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Abstract. In this paper, we present a new class of distributions called McDon-
ald quasi Lindley distribution. This class of distributions contains several distribu-
tions such as beta-quasi Lindley, Kumaraswamy quasi Lindley and quasi Lindley
as special cases. The hazard function, reverse hazard function, moments and mean
residual life function are obtained. We estimate the parameters by maximum like-
lihood and provide the observed information matrix. The usefulness of the new
distribution is illustrated with real data set that show that it is quite flexible in an-
alyzing positive data instead of the McDonald quasi Lindley distribution and quasi
Lindley distributions.
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1. Introduction and Motivation

Quasi Lindley distribution with parameters α and θ is defined by its probability
density function (p.d.f)

g(x, θ, α) =
θ

α+ 1
(α+ θx)e−θx , x > 0 , θ > 0 , α > −1. (1)

It can easily be seen that at α = θ, the QLD equation (1) reduces to the Lindley
distribution (1958) with probability density function

g(x, θ) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0,

and at α = 0, it reduces to the gamma distribution with parameters (2, θ). The
p.d.f. equation (1) can be shown as a mixture of exponential (θ) and gamma (2, θ)
distributions as follows

g(x, θ, α) = pg1(x) + (1− p)g2(x)
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where

p =
1

α+ 1
, g1(x) = θe−θx and g2(x) = θ2e−θx

The cumulative distribution function (cdf) of QLD is obtained as

G(x, θ) = 1− e−θx

[
1 +

θx

α+ 1

]
, x > 0, θ > 0, α > −1. (2)

where θ is scale parameter.
Ghitany et al. (2008a) have discussed various properties of this distribution and

showed that in many ways equation (1) provides a better model for some applications
than the exponential distribution. A discrete version of this distribution has been
suggested by Deniz and Ojeda (2011) having its applications in count data related
to insurance. Sankaran (1970) obtained the Lindley mixture of Poisson distribution.
Ghitany et al. (2008b, c) obtained size-biased and zero-truncated version of Poisson-
Lindley distribution and discussed their various properties and applications. Ghi-
tany and Al-Mutairi (2009) discussed as various estimation methods for the discrete
Poisson- Lindley distribution. Bakouch et al. (2012) obtained an extended Lindley
distribution and discussed its various properties and applications. Mazucheli and
Achcar (2011) discussed the applications of Lindley distribution to competing risks
lifetime data. Rama and Mishra (2013) studied quasi Lindley distribution. Ghitany
et al. (2011) developed a two-parameter weighted Lindley distribution and discussed
its applications to survival data. Zakerzadah and Dolati (2010) obtained a gener-
alized Lindley distribution and discussed its various properties and applications.
Elbatal et al. (2014) obtained an extended Lindley distribution called transmuted
Lindley-geometric distribution and discussed its various properties and applications.
Merovci (2013) obtained an extended Lindley distribution called transmuted Lind-
ley distribution and discussed its various properties and applications. Merovci and
Sharma (2014) obtained the beta Lindley distribution and discussed its various prop-
erties and applications.

Consider an arbitrary parent cdf G(x). The probability density function (pdf)
f(x) of the new class of distributions called the Mc-Donald generalized distributions
(denoted with the prefix ” Mc” for short) is defined by

f(x, a, b, c) =
c

B(a, b)
g(x)Gac−1(x) [1−Gc(x)]b−1 , (3)

where a > 0, b > 0 and c > 0 are additional shape parameters . ( See Corderio et
al. (2012) for additional details). Note that g(x) is the pdf of parent distribution

, g(x) = dG(x)
dx . Introduction of this additional shape parameters is specially to

introduce skewness. Also, this allows us to vary tail weight. It is important to
note that for c = 1 we obtain a sub-model of this generalization which is a beta

88



F. Merovci, I. Elbatal, L. Puka – The McDonald Quasi Lindley . . .

generalization ( see Eugene et al.( 2002)) and for a = 1, we have the Kumaraswamy
(Kw), [Kumaraswamy generalized distributions ( see Cordeiro and Castro, (2010)).
For random variable X with density function (3), we write X ∼ Mc − G(a, b, c).
The probability density function (3) will be most tractable when G(x) and g(x)
have simple analytic expressions. The corresponding cumulative function for this
generalization is given by

F (x, a, b, c) = IGc(x)(a, b) =
1

B(a, b)

G(x)c∫
0

w(1−a)(1− w)b−1dw, (4)

where Iy(a, b) =
1

B(a,b)

y∫
0

w(1−a)(1 − w)b−1dw denotes the incomplete beta function

(Gradshteyn & Ryzhik, 2000). Equation (4) can also be rewritten as follows

F (x, a, b, c) =
G(x)ac

aB(a, b)2
F1(a, 1− b; a+ 1;G(x)c), (5)

where

2F1(a, b; c;x) = B(b, c− b)−1

1∫
0

tb−1 (1− t)c−b−1

(1− tx)a
dt

is the well-known hypergeometric functions which are well established in the litera-
ture ( see, Gradshteyn and Ryzhik (2000)).

Some mathematical properties of the cdf F (x) for any Mc-G distribution defined
from a parent G(x) in equation (5), could, in principle, follow from the properties
of the hypergeometric function, which are well established in the literature (Grad-
shteyn and Ryzhik, 2000, Sec. 9.1). One important benefit of this class is its ability
to skewed data that cannot properly be fitted by many other existing distributions.
Mc-G family of densities allows for higher levels of exibility of its tails and has a lot
of applications in various fields including economics, finance, reliability, engineering,
biology and medicine.

The hazard function (hf) and reverse hazard functions (rhf) of the Mc-G distri-
bution are given by

h(x) =
f(x)

1− F (x)
=
cg(x)Gac−1(x) [1−Gc(x)]b−1

B(a, b)
{
1− IGc(x)(a, b)

} , (6)
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and

τ(x) =
f(x)

F (x)
=
cg(x)Gac−1(x) [1−Gc(x)]b−1

B(a, b)
{
IGc(x)(a, b)

}
respectively. Recently Cordeiro et al. (2012) introduced the The McDonald Normal
Distribution. Now we introduce a new class of distribution, called Mc Quasi Lindley
(McQL) distribution by taking G(x) and g(x) in (3) to be the cdf and pdf of (1)
and (2). The pdf of the McQL distribution is given by

f(x, ϕ) =
c

B(a, b)

θ

α+ 1
(α+ θx)e−θx

[
1− e−θx

[
1 +

θx

α+ 1

]]ac−1

×
[
1−

{
1− e−θx

[
1 +

θx

α+ 1

]}c]b−1

(7)

where ϕ = (α, θ, a, b, c). The corresponding cdf of the McQL distribution is given
by

F (x) = IGc(x)(a, b) =
1

B(a, b)

G(x)c∫
0

w(1−a)(1− w)b−1dw

=
1

B(a, b)

[1−e−θx[1+ θx
α+1 ]]

c∫
0

w(1−a)(1− w)b−1dw

= I[1−e−θx[1+ θx
α+1 ]]

c(a, b), (8)

also, the cdf can be written as follows

F (x) =

[
1− e−θx

[
1 + θx

α+1

]]ac
aB(a, b)

2F1(a, 1− b; a+ 1;

[
1− e−θx

[
1 +

θx

α+ 1

]]c
), (9)

where 2F1(a, b; c;x) = B(b, c− b)−1
1∫
0

tb−1(1−t)c−b−1

(1−tx)a
dt.

Figure 1 and figure 2 illustrates some of the possible shapes of the pdf and cdf of
McQL distribution for selected values of the parameters θ, α, a, b and c, respectively.
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Figure 1: The pdf’s of various McQL distributions.
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Figure 2: The cdf’s of various McQL distributions.

The hazard rate function and reversed hazard rate function of the new distribu-
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tion are given by

h(x) =
f(x)

1− F (x)

=
θ(α+ θx)e−θx

[
1− e−θx

[
1 + θx

α+1

]]ac−1

(α+ 1)B(a, b)
{
1− I[1−e−θx[1+ θx

α+1 ]]
c(a, b)

}
×

[
1−

{
1− e−θx

[
1 +

θx

α+ 1

]}c]b−1

(10)

and

τ(x) =
f(x)

F (x)

=
θ(α+ θx)e−θx

[
1− e−θx

[
1 + θx

α+1

]]ac−1

(α+ 1)B(a, b)I[1−e−θx[1+ θx
α+1 ]]

c(a, b)

×
[
1−

{
1− e−θx

[
1 +

θx

α+ 1

]}c]b−1

, (11)

respectively.

Figure 3 illustrates some of the possible shapes of the hazard rate function of
McQL distribution for selected values of the parameters θ, α, a, b and c.
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Figure 3: The pdf’s of various McQL distributions.

The rest of the paper is organized as follows. In Section 2, we demonstrate that
the McQL density function can be expressed as a linear combination of the quasi
Lindley distribution. This result is important to provide mathematical properties of
the McQL model directly from those properties of the quasi Lindley distribution.
In Section 3. we discuss some important statistical properties of the McQL distri-
bution including quantile function, moments and moment generating function. The
distribution of the order statistics is expressed in Section 4. We discuss in section 5
maximum likelihood estimation and calculate the elements of the observed informa-
tion matrix. Section 6 provides applications to real data sets. Section 8 ends with
some conclusions.

2. Expansion of Distribution

In this section, we present a series expansion of the McQL cdf and pdf distribution
depending if the parameter b > 0 is real non-integer or integer. First, if |z| < 1 and
b > 0 is real non- integer, we have

(1− z)b−1 =
∞∑
j=0

(−1)j
(
b− 1

j

)
zj =

∞∑
j=0

(−1)jΓ(b)

j!Γ(b− j)
zj . (12)
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Using the expansion (12) in (8), the cdf of the McQL distribution becomes

F (x) =
1

B(a, b)

[1−e−θx[1+ θx
α+1 ]]

c∫
0

w(1−a)(1− w)b−1dw

=
Γ(b)

B(a, b)

∞∑
j=0

(−1)j

j!Γ(b− j)

G(x)c∫
0

wa+j−1dw

=

∞∑
j=0

(−1)jΓ(b)

B(a, b)j!Γ(b− j)(a+ j)
[G(x, α, θ)]c(a+j)

=
∞∑
j=0

qj G(x, θc(a+ j), α)

where

qj =
(−1)jΓ(b)

B(a, b)j!Γ(b− j)(a+ j)
.

If b > 0 is an integer, then

F (x) =
b−1∑
j=0

qjG(x, θc(a+ j), α). (13)

Similarly, if b > 0 is real non- integer the pdf is given by

f(x) =

∞∑
j=0

qjg(x, θc(a+ j), α),

and

f(x) =
b−1∑
j=0

qjg(x, θc(a+ j), α)

for b > 0 is an integer . This is a finite mixture of quasi Lindley distributions with
parameters θc(a+ j) and α.

2.1. Submodels

The McDonald quasi Lindley distribution is very flexible model that approaches to
different distributions when its parameters are changed. The McQL distribution
contains as special- models the following well known distributions. If X is a random
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variable with pdf (7) or cdf(8) we use the notation X ∼ McQL(α, θa, b, c) then we
have the following cases
1- For α = θ , McQL distribution reduces to the McDonald Lindley Distribution.
2- If α = 0 then (1.8) becomes the McDonald gamma distribution with parameter
(2,θ).
3- For a = b = c = 1 , then (1.8) reduces to the quasi Lindley distribution which is
introduced by Rama et al (2013).
4- For a = c = 1 we get the Kumaraswamy quasi Lindley distribution.
5- Kumaraswamy gamma (2, θ) distrtribution arises as a special case of McQL by
taking a = c = 1,and α = 0.
6- Applying α = θ and c = 1 we can obtain the Lindley distribution.

3. Statistical Properties

This section is devoted to studying statistical properties of the McQL distribution,
specifically quantile function, moments, and moment generating function.

3.1. Quantile Function

TheMcQL quantile function , sayQ(u) = F−1(u), is straightforward to be computed
by inverting (8), we have

e−θx

[
1 +

θx

α+ 1

]
= 1−Q(a,b)(u)

c)

we can easily generate X by taking u as a uniform random variable in (0, 1).

3.2. Moments

In this subsection we discuss the kth non-central moment for McQL distribution.
Moments are necessary and important in any statistical analysis, especially in ap-
plications. It can be used to study the most important features and characteristics
of a distribution (e.g., tendency, dispersion, skewness and kurtosis).

Theorem 1. If X has McQL(ϕ, x) , ϕ = (α, θ, a, b, c) then the kth non-central
moment of X is given by the following

µ
′
k(x) = E(XK) = wi,j,k

[
αΓ(r + i+ 1)

(θ(k + 1))r+i+1
+

θΓ(r + i+ 2)

(θ(k + 1))r+i+2

]
. (14)

where

wi,j,k =
∞∑
i,j,k

(−1)j+k

(
b− 1

j

)(
c(a+ j)− 1

k

)(
k

i

)
.
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Proof. Let X be a random variable with density function (7). The rth non-central
moment of the McQL distribution is given by

µ
′
r(x) = E(Xr) =

∞∫
0

xrf(x, ϕ)dx

=
c

B(a, b)

θ

α+ 1

∞∫
0

xr(α+ θx)e−θx

[
1− e−θx

[
1 +

θx

α+ 1

]]ac−1

×
[
1−

{
1− e−θx

[
1 +

θx

α+ 1

]}c]b−1

dx (15)

using the fact that[
1−

{
1− e−θx

[
1 +

θx

α+ 1

]}c]b−1

=
∞∑
j=0

(−1)j
(
b− 1

j

){
1− e−θx

[
1 +

θx

α+ 1

]}cj

then

µ
′

r(x) =
∞∑
j=0

(−1)j
(
b− 1

j

)
c

B(a, b)

θ

α+ 1

∫ ∞

0

xr(α+θx)e−θx

[
1− e−θx

[
1 +

θx

α+ 1

]]c(a+j)−1

dx.

again[
1− e−θx

[
1 +

θx

α+ 1

]]c(a+j)−1

=
∞∑
k=0

(−1)k
(
c(a+ j)− 1

k

)
e−θkx

[
1 +

θx

α+ 1

]k
therefore

µ
′
r(x) =

∞∑
j,k

(−1)j+k

(
b− 1

j

)(
c(a+ j)− 1

k

) ∞∫
0

sr(α+ θx)

× e−θ(k+1)x

[
1 +

θx

α+ 1

]k
dx

also by using binomial expansion, we get[
1 +

θx

α+ 1

]k
=

∞∑
i=0

(
k

i

)
(

θ

α+ 1
)ixi
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Now

µ
′
r(x) = wi,j,k

∞∫
0

xr+i(α+ θx)e−θ(k+1)xdx

= wi,j,k

α ∞∫
0

xr+ie−θ(k+1)xdx+ θ

∞∫
0

xr+i+1e−θ(k+1)xdx


= wi,j,k

[
αΓ(r + i+ 1)

(θ(k + 1))r+i+1
+

θΓ(r + i+ 2)

(θ(k + 1))r+i+2

]
where

wi,j,k =
∞∑
i,j,k

(−1)j+k

(
b− 1

j

)(
c(a+ j)− 1

k

)(
k

i

)

Based on the first four moments of the McQL distribution, the measures of
skewness A(Φ) and kurtosis k(Φ) of the McQL distribution can obtained as

A(Φ) =
µ3(θ)− 3µ1(θ)µ2(θ) + 2µ31(θ)[

µ2(θ)− µ21(θ)
]
3
2

,

and

k(Φ) =
µ4(θ)− 4µ1(θ)µ3(θ) + 6µ21(θ)µ2(θ)− 3µ41(θ)[

µ2(θ)− µ21(θ)
]2 .

3.3. Moment Generating function

In this subsection we derived the moment generating function ofMcQL distribution.

Theorem 2. If X has McQL distribution, then the moment generating function
MX(t) has the following form

MX(t) = wi,j,k

[
αΓ(i+ 1)

(θ(k + 1)− t)i+1
+

θΓ(i+ 2)

(θ(k + 1)− t)i+2

]
. (16)

Proof. We start with the well known definition of the moment generating function
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given by

MX(t) = E(etX) =

∞∫
0

etxfMcQL(x, ϕ)dx

= wi,j,k

∞∫
0

xi(α+ θx)e−x(θ(k+1)−t)dx

= wi,j,k

[
αΓ(i+ 1)

(θ(k + 1)− t)i+1
+

θΓ(i+ 2)

(θ(k + 1)− t)i+2

]
(17)

which completes the proof.

4. Distribution of the order statistics

In this section, we derive closed form expressions for the pdfs of the rth order statis-
tic of the McQL distribution, also, the measures of skewness and kurtosis of the
distribution of the rth order statistic in a sample of size n for different choices of n; r
are presented in this section. Let X1, X2, ..., Xn be a simple random sample from
McQL distribution with pdf and cdf given by (7) and (8), respectively.

Let X1, X2, ..., Xn denote the order statistics obtained from this sample. We now
give the probability density function of Xr:n, say fr:n(x, ϕ) and the moments of Xr:n,
r = 1, 2, ..., n. Therefore, the measures of skewness and kurtosis of the distribution
of the Xr:n are presented. The probability density function of Xr:n is given by

fr:n(x,Φ) =
1

B(r, n− r + 1)
[F (x, ϕ)]r−1 [1− F (x, ϕ)]n−r f(x, ϕ) (18)

where f(x, ϕ) and F (x, ϕ) are the pdf and cdf of the McQL distribution given by
(7) and (8), respectively, and B(., .) is the beta function, since 0 < F (x, ϕ) < 1, for
x > 0, by using the binomial series expansion of [1− F (x, ϕ)]n−r, given by

[1− F (x, ϕ)]n−r =

n−r∑
j=0

(−1)j
(
n− r

j

)
[F (x, ϕ)]

j

, (19)

we have

fr:n(x, ϕ) =
n−r∑
j=0

(−1)j
(
n− r

j

)
[F (x,Φ)]r+j−1 f(x, ϕ), (20)

substituting from (7) and (8) into (20), we can express the kth ordinary moment of
the rth order statistics Xr:n say E(Xk

r:n) as a liner combination of the kth moments
of the McQL distribution with different shape parameters. Therefore, the measures
of skewness and kurtosis of the distribution of Xr:n can be calculated.
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5. Estimation and Inference

In this section, we determine the maximum likelihood estimates (MLEs) of the pa-
rameters of the McQL distribution from complete samples only. Let X1, X2, ..., Xn

be a random sample of size n from McQL(ϕ, x). The likelihood function for the
vector of parameters ϕ = (α, θ, a, b, c) can be written as

Lf(x(i),Φ) = Πn
i=1f(x(i), ϕ)

=

(
cθ

B(a, b)(α+ 1)

)n

Πn
i=1(α+ θx(i))e

−θ
n∑

i=1
x(i)

Πn
i=1

[
1− e−θx

[
1 +

θx

α+ 1

]]ac−1

×Πn
i=1

[
1−

{
1− e−θx

[
1 +

θx

α+ 1

]}c]b−1

. (21)

Taking the log-likelihood function for the vector of parameters ϕ = (α, θ, a, b, c) we
get

logL = n log c+ n log θ − n log(1 + α) + n log [Γ(a+ b)]− n log [Γ(a)]− n log [Γ(b)]

+
n∑

i=1

log(α+ θx(i))− θ
n∑

i=1

x(i) + (ac− 1)
n∑

i=1

log

[
1− e−θx(i)

[
1 +

θx(i)

α+ 1

]]

+ (b− 1)

n∑
i=1

log

[
1−

{
1− e−θx(i)

[
1 +

θx(i)

α+ 1

]}c]
. (22)

The log-likelihood can be maximized either directly or by solving the nonlinear
likelihood equations obtained by differentiating (5). The components of the score
vector are given by

∂ logL

∂a
= nψ(a+ b)− nψ(a) + c

n∑
i=1

log

[
1− e−θx(i)

[
1 +

θx(i)

α+ 1

]]
, (23)

∂ logL

∂b
= nψ(a+ b)− nψ(b) +

n∑
i=1

log

[
1−

[
1− e−θx(i)

[
1 +

θx(i)

α+ 1

]]c]
, (24)

∂ log L

∂c
=
n

c
+ a

n∑
i=1

log

[
1−

[
1− e−θx(i)

[
1 +

θx(i)

α+ 1

]]]

− (b− 1)

n∑
i=1

{
1− e−θx(i)

[
1 +

θx(i)

α+1

]}c
log

{
1− e−θx(i)

[
1 +

θx(i)

α+1

]}
[
1−

{
1− e−θx(i)

[
1 +

θx(i)

α+1

]}c] , (25)
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∂ log L

∂θ
=
n

θ
+

n∑
i=1

x(i)

(α+ θx(i))
−

n∑
i=1

x(i) + (ac− 1)
n∑

i=1

x(i)(α+ θx(i))(e
−θx(i))[

1− e−θx(i)

[
1 +

θx(i)

α+1

]]
+ c(b− 1)

n∑
i=1

x(i)(α+ θx(i))(e
−θx(i))

{
1− e−θx(i)

[
1 +

θx(i)

α+1

]}c−1[
1−

{
1− e−θx(i)

[
1 +

θx(i)

α+1

]}c] , (26)

and

∂ log L

∂α
=

−n
α+ 1

−
n∑

i=1

1

(α+ θx(i))
+ (ac− 1)

n∑
i=1

θx(i)e
−θx(i)

(α+ 1)2
[
1− e−θx(i)

[
1 +

θx(i)

α+1

]]
− c(b− 1)

n∑
i=1

θx(i)e
−θx(i)

{
1− e−θx

[
1 + θx

α+1

]}c−1

(α+ 1)2
[
1−

{
1− e−θx

[
1 + θx

α+1

]}c] , (27)

and where ψ(.) is the digamma function. We can find the estimates of the unknown
parameters by maximum likelihood method by setting these above non-linear equa-
tions (23)- (27) to zero and solve them simultaneously. Therefore, we have to use
mathematical package to get the MLE of the unknown parameters.

Approximate two sided 100(1− α)% confidence intervals for θ, α, a, b and for c are,
respectively, given by

θ̂ ± zα/2

√
I−1
11 (θ̂), α̂± zα/2

√
I−1
22 (α̂), â± zα/2

√
I−1
33 (â,

b̂± zα/2

√
I−1
44 (b̂), and ĉ± zα/2

√
I−1
55 (ĉ),

where zα is the upper αth quantile of the standard normal distribution. Using R we
can easily compute the Hessian matrix and its inverse and hence the standard errors
and asymptotic confidence intervals.

We can compute the maximized unrestricted and restricted log-likelihood func-
tions to construct the likelihood ratio (LR) test statistic for testing on some McQL
sub-models. For example, we can use the LR test statistic to check whether the
McQL distribution for a given data set is statistically superior to the quasi Lindley
distribution. In any case, hypothesis tests of the type H0 : ϕ = ϕ0 versus H0 : ϕ ̸= ϕ0
can be performed using a LR test. In this case, the LR test statistic for testing H0

versus H1 is ω = 2(ℓ(ϕ̂;x)− ℓ(ϕ̂0;x)), where ϕ̂ and ϕ̂0 are the MLEs under H1 and
H0, respectively. The statistic ω is asymptotically (as n → ∞) distributed as χ2

k,
where k is the length of the parameter vector ϕ of interest. The LR test rejects H0

if ω > χ2
k;γ , where χ

2
k;γ denotes the upper 100γ% quantile of the χ2

k distribution.
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6. Application

Now we use a real data set to show that the McDonald Quasi Lindley distribution
can be a better model than the Quasi Lindley distribution and Lindley distribution.

The real data set corresponds to an uncensored data set from Nichols and Padgett
(2006) on breaking stress of carbon fibres (in Gba): 3.70, 2.74, 2.73, 2.50, 3.60, 3.11,
3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19,3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75,
2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39,2.81, 4.20, 3.33, 2.55, 3.31,
3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83,1.92, 1.41,
3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59,
2.00,1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84,
0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89,
2.88, 2.82, 2.05, 3.65.

Table 1: Estimated parameters of the Lindley, Quasi Lindley and McQL distribution
for the breaking stress of carbon fibres (in Gba).

Model Parameter Estimate Standard Error −ℓ(·;x)
Lindley θ̂ = 0.617 0.045 181.753
Quasi-Lindley α̂ = −0.378 0.033 149.155

θ̂ = 0.995 0.079
McDonald α̂ = 0.445 3.322 141.251

Quasi-Lindley θ̂ = 0.666 1.324
â = 0.414 1.576

b̂ = 5.213 15.910
ĉ = 6.890 34.615

The variance covariance matrix of the MLEs under the McDonald Quasi Lindley
distribution is computed as

I(θ̂)−1 =


11.042 1.194 −1.607 −15.54 65.167
1.194 1.753 −2.058 −20.853 43.134
−1.607 −2.058 2.486 24.042 −52.225
−15.545 −20.853 24.042 253.142 −510.843
65.167 43.134 −52.225 −510.843 1198.209

 .

Thus, the variances of the MLE of θ, α, a, b and c is var(θ̂) = 11.042, var(α̂) =
1.753, var(â) = 2.486, var(b̂) = 253.142 and var(ĉ) = 1198.209. Therefore, 95%
confidence intervals for θ, α, a, b and c are [0, 6.958], [−1, 3.261], [0, 3.505], [0, 36.398]
and [0, 74.735] respectively. The LR test statistic to test the hypotheses H0 : a =
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b = c = 1 versus H1 : a ̸= 1 ∨ b ̸= 1 ∨ c ̸= 1 is ω = 15.808 > 7.815 = χ2
3;0.05, so we

reject the null hypothesis.

Table 2: Criteria for comparison.

Model −2ℓ AIC AICC
Lindley 363.506 365.506 365.546
Quasi Lindley 298.31 302.31 302.433
McQL 282.502 292.502 293.102

In order to compare the two distribution models, we consider criteria like −2ℓ,
AIC (Akaike information criterion)and AICC (corrected Akaike information crite-
rion) for the data set. The better distribution corresponds to smaller −2ℓ, AIC and
AICC values:‘

AIC = 2k − 2ℓ , andAICC = AIC +
2k(k + 1)

n− k − 1
,

where k is the number of parameters in the statistical model, n the sample size
and ℓ is the maximized value of the log-likelihood function under the considered
model. Also, here for calculating the values of KS we use the sample estimates of
θ, α, a, b and c. Table 1 shows the MLEs under both distributions, Table 2 shows
the values of −2ℓ, AIC and AICC values. The values in Table 2 indicate that the
McQL distribution leads to a better fit than the quasi Lindley distribution.

A density plot compares the fitted densities of the models with the empirical
histogram of the observed data (Fig. 4). The fitted density for the McQL model is
closer to the empirical histogram than the fits of the QL and Lindley sub-models.

7. Conclusion

Here we propose a new model, the so-called the McDonald Quasi Lindley distribu-
tion which extends the quasi Lindley distribution in the analysis of data with real
support. An obvious reason for generalizing a standard distribution is because the
generalized form provides larger flexibility in modeling real data. We derive expan-
sions for the mean, variance, moments and for the moment generating function. The
estimation of parameters is approached by the method of maximum likelihood, also
the information matrix is derived. We consider the likelihood ratio statistic to com-
pare the model with its baseline model. An application of the McQL distribution
to real data show that the new distribution can be used quite effectively to provide
better fits than Lindley and quasi Lindley distribution.
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breaking stress of carbon fibres (in Gba) data
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Figure 4: Estimated densities of the models for breaking stress of carbon fibres (in
Gba).
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