
Acta Universitatis Apulensis
ISSN: 1582-5329
http://www.uab.ro/auajournal/

No. 42/2015
pp. 53-65

doi: 10.17114/j.aua.2015.42.04

HARDY’S TYPE INEQUALITY FOR PSEUDO-INTEGRALS
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Abstract. In this paper, we prove Hardy’s type inequality for two classes of
pseudo-integrals. One of them concerns the pseudo-integrals based on a function
reduces on the g-integral where pseudo-operations are defined by a monotone and
continuous function g. The other one concerns the pseudo-integrals based on a
semiring ([a, b],max,�) where � generated.
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1. Introduction and Preliminaries

Recently, some authors ([3, 10, 17, 18]) have studied some fuzzy integral inequali-
ties. The purpose of this paper is to prove a Hardy type inequality for the pseudo-
integrals.

Pseudo-analysis is a generalization of the classical analysis, where instead of the
field of real numbers a semiring is taken on a real interval [a, b] ⊂ [−∞,∞] endowed
with pseudo-addition ⊕ and with pseudo-multiplication � ([1, 2, 9, 11, 12, 19]).
Based on this structure there where developed the concepts of ⊕-measure (pseudo-
additive measure), pseudo-integral, pseudo-convolution, pseudo-Laplace transform
and etc. ([4, 5, 6, 13, 15, 16, 18]).

The well-known Hardy inequality is a part of the classical mathematical analysis
([7]). The classical Hardy’s integral inequality holds( P

P − 1

)P ∫ ∞
0

fP (x)dx >

∫ ∞
0

(F
x

)P
dx,

where P > 1 and f : [0,∞) → [0,∞) is an integrable function (f 6= 0) and F (x) =∫ x
0 f(t)dt. Furthermore, for parameters a, b such that 0 < a < b <∞, the following

inequality is also valid ([20]):( P

P − 1

)P ∫ b

a
fP (x)dx >

∫ b

a

(F
x

)P
dx,
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where 0 <
∫∞
0 fP (t)dt < ∞. H. Román-Flores et al. have proved a Hardy type

inequality for fuzzy integrals ([17]). The fuzzy Hardy’s integral inequality holds(
−
∫ 1

0
fP (x)dx

) 1
P+1 ≥ −

∫ 1

0

(F
x

)P
dx (1)

where P ≥ 1, f : [0, 1]→ [0,∞) is an integrable function and F (x) = −
∫ x
0 f(t)dt.

In this paper, we generalize their work for pseudo-integrals. In special case, if
in the pseudo-integral version of the Hardy type inequality we put ⊕ = max and
� = min, then we get the fuzzy Hardy type inequality that has been studied in
([17]) by H. Román-Flores et al.

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of
[−∞,∞]. The full order on [a, b] will be denoted by �.

The operation ⊕ (pseudo-addition) is a function ⊕ : [a, b]× [a, b] → [a, b] which
is commutative, nondecreasing (with respect to � ), associative and with a zero
(neutral) element denoted by 0, i.e., for each x ∈ [a, b],0⊕ x = x holds (usually 0 is
either a or b). Let [a, b]+ = {x|x ∈ [a, b],0 � x}.

Definition 1. The operation � (pseudo-multiplication) is a function � : [a, b] ×
[a, b] → [a, b] which is commutative, positively non-decreasing, i.e., x � y implies
x�z � y�z for all z ∈ [a, b]+, associative and for which there exists a unit element
1 ∈ [a, b], i.e., for each x ∈ [a, b],1� x = x.

We assume also 0 � x = 0 that � is a distributive pseudo-multiplication with
respect to ⊕, i.e., x � (y ⊕ z) = (x � y) ⊕ (x � z). The structure ([a, b],⊕,�) is
a semiring ([8, 17]). In this paper, we will consider semirings with the following
continuous operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication
is not.
(a) x ⊕ y = sup(x, y),� is arbitrary not idempotent pseudo-multiplication on the
interval [a, b]. We have 0 = a and the idempotent operation sup induces a full order
in the following way: x � y if and only if sup(x, y) = y.
(b) x ⊕ y = inf(x, y),� is arbitrary not idempotent pseudo-multiplication on the
interval [a, b]. We have 0= b and the idempotent operation inf induces a full order
in the following way: x � y if and only if inf(x, y) = y.

Case II: The pseudo-operations are defined by a monotone and continuous func-
tion g : [a, b]→ [0,∞], i.e., pseudo operations are given with x⊕y = g−1(g(x)+g(x))
and x� y = g−1(g(x)g(x)). If the zero element for the pseudo-addition is a, we will
consider increasing generators. Then g(a) = 0 and g(b) = ∞. If the zero element
for the pseudo-addition is b, we will consider decreasing generators. Then g(b) = 0
and g(a) = ∞. If the generator g is increasing (respectively decreasing), then the
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operation ⊕ induces the usual order (respectively opposite to the usual order) on
the interval [a, b] in the following way: x � y if and only if g(x) ≤ g(y).

Case III: Both operations are idempotent. We have
(a) x ⊕ y = sup(x, y), x � y = inf(x, y), on the interval [a, b]. We have 0 = a and
1 = b. The idempotent operation sup induces the usual order (x � y if and only if
sup(x, y) = y).
(b) x ⊕ y = inf(x, y), x � y = sup(x, y), on the interval [a, b]. We have 0 = b and
1 = a. The idempotent operation inf induces an order opposite to the usual order
(x � y if and only if inf(x, y) = y).

Let X be a non-empty set. Let A be a σ-algebra of subsets of a set X.
We shall consider the semiring ([a, b],⊕,�), when pseudo-operations are gen-

erated by a monotone and continuous function g : [a, b] → [0,∞], i.e., pseudo-
operations are given with x⊕ y = g−1(g(x) + g(y)) and x� y = g−1(g(x)g(y)).

Then the pseudo-integral for a function f : [c, d]→ [a, b] reduces on the g-integral
([12, 14]), ∫ ⊕

[c,d]
f(x)dx = g−1

(∫ d

c
g(f(x))dx

)
. (2)

More on this structure as well as corresponding measures and integrals can be found
in [7, 11]. The second class is when x ⊕ y = max(x, y) and x � y = g−1(g(x)g(y)),
the pseudo-integral for a function f : R→ [a, b] is given by∫ ⊕

R
f � dm = sup

(
f(x)� ψ(x)

)
,

where function ψ defines sup-measure m. Any sup-measure generated as essential
supremum of a continuouse denisty can be obtained as a limit of pseudo-additive
measures with respect to generated pseudo-additive [5]. For any continuouse func-
tion f : [0,∞] → [0,∞] the integral

∫ ⊕
f � dm can be obtained as a limit of

g-integrals, [5]. We denoted by µ the usual Lebesgue measure on R. We have

m(A) = ess sup(x|x ∈ A) = sup{a|µ(x|x ∈ A, x > a) > 0}.

Theorem 1. ([9]). Let m be a sup-measure on ([0,∞],B[0,∞]), where B([0,∞]) is
the Borel σ-algebra on [0,∞], m(A) = ess supµ(ψ(x)|x ∈ A), and ψ : [0,∞]→ [0,∞]
is a continuouse density. Then for any pseudo-addition ⊕ with a generator g there
exists a family mλ of ⊕λ-measure on ([0,∞],B), where ⊕λ is a generated by gλ (the
function g of the power λ), λ ∈ (0,∞), such that limλ→∞mλ = m.

Theorem 2. ([9]). Let ([0,∞], sup,�) be a semiring, when � is a generated with
g, i.e., we have x � y = g−1(g(x)g(y)) for every x, y ∈ (0,∞). Let m be the same
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as in Theorem 2.1., Then there exists a family {mλ} of ⊕λ -measures, where ⊕λ is
a generated by gλ, λ ∈ (0,∞) such that for every continuous function f : [0,∞] →
[0,∞], ∫ sup

f � dm = lim
λ→∞

∫ ⊕λ
f � dmλ = lim

λ→∞
(gλ)−1

(∫
gλ(f(x))dx

)
.

Now, we recall the following inequality which is the pseudo version of Chebyshev’s
inequality and appears ([1]).

Theorem 3. (Chebyshev’s inequality for pseudo-integrals ). Let f, h : [0, 1]→ [0, 1]
be two measurable function and g : [a, b]→ [0,∞) be an increasing generator function
for pseudo-operation. If f, h are comonotone, then the inequality∫ ⊕

[0,1]
(f � h)dx ≥ (

∫ ⊕
[0,1]

fdx)� (

∫ ⊕
[0,1]

hdx)

holds.

Theorem 4. ([12]). For any measurable function f, f1, f2 and λ ∈ R, we have
(i)
∫ ⊕
[c,d](f1 ⊕ f2)dx =

∫ ⊕
[c,d] f1dx⊕

∫ ⊕
[c,d] f2dx,

(ii)
∫ ⊕
[c,d](λ⊗ f)dx = λ⊗

∫ ⊕
[c,d] fdx,

(iii)f1 ≤ f2 =⇒
∫ ⊕
[c,d] f1dx ≤

∫ ⊕
[c,d] f2dx.

2. Hardy’s inequality for pseudo-integrals

Our purpose in this section is to prove a Hardy type inequality for pseudo-integrals.
Unfortunately, the following example shows that, the Hardy’s integral inequality is
not valid for the pseudo-integrals.

Example 1. Let f(x) = k where k > 1 and P ≥ 1. If g : [0, 1]→ [0, 1] is defined as
follows

g(x) = x.
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Then by using (2) we have(∫ ⊕
[0,1]

fP (x)dx
) 1
P+1

=
(∫ ⊕

[0,1]
kPdx

) 1
P+1

=
(
g−1

∫ 1

0
g(kP )dx

) 1
P+1

=
(
g−1

∫ 1

0
kPdx

) 1
P+1

=
(
g−1(kP )

) 1
P+1

=
(
kP
) 1
P+1

= k
P
P+1 .

Since

F (x) =

∫ ⊕
[0,x]

f(t)dt,

then by (2) we obtain that

F (x) = g−1
∫ x

0
g(f(t))dt = g−1

∫ x

0
g(k)dt

= g−1
∫ x

0
kdt

= g−1(kx)

= kx.

It follows that
F (x)

x
= k.

So by using (2) we have∫ ⊕
[0,1]

(F
x

)P
dx = g−1

∫ 1

0
g
(F
x

)P
dx

= g−1
∫ 1

0
g(kP )dx

= g−1
∫ 1

0
kPdx

= g−1(kP )

= kP .
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Consequently, (1) is not valid for pseudo-integrals.

In order to prove Theorem 2.4. and 2.6. we need some Lemmas.

Lemma 5. If f : [0, 1]→ [0, 1] is a µ-measurable function and g : [0, 1]→ [0, 1] is a
continuous and decreasing function, then∫ ⊕

[0,1]
fPdµ ≥

(∫ ⊕
[0,1]

fdµ
)P

(3)

holds for all P ≥ 1.

Proof. By induction: For P = 2, inequality (3) is valid by Theorem 1.4.
For P − 1, we suppose that the Lemma is valid as follows∫ ⊕

[0,1]
fP−1dµ ≥

(∫ ⊕
[0,1]

fdµ
)P−1

.

Hence for P we have ∫ ⊕
[0,1]

fPdµ =

∫ ⊕
[0,1]

f . . . fdµ

≥
∫ ⊕
[0,1]

(fP−1)fdµ.

So from case P = 2, we get ∫ ⊕
[0,1]

fPdµ ≥
(∫ ⊕

[0,1]
fdµ

)P
.

Thereby, the Lemma is proved.

Lemma 6. Let f : [0, 1]→ [0, 1] be a continuouse function. If m be the same as in
Theorem 2.1., and g : [0, 1]→ [0, 1] is a continuous and decreasing function, then∫ sup

[0,1]
fPdm ≥

(∫ sup

[0,1]
fdm

)P
holds for all P ≥ 1.

Proof. Using the same arguments in Lemma 2.2. proof is easy.
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Theorem 7. (Pseudo Hardy’s inequality). Let f : [0, 1] → [0, 1] be a µ-measurable
and g : [0, 1]→ [0, 1] be a continuous and decreasing function. If

F (x) =

∫ ⊕
[0,x]

f(t)dt

where x ∈ [0, 1], then the inequality( P

P − 1

)P ∫ ⊕
[0,1]

fP (x)dx >

∫ ⊕
[0,1]

(F
x

)P
dx (4)

holds for all P > 1.

Proof. By using Lemma 2.2. we have∫ ⊕
[0,1]

(F
x

)P
dx =

∫ ⊕
[0,1]

(∫ ⊕
[0,x] f(t)dt

x

)P
dx

=

∫ ⊕
[0,1]

( ∫ ⊕
[0,x] f(t)dt

)P
xP

dx

≤
∫ ⊕
[0,1]

∫ ⊕
[0,x] f

P (t)dt

xP
dx.

Thus, by (2), we have∫ ⊕
[0,1]

(F
x

)P
dx ≤

∫ ⊕
[0,1]

∫ ⊕
[0,x] f

P (t)dt

xP
dx

=

∫ ⊕
[0,1]

∫ ⊕
[0,x]

(fP (t)

xP

)
dtdx

= g−1
∫ 1

0
g

∫ ⊕
[0,x]

(fP (t)

xP

)
dtdx

= g−1
∫ 1

0
g(g−1

∫ x

0
g
(fP (t)

xP

)
dt)dx

= g−1
∫ 1

0

∫ x

0
g(
f(t)

x
)Pdtdx

= g−1
∫ 1

0

∫ x

0
g(f(t))P g(

1

xP
)dtdx

= g−1
(∫ 1

0
g(

1

xP
)dx
)(∫ x

0
g(f(t))Pdt

)
.
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Since 1
xP

> 1 and g is a decreasing function, we have g( 1
xP

) < g(1), It follows that∫ ⊕
[0,1]

(F
x

)P
dx ≤ g−1

(∫ 1

0
g(

1

xP
)dx
)(∫ x

0
g(f(t))Pdt

)
< g−1

(∫ 1

0
g(1)dx

)(∫ x

0
g(f(t))Pdt

)
= g−1

(
gg−1

∫ 1

0
g(1)dx

)(
gg−1

∫ x

0
g(f(t))Pdt

)
=

(∫ ⊕
[0,1]

1dx
)
�
(∫ ⊕

[0,x]
g(f(t))Pdt

)
.

By using Theorem(1.5.(ii)), we have∫ ⊕
[0,1]

(F
x

)P
dx <

(∫ ⊕
[0,1]

1dx
)
�
(∫ ⊕

[0,x]
g(f(t))Pdt

)
<

(∫ ⊕
[0,x]

g(f(t))Pdt
)

<
(∫ ⊕

[0,1]
g(f(x))Pdx

)
<

( P

P − 1

)P ∫ ⊕
[0,1]

fP (x)dx.

Which complete the proof.

Example 2. Let f(x) = 1
2 , and g : [0, 1] → [0,∞] define as follows g(x) = 1

x2
. By

using (2) we have ∫ ⊕
[0,1]

fP (x)dx = g−1
∫ 1

0
g(fP (x))dx

= g−1
∫ 1

0
g((

1

2
)P )dx

= g−1
∫ 1

0

1

( 1
2P

)2
dx

= g−1(22P )

=
1√
22p

=
1

2P
.
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Then a straightforward calcules shows that

F (x) =

∫ ⊕
[0,x]

f(t)dt

= g−1
∫ x

0
g(

1

2
)dt

= g−1
∫ x

0
4dt

= g−1(4x)

=
1√
4x

=
1

2
√
x
.

It follows that,
F (x)

x
=

1

2x
√
x

=
1

2
x−

3
2

On the other hand, ∫ ⊕
[0,1]

(F
x

)p
dx = g−1

∫ 1

0
g(
F

x
)Pdx

= g−1
∫ 1

0
g
(1

2
x−

3
2

)P
dx

= g−1
∫ 1

0

22P

x−3P
dx

= g−1
( 22P

3P + 1

)
=

1√
22P

3P+1

.

This shows that the Hardy’s inequality is valid for pseudo-integral.

Now, we generalize the Hardy type inequality by the semiring ([a, b],max,�),
where � is generated.

Theorem 8. Let f : [0, 1] → [0, 1] be a µ-measurable, g : [0, 1] → [0, 1] be a
continuous and decreasing function and m be the same as in Theorem 2.1. If � is
represented by a decreasing multiplicative generator g and

F (x) =

∫ sup

[0,x]
fdm
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where x ∈ [0, 1], then the inequality( P

P − 1

)P ∫ sup

[0,1]
fPdm >

∫ sup

[0,1]

(F
x

)P
dm (5)

holds for all P > 1.

Proof. By using Lemma 2.3. and Theorem 1.3. we have∫ sup

[0,1]

(F
x

)P
dm = lim

λ→∞

∫ ⊕λ
[0,1]

(F
x

)P
dmλ

= lim
λ→∞

(gλ)−1
∫ 1

0
gλ
(F
x

)P
dx

= lim
λ→∞

(gλ)−1
∫ 1

0
gλ
(
F (x)

)P
gλ
( 1

xp

)
dx

= lim
λ→∞

(gλ)−1
∫ 1

0
gλ
(∫ sup

[0,x]
f(t)dm

)P
gλ
( 1

xp

)
dx

= lim
λ→∞

(gλ)−1
∫ 1

0
gλ
(

lim
λ→∞

∫ ⊕λ
[0,x]

f(t)dmλ

)P
gλ
( 1

xP

)
dx

≤ lim
λ→∞

(gλ)−1
∫ 1

0
gλ
(

lim
λ→∞

∫ ⊕λ
[0,x]

fP (t)dmλ

)
gλ
( 1

xP

)
dx

= lim
λ→∞

(gλ)−1
∫ 1

0
gλ
(

lim
λ→∞

(gλ)−1
∫ x

0
gλ(fP (t))dt

)
gλ
( 1

xP

)
dx

= lim
λ→∞

lim
λ→∞

(gλ)−1
∫ 1

0

∫ x

0
gλ(gλ)−1gλ(fP (t))gλ(

1

xP
)dtdx.

Thus, we conclude∫ sup

[0,1]

(F
x

)P
dm ≤ lim

λ→∞
lim
λ→∞

(gλ)−1
∫ 1

0

∫ x

0
gλ(fP (t))gλ(

1

xP
)dtdx

=
(

lim
λ→∞

(gλ)−1
∫ x

0
gλ(fP (t))dt

)(
lim
λ→∞

(gλ)−1
∫ 1

0
gλ(

1

xP
)dx
)
.

Since 1
xP

> 1, g is a decreasing function and λ ∈ (0,∞), so we have

gλ(
1

xP
) < gλ(1),
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then∫ sup

[0,1]

(F
x

)P
dm ≤

(
lim
λ→∞

(gλ)−1
∫ x

0
gλ(fP (t))dt

)(
lim
λ→∞

(gλ)−1
∫ 1

0
gλ(

1

xP
)dx
)

<
(

lim
λ→∞

(gλ)−1
∫ x

0
gλ(fP (t))dt

)(
lim
λ→∞

(gλ)−1
∫ 1

0
gλ(1)dx

)
<

(
lim
λ→∞

∫ ⊕λ
[0,x]

(fP (t))dm
)(

lim
λ→∞

∫ ⊕λ
[0,1]

(1)dm
)

<
(∫ sup

[0,x]
fP (t)dm

)
<

(∫ sup

[0,1]
fP (x)dm

)
<

( P

P − 1

)P ∫ sup

[0,1]
fP (x)dm.

Which complete the proof.

Example 3. Let f : [0, 1]→ [0, 1] be a µ-measurable, and gλ(x) = x−λ. So

x⊕ y = (x−λ + y−λ)−λ and x� y = xy.

Therefore Relation (5) reduces on the following inequality:

sup
(

(
F

x
)P + ψ(x)

)
< (

P

P − 1
)P sup

(
fp(x) + ψ(x)

)
.

where ψ is from Theorem 2.1.
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[15] E. Pap, N. Ralević, Pseudo-Laplace transform, Nonlinear Anal. 33 (1998) 553-
560.

[16] E. Pap, Null-additive Set Functions, Kluwer, Dordrecht, (1995).

[17] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, A Hardy-type inequality
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