THIRD HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

R. Bucur, D. Breaz and L. Georgescu

Abstract

In the present paper we investigate the upper bounds of the Hankel determinant $H_{3}(1)$ for a class of analytic functions with respect to symmetric points, denoted $M_{s}(\alpha)$.

2010 Mathematics Subject Classification: 30C45, 30C50.
Keywords: analytic, univalent, starlike, convex, subordination, symmetric points, Fekete-Szegö, Hankel determinant, coefficient bounds.

1. Introduction

Let \mathcal{A} be the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. Consider S the subclass of \mathcal{A} consisting of univalent functions.

Recently, Selvaraj and Vasanthi [16] defined the next subclass of analytic functions with respect to symmetric points:

Definition 1. ([16]) Let $M_{s}(\alpha)$ denote the class of analytic functions f of the form (1) and satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha z(f(z)-f(-z))^{\prime}+(1-\alpha)(f(z)-f(-z))}\right]>0,0 \leq \alpha \leq 1, z \in U . \tag{2}
\end{equation*}
$$

In particular:
(i) for $\alpha=0, M_{s}(0) \equiv S_{s}^{*}$,

$$
S_{s}^{*}:=\left\{f \in \mathcal{A}: \operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right]>0, z \in U\right\} .
$$

These functions are called starlike functions with respect to symmetric points and were intoduced by Sakaguchi [13].
(ii) for $\alpha=1, M_{s}(1) \equiv K_{s}$,

$$
K_{s}:=\left\{f \in \mathcal{A}: \operatorname{Re}\left[\frac{\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}\right]>0, z \in U\right\} .
$$

Functions in the class K_{s} are called convex functions with respect to symmetric points and were introduced by Das and Singh [14].
Definition 2. ([10]) Let f and g be two analytic functions in U. Then, the function f is said to be subordinate to g, written $f \prec g$, if there exists a function w, analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, so that

$$
f(z)=g(h(z)) \text { for all } z \in U .
$$

Pommerenke [11] stated the q-th Hankel determinant as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \tag{3}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n+q-1} & \cdots & \cdots & a_{n+2 q-2}
\end{array}\right|,
$$

where $n \leq 1$ and $q \leq 1$. The Hankel determinant is useful, for example, in the study of power series with integral coefficients (see [3, 4]), meromorfic functions (see [21]) and also singularities (see [4]).

It is well known that the Fekete-Szegö functional is equivalent to $H_{2}(1)$. In particular, sharp upper bounds on $H_{2}(2)$ were obtained in [6, 7, 8, 20]. Recently, the third Hankel determinant $H_{3}(1)$ has been considered in works [1, 12, 17].

In this paper, we determine the upper bound of $H_{3}(1)$ for subclasses of analytic functions with respect to symmetric and conjugate points by using Toeplitz determinants [15] and following a method devised by Libera and Zlotkiewicz (see [18, 19]).

In our proposed investigation we shall make use of the next results.

2. Preliminary Results

Let P denote the class of analytic functions p normalized by

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} t_{k} z^{k} \tag{4}
\end{equation*}
$$

such that $\operatorname{Re} p(z)>0, z \in U$.
$\underline{\text { R. Bucur, D. Breaz and L. Georgescu - Third Hankel determinant for a class ... }}$

Lemma 1. [5]. If $p \in P$ then the following sharp estimate holds:

$$
\begin{equation*}
\left|t_{k}\right| \leq 2, k=1,2, \ldots \tag{5}
\end{equation*}
$$

Lemma 2. [18, 19]. Let $p \in P$. Then

$$
\begin{align*}
2 t_{2} & =t_{1}^{2}+x\left(4-t_{1}^{2}\right) \tag{6}\\
4 t_{3}=t_{1}^{3}+2\left(4-t_{1}^{2}\right) t_{1} x & -\left(4-t_{1}^{2}\right) t_{1} x^{2}+2\left(4-t_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{7}
\end{align*}
$$

for some complex numbers x, z with $|x| \leq 1$ and $|z| \leq 1$.
Lemma 3. [9]. If $p \in P$, then for λ a complex number

$$
\begin{equation*}
\left|t_{2}-\lambda t_{1}^{2}\right| \leq 2 \max (1,|2 \lambda-1|) \tag{8}
\end{equation*}
$$

This result is sharp for the functions

$$
\begin{equation*}
p(z)=\frac{1+z}{1-z} \text { and } p(z)=\frac{1+z^{2}}{1-z^{2}} . \tag{9}
\end{equation*}
$$

3. Main Results

Theorem 4. Let $f \in M_{s}(\alpha)$. Then we have the sharp inequality

$$
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{1}{1+3 \alpha} \max \left\{\frac{1}{2}, \frac{2\left(4 \alpha^{2}+3 \alpha+1\right)}{3(1+\alpha)(1+2 \alpha)} \sqrt{\frac{4 \alpha^{2}+3 \alpha+1}{3(1+\alpha)(1+2 \alpha)}}\right\} .
$$

Proof. Using the definition of subordination, $f \in M_{s}(\alpha)$ if and only if

$$
\frac{2 \alpha z^{2} f^{\prime \prime}(z)+2 z f^{\prime}(z)}{\alpha z(f(z)-f(-z))^{\prime}+(1-\alpha)(f(z)-f(-z))}=\frac{1+\omega(z)}{1-\omega(z)}=p(z), p \in P .
$$

It follows that

$$
\begin{array}{rl}
z+\sum_{n=2}^{\infty} n & n[1+\alpha(n-1)] a_{n} z^{n}=\left(1+t_{1} z+t_{2} z^{2}+\ldots\right)\left\{z+(1+2 \alpha) a_{3} z^{3}\right. \\
& \left.+(1+4 \alpha) a_{5} z^{5}+\cdots+[1+(2 n-2) \alpha] a_{2 n-1} z^{2 n-1}+(1+2 n \alpha) a_{2 n+1} z^{2 n+1}+\cdots\right\} . \tag{10}
\end{array}
$$

On equating the coefficients like powers of z in (10), we obtain

$$
\begin{equation*}
a_{2}=\frac{t_{1}}{2(1+\alpha)}, a_{3}=\frac{t_{2}}{2(1+2 \alpha)}, a_{4}=\frac{t_{1} t_{2}+2 t_{3}}{8(1+3 \alpha)} . \tag{11}
\end{equation*}
$$

$\underline{\text { R. Bucur, D. Breaz and L. Georgescu - Third Hankel determinant for a class ... }}$

Assuming $t_{1}=t$ and substituting for t_{2} and t_{3} by using Lemma 2 in (11), we have

$$
\begin{equation*}
a_{2}=\frac{t}{2(1+\alpha)}, a_{3}=\frac{t^{2}+\left(4-t^{2}\right) x}{4(1+2 \alpha)} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{4}=\frac{1}{16(1+3 \alpha)}\left(2 t^{3}+3 t\left(4-t^{2}\right) x-t\left(4-t^{2}\right) x^{2}+2\left(4-t^{2}\right)\left(1-|x|^{2}\right) z\right) . \tag{13}
\end{equation*}
$$

From (12) and (13) we get

$$
\begin{aligned}
\left|a_{2} a_{3}-a_{4}\right|= & A(\alpha) \mid-4 \alpha^{2} t^{3}-t\left(4-t^{2}\right)\left(6 \alpha^{2}+3 \alpha+1\right) x \\
& +t\left(4-t^{2}\right)\left(1+3 \alpha+2 \alpha^{2}\right) x^{2}-2\left(4-t^{2}\right)\left(1+3 \alpha+2 \alpha^{2}\right)\left(1-|x|^{2}\right) z \mid,
\end{aligned}
$$

where

$$
A(\alpha)=\frac{1}{16(1+\alpha)(1+2 \alpha)(1+3 \alpha)} .
$$

Applying the triangle inequality with $t \in[0,2],|z| \leq 1$ and $\delta=|x|$, we have

$$
\begin{align*}
\left|a_{2} a_{3}-a_{4}\right| \leq & A(\alpha)\left[4 t^{3} \alpha^{2}+t\left(4-t^{2}\right)\left(6 \alpha^{2}+3 \alpha+1\right) \delta\right. \\
& \left.+t\left(4-t^{2}\right)\left(1+3 \alpha+2 \alpha^{2}\right) \beta^{2}+2\left(4-t^{2}\right)\left(1+3 \alpha+2 \alpha^{2}\right)\left(1-\delta^{2}\right)\right] \\
& =A(\alpha)\left[(t-2)\left(4-t^{2}\right)\left(1+3 \alpha+2 \alpha^{2}\right) \delta^{2}+t\left(4-t^{2}\right)\left(6 \alpha^{2}+3 \alpha+1\right) \delta\right. \\
& \left.+4 t^{3} \alpha^{2}+2\left(4-t^{2}\right)\left(1+3 \alpha+2 \alpha^{2}\right)\right]=A(\alpha) F(\delta) . \tag{14}
\end{align*}
$$

Next, we maximize the function $F(\delta)$.
$F^{\prime}(\delta)=0$ implies $\delta=\frac{a t}{2(2-t) b} \equiv d^{*}$ where $a=6 \alpha^{2}+3 \alpha+1$ and $b=2(1+\alpha)(1+2 \alpha)$, so we need to consider two cases.
(i) If $\delta^{*}>1$, we have $\max _{\delta \in[0,1]} F(\delta)=F(1)$, therefore

$$
F(\delta) \leq-2 t^{3}\left(2 \alpha^{2}+3 \alpha+1\right)+8 t\left(4 \alpha^{2}+3 \alpha+1\right)=G_{1}(t) .
$$

By differentiating $G_{1}(t)$, we get

$$
G_{1}^{\prime}(t)=-6 t^{2}\left(2 \alpha^{2}+3 \alpha+1\right)+8\left(4 \alpha^{2}+3 \alpha+1\right) .
$$

Setting $G_{1}^{\prime}(t)=0$ we obtain $t= \pm 2 \sqrt{\frac{4 \alpha^{2}+3 \alpha+1}{3\left(2 \alpha^{2}+3 \alpha+1\right)}}$. Since

$$
G_{1}^{\prime \prime}(t)=-12 t\left(2 \alpha^{2}+3 \alpha+1\right) \leq 0
$$

it follows that G has a maximum value at $t=2 \sqrt{\frac{4 \alpha^{2}+3 \alpha+1}{3\left(2 \alpha^{2}+3 \alpha+1\right)}}=t^{\prime}$. Hence,

$$
\begin{equation*}
G_{1}(t) \leq \frac{32\left(4 \alpha^{2}+3 \alpha+1\right)}{3} \sqrt{\frac{4 \alpha^{2}+3 \alpha+1}{3\left(2 \alpha^{2}+3 \alpha+1\right)}} \tag{15}
\end{equation*}
$$

(ii) If $\delta^{*} \leq 1$, we find that $\max _{\delta \in[0,1]} F(\delta)=F\left(\delta^{*}\right)$. Thus,

$$
F(\delta) \leq \frac{(2+t)\left(a^{2} t^{2}+8 b^{2}(2-t)\right)}{4 b}+4 \alpha^{2} t^{3}=G_{2}(t)
$$

It follows that G_{2} has a maximum value at $t=0$, so

$$
\begin{equation*}
G_{2}(t) \leq 16(1+\alpha)(1+2 \alpha) \tag{16}
\end{equation*}
$$

From the relations (14), (15) and (16) upon simplification, the theorem is proved. The result is sharp for $t_{1}=t, t_{2}=t_{1}^{2}-2$ and $t_{3}=t_{1}\left(t_{1}^{2}-3\right)$.

Corollary 5. [2] If $f \in S_{s}^{*}$, then

$$
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{1}{2}
$$

Corollary 6. [2] If $f \in K_{s}$, then

$$
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{4}{27}
$$

Theorem 7. Let $f \in M_{s}(\alpha)$. Then for a complex number μ, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{1+2 \alpha} \max \left(1,\left|\frac{(1+2 \alpha) \mu}{(1+\alpha)^{2}}-1\right|\right) \tag{17}
\end{equation*}
$$

Proof. From (11), we get

$$
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{1}{2(1+2 \alpha)}\left|t_{2}-\frac{(1+2 \alpha) \mu}{2(1+\alpha)^{2}} t_{1}^{2}\right|
$$

Applying Lemma 3, the theorem is proved. This result is sharp for the functions

$$
\frac{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha z(f(z)-f(-z))^{\prime}+(1-\alpha)(f(z)-f(-z))}=\frac{1+z}{1-z}
$$

or

$$
\frac{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha z(f(z)-f(-z))^{\prime}+(1-\alpha)(f(z)-f(-z))}=\frac{1+z^{2}}{1-z^{2}} .
$$

For $\mu=1$, we get $H_{2}(1)$.
Corollary 8. If $f \in M_{s}(\alpha)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{1}{1+2 \alpha}
$$

Corollary 9. [2] If $f \in S_{s}^{*}$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq 1
$$

Corollary 10. [2] If $f \in K_{s}$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{1}{3}
$$

Theorem 11. Let $f \in M_{s}(\alpha)$. Then we have the sharp inequality

$$
\begin{align*}
\left|H_{3}(1)\right| \leq & \frac{1}{(1+2 \alpha)^{3}(1+3 \alpha)^{2}(1+4 \alpha)} \\
& \max \left\{52 \alpha^{4}+124 \alpha^{3}+88 \alpha^{2}+25 \alpha+2,5 ; \frac{D_{1}+D_{2} \sqrt{3\left(4 \alpha^{2}+3 \alpha+1\right)(1+\alpha)(1+2 \alpha)}}{9(1+\alpha)^{2}}\right\}, \tag{18}
\end{align*}
$$

where
$D_{1}=18(1+\alpha)^{2}(1+3 \alpha)^{2}\left(2 \alpha^{2}+4 \alpha+1\right)$ and $D_{2}=2(1+2 \alpha)(1+4 \alpha)\left(4 \alpha^{2}+3 \alpha+1\right)$.
Proof. Since $a_{1}=1$, we have

$$
H_{3}(1)=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right),
$$

and applying the triangle inequality, we obtain

$$
\begin{equation*}
\left|H_{3}(1)\right| \leq\left|a_{3}\right|\left|a_{2} a_{4}-a_{3}^{2}\right|+\left|a_{4}\right|\left|a_{4}-a_{2} a_{3}\right|+\left|a_{5}\right|\left|a_{3}-a_{2}^{2}\right| . \tag{19}
\end{equation*}
$$

By comparing the coefficients on both sides of equation (10) and using Lemma 1 we have the sharp estimations

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{1}{1+2 \alpha},\left|a_{4}\right| \leq \frac{1}{1+3 \alpha} \text { and }\left|a_{5}\right| \leq \frac{1}{1+4 \alpha} \tag{20}
\end{equation*}
$$

Using the known inequality $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{(1+2 \alpha)^{2}}$ (see [20]) and (20) together with Theorem 4 and Corollary 8 in (19), the theorem is proved. The inequality (18) is sharp because each of the components functionals in (19) is sharp.

Corollary 12. [2] If $f \in S_{s}^{*}$, then

$$
\left|H_{3}(1)\right| \leq \frac{5}{2}
$$

Corollary 13. [2] If $f \in K_{s}$, then

$$
\left|H_{3}(1)\right| \leq \frac{19}{135}
$$

References

[1] K.O. Babalola, G. Shanmugam, B.A. Stephen, Third Hankel determinant for α-starlike functions, Gulf Journal of Mathematics, 2(2014), 107-113.
[2] R. Bucur, D. Breaz, Estimate of third Hankel determinant for starlike and convex functions with respect to symmetric points, submitted.
[3] D.G. Cantor, Power series with integral coefficients, Bull. Am. Math. Soc., 69(1963), 362-366.
[4] P. Dienes, The Taylor series, Dover, New York(1957).
[5] P.L. Duren, Univalent functions, Springer Verlag, New York(1983).
[6] A. Janteng, S.A. Halim, M. Darus, Estimate on the second Hankel functional for functions whose derivative has a positive real part, J. of Quality Measurement and Analysis, 4(1)(2008), 189-195.
[7] A. Janteng, S.A. Halim, M. Darus, Hankel determinant for functions starlike and convex with respect to symmetric points, J. Quality Measurement and Anal., 2(1)(2006), 37-43.
[8] M.S. Liu, J.F. Xu, M. Yang, Upper Bound of Second Hankel Determinant for Certain Subclasses of Analytic Functions, Abstract and Applied Analysis, vol. 2014, 10 pg .
[9] WC. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992),157169, Int Press. Cambridge(1994).
[10] S.S. Miller, P.T. Mocanu, Differential Subordinations.Theory and Applications.Series on Monographs and Textbooks, Pure and Applied Mathematics,vol. 225, Marcel Dekker, New York(2000).
[11] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, Journal of the London Mathematical Society, vol. 41(1966), 111-122.
[12] M. Raza, S.N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. of Inequalities and Applications (2013) doi:10.1186/1029-242X-2013-412.
[13] K. Sakaguchi, On certain univalent mapping, J. Math. Soc. 11(1959), Japan, 72-75.
[14] R.N. Das, P. Singh, On subclasses of schlicht mappings, Indian J. Pure Appl. Math., 8(1977), 864-872.
[15] U. Grenander, G. Szegö, Toeplitz forms and their applications, Second edition, Celsea Publishing Co., New York (1984).
[16] C. Selvaraj, N. Vasanthi, Subclasses of analytic functions with respect to symmetric and conjugate points, Tamkang J. Math. 42(1)(2011), 87-94.
[17] T.V. Sudharsan, S.P. Vijayalakshmi, B. Adolf Stephen, Third Hankel determinant for a subclass of analytic univalent functions, Malaya J. Mat. 2(4)(2014), 438-444.
[18] R.J. Libera, E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(1982), 225-230.
[19] R.J Libera, E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), 251-257.
[20] G. Singh, Hankel Determinant for New Subclasses of Analytic Functions with Respect to Symmetric Points, Int. J. of Modern Mathematical Sciences, 5(2)(2013), 67-76.
[21] R. Wilson, Determinantal criteria for meromorphic functions, Proc. Lond. Math. Soc., 4(1954), 357-374.

Roberta Bucur,
Department of Mathematics,
University of Piteşti,
Piteşti, România
email: roberta_bucur@yahoo.com
Daniel Breaz,
Department of Mathematics,
"1 Decembrie 1918" University of Alba Iulia
N. Iorga Str., No.11-13, Alba Iulia, Alba, 510009

Romania
email:dbreaz@uab.ro
Ligia Georgescu,
National College "Unirea" of Targu Mures
Mihai Viteazul str., No. 17, Targu Mures, judet Mures, 540080
Romania e-mail:sabinageorgescu1997@gmail.com

