 2.7× 10−5

0.7 4.8× 10−4 5.2× 10−4 9.1× 10−6 4.5× 10−6

0.8 5.6× 10−4 2.0× 10−3 9.9× 10−5 5.8× 10−5

0.9 1.0× 10−3 3.4× 10−3 1.8× 10−5 4.0× 10−5

∥e∥1 1.0× 10−4 6.3× 10−4 2.3× 10−5 8.6× 10−6

∥e∥2 4.4× 10−4 1.1× 10−3 5.0× 10−5 3.0× 10−5

Table 2: Problem1- Computed solutions at grid points and different measures of error for N =

64, a = 2 and ∆t = .0001 at t = 1.

x ν = 0.1 ν = 0.01

Computed Exact Computed Exact

0.1 0.030736 0.030735 0.006147222 0.006147222

0.2 0.059809 0.059807 0.012243297 0.012243295

0.3 0.085379 0.085376 0.018185174 0.018185170

0.4 0.105300 0.105296 0.023746145 0.023746137

0.5 0.117096 0.117090 0.028463412 0.028463397

0.6 0.118171 0.118163 0.031476659 0.031476634

0.7 0.106387 0.106380 0.031384108 0.031384072

0.8 0.810476 0.810417 0.026409124 0.026409082

0.9 0.439803 0.439768 0.015453733 0.015453703

∥e∥1 5.7× 10−5 7.6× 10−7

∥e∥2 5.2× 10−6 2.3× 10−8

∥e∥∞ 7.2× 10−6 4.2× 10−8
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Table 3: Problem1- Different measures of error for N = 64, a = 2 with h = 0.1 and ∆t = 0.0001

at t = 0.001.
ν = 0.1 ν = 0.01

Our method [1] Our method

∥e∥1 8.72× 10−8 4.89× 10−6 9× 10−10

∥e∥2 3.16× 10−8 1.89× 10−6 3.1× 10−11

∥e∥∞ 5.95× 10−8 4.35× 10−6 5.9× 10−11
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Figure 1: Convergence of the method, (left graph) Problem 1 with ν = 0.01, ∆t = 0.0001 at
t = 0.001, (right graph) Problem 2 with ν = 0.1, ∆t = 0.0001 at t = 0.1.
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Figure 2: Exact and approximate solution problem1 for ν = 0.01,∆t = 0.0001 at t = 1.
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Table 4: Problem2- Computed solution and different measures of error for ν = 1, N = 64,and

∆t = 0.00001 at t = 0.1.
x [14] [23] [36] [24] Our method Exact

0.1 0.10937 0.10977 0.10920 0.10965 0.10945 0.10954

0.2 0.20945 0.21023 0.10912 0.20998 0.20980 0.20979

0.3 0.29138 0.29250 0.29088 0.29213 0.29191 0.29190

0.4 0.34726 0.34863 0.34658 0.34818 0.34794 0.34792

0.5 0.37080 0.37232 0.36997 0.37185 0.37159 0.37158

0.6 0.35823 0.35974 0.35740 0.35932 0.35906 0.35905

0.7 0.30914 0.31050 0.30847 0.31017 0.30992 0.30991

0.8 0.22722 0.22825 0.22676 0.22805 0.22783 0.22782

0.9 0.12036 0.12091 0.12012 0.12083 0.12069 0.12069

∥e∥1 2.1× 10−3 2.0× 10−3 4.1× 10−3 8.9× 10−4 4.9× 10−5

∥e∥2 6.0× 10−4 5.5× 10−3 1.2× 10−3 2.2× 10−4 1.36× 10−5

Table 5: Comparison of absolute errors for problem 2 at different times for ν = 0.1,∆t = 0.0001.

x t [19] [20] [24] Our method

N = 16 N = 64

0.25 0.4 8.1× 10−3 1.1× 10−4 5.2× 10−3 3.1× 10−5 3.1× 10−5

0.6 7.7× 10−3 8.9× 10−5 2.8× 10−3 9.3× 10−5 5.9× 10−5

0.8 7.2× 10−3 9.7× 10−5 2.4× 10−3 5.0× 10−5 1.5× 10−5

1 3.4× 10−2 5.1× 10−5 2.1× 10−3 4.5× 10−5 1.4× 10−5

0.5 0.4 1.7× 10−2 1.1× 10−4 3.2× 10−3 1.8× 10−5 3.3× 10−5

0.6 1.4× 10−2 8.8× 10−5 3.6× 10−3 3.3× 10−5 8.2× 10−5

0.8 1.4× 10−2 7.5× 10−5 3.6× 10−3 3.8× 10−5 2.8× 10−5

1 1.4× 10−2 9.2× 10−5 3.4× 10−3 4.0× 10−5 2.5× 10−5

0.75 0.4 1.1× 10−2 9.6× 10−5 4.9× 10−3 1.1× 10−4 9× 10−6

0.6 1.7× 10−2 1.2× 10−5 5.4× 10−3 1.0× 10−4 8.4× 10−5

0.8 1.9× 10−2 9.6× 10−5 5.2× 10−3 9.6× 10−5 2.5× 10−5

1 1.8× 10−2 7.7× 10−5 4.5× 10−3 8.5× 10−5 2.9× 10−5
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Table 6: Comparison of absolute errors for problem 2 at different times for ν = 0.01,∆t = 0.0001

and N = 64.
x t [24] [23] [1] Our method

0.25 0.4 6.2× 10−3 5.3× 10−4 2× 10−5 3× 10−5

0.6 6.4× 10−3 9× 10−5 2× 10−5 6× 10−5

0.8 6× 10−3 3× 10−5 2× 10−5 2× 10−5

1 5× 10−3 6× 10−5 1× 10−5 2× 10−5

0.5 0.4 4.2× 10−3 8.1× 10−4 5× 10−5 3× 10−5

0.6 5.8× 10−3 4.6× 10−3 5× 10−5 9× 10−5

0.8 6.1× 10−3 2.3× 10−3 3× 10−5 3× 10−5

1 6× 10−3 1× 10−3 2× 10−5 3× 10−5

0.75 0.4 1.7× 10−3 3.6× 10−2 2× 10−4 4× 10−5

0.6 4× 10−3 1.7× 10−2 9× 10−5 9× 10−5

0.8 5.1× 10−3 9.1× 10−3 4× 10−5 3× 10−5

1 5.5× 10−3 5.3× 10−3 3× 10−5 4× 10−5
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Figure 3: Solution of problem 2 at different times for ν = 0.1,∆t = 0.0001.
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