SOME NEW DISTORTION THEOREMS FOR STARLIKE HARMONIC FUNCTIONS OF ORDER ALPHA

H. E. Özkan Uçar, M. Aydoğan, Y. PolatoğLu

Abstract. Let $f(z)=h(z)+\overline{g(z)}$ where $h(z)$ and $g(z)$ are analytic functions in \mathbb{U}. If $f(z)$ satisfies the condition $\left(\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}\right)>0$, then $f(z)$ is called sense-preserving harmonic univalent function and denoted by \mathcal{S}_{H}. We also note that $f(z)=h(z)+\overline{g(z)} \in \mathcal{S}_{H}$ if and only if $g^{\prime}(z)=\omega(z) h^{\prime}(z)$ where $\omega(z)$ is second dilatation of $f(z)$. Moreover, let $H(\mathbb{U})$ be the linear space of all analytic functions defined on the simply connected domain $\mathbb{U} \subset \mathbb{C}$. A log-harmonic mapping F is a solution of the non-linear elliptic partial differential equation $\frac{\bar{F}_{\bar{z}}}{\bar{F}}=\omega_{1}(z) \frac{F_{z}}{F}$, where the second dilatation function $\omega_{1}(z) \in H(\mathbb{U})$ is such that $\left|\omega_{1}(z)\right|<1$ for all $z \in \mathbb{U}$. It has been shown that if F is non-vanishing log-harmonic mapping, then F can be expressed on $F=H(z) \overline{G(z)}$, where $H(z)$ and $G(z)$ are analytic functions in \mathbb{U} with the normalization $H(0)=G(0)=1$, and the class of non-vanishing log-harmonic functions is denoted by $\mathcal{S}_{L H}^{*}$.
The aim of this paper is to give the relation between the classes \mathcal{S}_{H}^{*} and $\mathcal{S}_{L H}^{*}$ the new distortion theorems of starlike harmony univalent functions of LH order α.

2010 Mathematics Subject Classification: 30C45.
Keywords: Harmonic functions, Log-harmonic functions, Univalent functions, Distortion theorem.

1. Introduction

Let $\mathcal{S}^{*}(\alpha)$ denote the class of functions $s(z)=z+a_{2} z^{2}+\ldots$ which are analytic in the open unit disc $\mathbb{U}=\{z:|z|<1\}$ and satisfy

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{s^{\prime}(z)}{s(z)}\right)>\alpha \tag{1}
\end{equation*}
$$

for all $z \in \mathbb{U}$.

Next, let Ω be the family of functions $\phi(z)$ which are analytic in \mathbb{U} and satisfy the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{U}$. Let \mathcal{P} denote the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ which are regular and satisfy the conditions $\operatorname{Re} p(z)>\alpha, p(0)=1$ for all $z \in \mathbb{U}$, and we note that $p(z) \in \mathcal{P}$ if and only if

$$
\begin{equation*}
p(z)=\frac{1+(1-2 \alpha) \phi(z)}{1-\phi(z)} \tag{2}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{U}$, see [4].
Moreover, let $f_{1}(z)=z+d_{2} z^{2}+\ldots$ and $f_{2}(z)=z+e_{2} z^{2}+\ldots$ be analytic functions in \mathbb{U}. If there exists a function $\phi(z) \in \Omega$ such that $f_{1}(z)=f_{2}(\phi(z))$, we then say that $f_{1}(z)$ is subordinate to $f_{2}(z)$ and we write $f_{1}(z) \prec f_{2}(z)$.

Finally, a function f is said to be a complex valued harmonic function in \mathbb{U} if both $\operatorname{Re} f$ and $\operatorname{Im} f$ are real harmonic in \mathbb{U}. Every such f can be uniquely represented by $f=h(z)+\overline{g(z)}$, where $h(z)$ and $g(z)$ are analytic with the normalization $h(0)=g(0)=0, h^{\prime}(0)=1$. A complex-valued harmonic function f which is not identically constant and satisfies $f=h(z)+g(z)$ is said to be sense-preserving in \mathbb{U} if it satisfies the equation

$$
\begin{equation*}
g^{\prime}(z)=\omega(z) h^{\prime}(z) \tag{3}
\end{equation*}
$$

where $\omega(z)$ is analytic in \mathbb{U} with $|\omega(z)|<1$ for every $z \in \mathbb{U}$ and $\omega(z)$ is called the second dilatation of f. The Jacobian of f is defined by

$$
\begin{equation*}
J_{f(z)}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2} \tag{4}
\end{equation*}
$$

Let $H(\mathbb{U})$ be the linear space of all analytic functions defined on the open unit disc \mathbb{U}. A log-harmonic mapping F is the solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{F_{z}}{F}=\omega(z) \frac{F_{z}}{F} \tag{5}
\end{equation*}
$$

where $\omega(z)$ is the second dilatation of F and $\omega(z) \in H(\mathbb{U}),|\omega(z)|<1$ for every $z \in \mathbb{U}$. It has been show that if F is a non-vanishing log-harmonic function, then F can be expressed as

$$
\begin{equation*}
F=H(z) \cdot \overline{G(z)} \tag{6}
\end{equation*}
$$

where $H(z)$ and $G(z)$ are analytic in \mathbb{U} with the normalization $H(0)=G(0)=1$. The class of non-vanishing log-harmonic functions is denoted by $\mathcal{S}_{L H}^{0}$. Also,the class of log-harmonic functions is denoted by $\mathcal{S}_{L H}$. For details, see [1], [2], and [3].

In [5], Jack's lemma states that for the (non-constant) function $\omega(z)$ which is analytic in \mathbb{U} with $\omega(0)=0$, if $|\omega(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathbb{U}$,then $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right)$, where k is a real number and $k \geq 1$.
H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu - Some New Distortion Theo ...

2. Main Results

Theorem 1. $f=h(z)+\overline{g(z)} \in \mathcal{S}_{H}^{*} \Longleftrightarrow F=H(z) \overline{G(z)}=e^{h(z)+\bar{g}(z)} \in \mathcal{S}_{L H}^{0}$.
Proof. Let $f=h(z)+\overline{g(z)} \in \mathcal{S}_{H}$. Then we have

$$
\begin{equation*}
\omega(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)} \tag{7}
\end{equation*}
$$

Now we define the function

$$
\left\{\begin{array}{l}
H(z)=e^{h(z)} \tag{8}\\
G(z)=e^{g(z)}
\end{array} \quad \Longrightarrow F=H(z) \cdot \overline{G(z)}=e^{h(z)+\overline{g(z)}}\right.
$$

then we have

$$
\begin{gather*}
\left\{\begin{array}{l}
\log H(z)=h(z) \Longrightarrow h^{\prime}(z)=\frac{H^{\prime}(z)}{H(z)} \\
\log G(z)=g(z) \Longrightarrow g^{\prime}(z)=\frac{G^{\prime}(z)}{H^{\prime}(z)}
\end{array}\right. \tag{9}\\
\left\{\begin{array}{l}
H(0)=e^{h(0)}=e^{0}=1 \\
G(0)=e^{g(0)}=e^{0}=1
\end{array}\right. \tag{10}\\
\omega(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{G^{\prime}(z) / G(z)}{H^{\prime}(z) / H(z} \Longleftrightarrow \frac{H(0) \overline{G(0)}=1,}{\bar{F}}=\omega(z) \frac{F_{z}}{F} . \tag{11}
\end{gather*}
$$

Therefore, $F=H(z) \overline{G(z)} \in \mathcal{S}_{L H}^{0}$.
Conversely, let $F=H(z) \overline{G(z)} \in \mathcal{S}_{L H}^{0}$. Then we define the following functions

$$
\left\{\begin{array}{l}
\log H(z)=h(z) \tag{12}\\
\log G(z)=g(z)
\end{array}\right.
$$

Then,

$$
\left\{\begin{array}{l}
h(0)=\log H(0)=\log 1=0 \\
g(0)=\log G(0)=\log 1=0
\end{array}\right.
$$

$h(z)$ and $g(z)$ are analytic in \mathbb{U} and also we have (11). Using (9) in (11) we obtain $\omega(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}$ this shows that $f=h(z)+g(z) \in \mathcal{S}_{H}$.

Lemma 2. The starlike condition of $F=H(z) \cdot \overline{G(z)}=e^{h(z)+\overline{g(z)}}$ is

$$
\begin{equation*}
\operatorname{Re}\left(z h^{\prime}(z)-z g^{\prime}(z)\right)>0 \tag{13}
\end{equation*}
$$

H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu - Some New Distortion Theo ...

Proof.

$$
\begin{aligned}
& F=H(z) \cdot \overline{G(z)}=e^{h(z)+\overline{g(z)}} \\
& \Rightarrow F_{z}=h^{\prime}(z) \cdot e^{h(z)+\overline{g(z)}} \Rightarrow z F_{z}=z h^{\prime}(z) \cdot e^{h(z)+\overline{g(z)}} \\
& F_{\bar{z}}=\overline{g^{\prime}(z)} \cdot e^{h(z)+\overline{g(z)}} \Rightarrow \bar{z} \Rightarrow F_{\bar{z}}=\bar{z} \overline{g^{\prime}(z)} e^{h(z)+\overline{g(z)}} \\
& \Rightarrow \frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}=\frac{e^{h(z)+g(z)} \cdot\left[z h^{\prime}(z)-\bar{z} \overline{g^{\prime}(z)}\right]}{e^{h(z)+\overline{g(z)}}=z h^{\prime}(z)-\bar{z} \overline{g^{\prime}(z)}} \\
& \Rightarrow \operatorname{Re}\left(\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}\right)=\operatorname{Re}\left(z h^{\prime}(z)-\bar{z} \overline{g^{\prime}(z)}\right)=\operatorname{Re}\left(z h^{\prime}(z)-z g^{\prime}(z)\right)>0 .
\end{aligned}
$$

Lemma 3. Let $f=h(z)+\overline{g(z)}$ be an element of \mathcal{S}_{H}^{*}. Then,

$$
\begin{equation*}
\operatorname{Re}\left(z h^{\prime}(z)-z g^{\prime}(z)\right)=r \frac{\partial}{\partial r} \log \left|e^{h(z)-\overline{g(z)}}\right| \tag{14}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& e^{h\left(r e^{i \theta}\right)-\overline{g\left(r e^{i \theta}\right)}}=\left|e^{h\left(r e^{i \theta}\right)-g\left(r e^{i \theta}\right)}\right| e^{i \theta} \\
& \Rightarrow \log \left(e^{\left.h\left(r e^{i \theta}\right)-\overline{g\left(r e^{i \theta}\right.}\right)}=\log \left|e^{h\left(r e^{i \theta}\right)}-\overline{g\left(r e^{i \theta}\right)}\right| e^{i \theta}\right. \\
& \Rightarrow h\left(r e^{i \theta}\right)-\overline{g\left(r e^{i \theta}\right.}=\log \left|e^{h\left(r e^{i \theta}\right)}-\overline{g\left(r e^{i \theta}\right)}\right|+i \theta \log e=\log \left|e^{\left.h\left(r e^{i \theta}\right)-\overline{g\left(r e^{i \theta}\right.}\right)}\right|+i \theta \\
& \Rightarrow e^{i \theta} \cdot h^{\prime}\left(r e^{i \theta}\right)-\overline{e^{i \theta} \cdot g\left(r e^{i \theta}\right)}=\frac{\partial}{\partial r} \log \left|e^{h\left(r e^{i \theta}\right)-\overline{g\left(r e^{i \theta}\right)}}\right| \\
& \Rightarrow r e^{i \theta} \cdot h^{\prime}\left(r e^{i \theta}\right)-\overline{r e^{i \theta} \cdot g^{\prime}\left(r e^{i \theta}\right)}=r \frac{\partial}{\partial r} \log \left|e^{h\left(r e^{i \theta}\right)-\overline{g\left(r e^{i \theta}\right)}}\right| \\
& \Rightarrow z h^{\prime}(z)-\overline{z g^{\prime}(z)}=r \frac{\partial}{\partial r} \log \left|e^{h(z)-\overline{g(z)}}\right| \\
& \Rightarrow \operatorname{Re}\left(z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)=r \frac{\partial}{\partial r} \log \left|e^{h(z)-\overline{g(z)}}\right| \\
& \Rightarrow \operatorname{Re}\left(z h^{\prime}(z)-z g^{\prime}(z)\right)=r \frac{\partial}{\partial r} \log \left|e^{h(z)-\overline{g(z)}}\right| .
\end{aligned}
$$

Theorem 4. Let $f=h(z)+g(z)$ be an element of \mathcal{S}_{H}^{*}. The function f satisfies the condition

$$
\begin{equation*}
z h^{\prime}(z)-z g^{\prime}(z) \prec \frac{2(1-\alpha) z}{1-z} \tag{15}
\end{equation*}
$$

if and only if $F=z e^{h(z)+\overline{g(z)}} \in \mathcal{S}_{L H}^{*}(\alpha)$.

Proof. Let f satisfies (15). We define the function $\phi(z) \in \Omega$ by

$$
\begin{equation*}
e^{h(z)-g(z)}=(1-\phi(z))^{-2(1-\alpha)}, \tag{16}
\end{equation*}
$$

where $(1-\phi(z))^{-2(1-\alpha)}$ has the value 1 at $z=0$ (we consider the corresponding Riemann branch). Then $\phi(z)$ is analytic and $\phi(0)=0$. If we take the logarithmic derivative of (16) and after the brief calculations we get

$$
h^{\prime}(z)-g^{\prime}(z)=\frac{-2(1-\alpha)\left(-\phi^{\prime}(z)\right)}{1-\phi(z)}
$$

and then

$$
\begin{equation*}
z h^{\prime}(z)-z g^{\prime}(z)=\frac{2(1-\alpha) z \phi^{\prime}(z)}{1-\phi(z)} \tag{17}
\end{equation*}
$$

On the other hand, the function $w:=\frac{2(1-\alpha) z}{1-z}$ maps $|z|=r$ onto the circle with the radius $\rho=\rho(r)=\frac{2(1-\alpha) r}{1-r^{2}}$ and the center $c=c(r)=\left(\frac{2(1-\alpha) r^{2}}{1-r^{2}}, 0\right)$. Now it is easy to realize that the subordination (15) is equivalent to $|\phi(z)|<1$ for all $z \in \mathbb{U}$. Indeed, let us assume to the contrary. Then there is a $z_{1} \in \mathbb{U}$ such that $\left|\phi\left(z_{1}\right)\right|=1$. By Jack?s Lemma, $z_{1} \phi^{\prime}\left(z_{1}\right)=k \phi\left(z_{1}\right)$ for some $k \geq 1$,so for such z_{1} we have

$$
z_{1} h^{\prime}\left(z_{1}\right)-z_{1} g^{\prime}\left(z_{1}\right)=\frac{2(1-\alpha) k \phi\left(z_{1}\right)}{1-\phi\left(z_{1}\right)}=k w\left(\phi\left(z_{1}\right)\right) \notin \mathcal{S}(\mathbb{U})
$$

but this contradicts to (15); so our assumption is wrong, i.e., $|\phi(z)|<1$ for every $z \in \mathbb{U}$. By using the condition (15) we get

$$
\begin{equation*}
1+z h^{\prime}(z)-z g^{\prime}(z)=\frac{1+(1-2 \alpha) \phi(z)}{1-\phi(z)} \tag{18}
\end{equation*}
$$

On the other hand, using Theorem 1, Lemma 2, and Lemma 3 and after simple calculations we get

$$
\begin{gathered}
F=z H(z) \cdot \overline{G(z)}=z e^{h(z)+\overline{g(z)}} \in \mathcal{S}_{L H}^{*} \\
\Rightarrow \log F=\log z+\log H(z)+\log \overline{G(z)}=\log z+\log h(z)+\log \overline{g(z)} \\
\Rightarrow\left\{\begin{array}{l}
\frac{F_{z}}{F}=\frac{1}{z}+\frac{H^{\prime}(z)}{H(z)}=\frac{1}{z}+h^{\prime}(z) \Rightarrow \frac{z F_{z}}{F}=1+z \frac{H^{\prime}(z)}{H(z)}=1+z h^{\prime}(z) \\
\frac{F_{\bar{z}}}{F}=\frac{\overline{G^{\prime}(z)}}{G(z)}=\overline{g^{\prime}(z)} \Rightarrow \frac{\bar{z} F_{\bar{z}}}{F}=\bar{z} \frac{\overline{G^{\prime}(z)}}{\overline{G(z)}}=\bar{z} \overline{g^{\prime}(z)}
\end{array}\right.
\end{gathered}
$$

H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu - Some New Distortion Theo ...

$$
\begin{equation*}
\Rightarrow \operatorname{Re}\left(\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}\right)=\operatorname{Re}\left(1+z \frac{H^{\prime}(z)}{H(z)}-\bar{z} \frac{\overline{G^{\prime}(z)}}{\overline{G(z)}}\right)=\operatorname{Re}\left(1+z h^{\prime}(z)-\bar{z} \overline{g^{\prime}(z)}\right) . \tag{19}
\end{equation*}
$$

Considering (18) and (19) together we obtain the desired result.
For the converse, let $F=z e^{h(z)+\overline{g(z)}}$ be an element of $\mathcal{S}_{L H}^{*}(\alpha)$. It follows that $\operatorname{Re}\left(\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}\right)>\alpha$ and

$$
\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}=\frac{1+(1-2 \alpha) \phi(z)}{1-\phi(z)}
$$

On the other hand,

$$
\begin{gathered}
\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}=1+z h^{\prime}(z)-\bar{z} g^{\prime}(z) \\
\Rightarrow \operatorname{Re}\left(\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}\right)=\operatorname{Re}\left(1+z h^{\prime}(z)-\bar{z} \overline{g^{\prime}(z)}\right)>\alpha \\
\Rightarrow 1+z h^{\prime}(z)-z g^{\prime}(z)=\frac{1+(1-2 \alpha) \phi(z)}{1-\phi(z)} \\
\Rightarrow z h^{\prime}(z)-z g^{\prime}(z)=\frac{2(1-\alpha) \phi(z)}{1-\phi(z)} .
\end{gathered}
$$

This shows that $z h^{\prime}(z)-z g^{\prime}(z) \prec \frac{2(1-\alpha) z}{1-z}$.
Theorem 5. Let $f(z)=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{H}^{*}(\alpha)$. Then,

$$
\frac{(1+r)^{2 \alpha-3}}{r(1-r)} \leq\left|e^{h(z)-\overline{g(z)}}\right| \leq \frac{(1-r)^{2 \alpha-3}}{r(1+r)} .
$$

This inequality is sharp because if we consider the following simple calcula??tions

$$
\begin{aligned}
& h(z)-g(z)=\log (1-z)^{-2(1-\alpha)} \\
& \Longrightarrow h(z)-g(z)=-2(1-\alpha) \log (1-z) \\
& \Longrightarrow h^{\prime}(z)-g^{\prime}(z)=\frac{2(1-\alpha)}{1-z} \\
& \Longrightarrow z h^{\prime}(z)-z g^{\prime}(z)=\frac{2(1-\alpha) z}{1-z} \\
& \Longrightarrow 1+z h^{\prime}(z)-z g^{\prime}(z)=1+\frac{2(1-\alpha) z}{1-z}=\frac{1+(1-2 \alpha) z}{1-z}
\end{aligned}
$$

H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu - Some New Distortion Theo ...
then the extremal function is the solution of the following differential equation

$$
\begin{aligned}
h(z)-g(z) & =\log (1-z)^{-2(1-\alpha)} \\
g_{\bar{z}} & =\bar{f}_{z}-\bar{h}_{z}=0 .
\end{aligned}
$$

Proof. The set of the values of the function $\frac{2(1-\alpha) z}{1-z}$ is the closed disc with the center c and the radius ρ, where

$$
c=c(r)=\left(\frac{? ? 2(1-\alpha) r^{2}}{1-r^{2}}, 0\right), \quad \rho=\rho(r)=\frac{2(1-\alpha) r}{1-r^{2}} .
$$

Using the subordination, we can write

$$
\begin{gather*}
\left|\left(z h^{\prime}(z)-z g^{\prime}(z)+1\right)-\frac{2(1-\alpha) r^{2}}{1-r^{2}}\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow\left|\left(z h^{\prime}(z)-z g^{\prime}(z)\right)+1-\frac{2(1-\alpha) r^{2}}{1-r^{2}}\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow\left|\left(z h^{\prime}(z)-z g^{\prime}(z)\right)-\left(\frac{2(1-\alpha) r^{2}}{1-r^{2}}-1\right)\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow\left|\left(z h^{\prime}(z)-z g^{\prime}(z)\right)-\left(\frac{2(1-\alpha) r^{2}-1+r^{2}}{1-r^{2}}-1\right)\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow\left|\left(z h^{\prime}(z)-z g^{\prime}(z)\right)-\left(\frac{(2(1-\alpha)+1) r^{2}-1}{1-r^{2}}-1\right)\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow\left|\left(z h^{\prime}(z)-z g^{\prime}(z)\right)-\left(\frac{(3-2 \alpha) r^{2}-1}{1-r^{2}}-1\right)\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\quad-\frac{2(1-\alpha) r}{1-r^{2}} \leq-\left|\left(z h^{\prime}(z)-z g^{\prime}(z)\right)-\left(\frac{(3-2 \alpha) r^{2}-1}{1-r^{2}}-1\right)\right| \\
\leq \operatorname{Re}\left[\left(z h^{\prime}(z)-z g^{\prime}(z)\right)-\frac{(3-2 \alpha) r^{2}-1}{1-r^{2}}\right] \\
\left|\left(z h^{\prime}(z)-z g^{\prime}(z)\right)-\left(\frac{(3-2 \alpha) r^{2}-1}{1-r^{2}}-1\right)\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow-\frac{2(1-\alpha) r}{1-r^{2}} \leq \operatorname{Re}\left[z h^{\prime}(z)-z g^{\prime}(z)\right]-\frac{(3-2 \alpha) r^{2}-1}{1-r^{2}} \leq \frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow \frac{(3-2 \alpha) r^{2}-1}{1-r^{2}}-\frac{2(1-\alpha) r}{1-r^{2}} \leq \operatorname{Re}\left[z h^{\prime}(z)-z g^{\prime}(z)\right] \leq \frac{(3-2 \alpha) r^{2}-1}{1-r^{2}}+\frac{2(1-\alpha) r}{1-r^{2}} \\
\Rightarrow \frac{(3-2 \alpha) r^{2}-2(1-\alpha) r-1}{1-r^{2}} v \leq \operatorname{Re}\left[z h^{\prime}(z)-z g^{\prime}(z)\right] \leq \frac{(3-2 \alpha) r^{2}+2(1-\alpha) r-1}{1-r^{2}} \tag{20}
\end{gather*}
$$

H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu - Some New Distortion Theo ...

On the other hand, from Lemma 3 we have

$$
\begin{equation*}
\operatorname{Re}\left[z h^{\prime}(z)-z g^{\prime}(z)\right]=r \frac{\partial}{\partial r} \log \left|e^{h(z)-\overline{g(z)}}\right| . \tag{21}
\end{equation*}
$$

Considering (20) and (21) together, then the inequality (20) can be written in the following form

$$
\begin{gather*}
\frac{(3-2 \alpha) r^{2}-2(1-\alpha) r-1}{1-r^{2}} \leq r \frac{\partial}{\partial r} \log \left|e^{h(z)-\overline{g(z)}}\right| \leq \frac{(3-2 \alpha) r^{2}+2(1-\alpha) r-1}{1-r^{2}} \\
\frac{(3-2 \alpha) r^{2}-2(1-\alpha) r-1}{r\left(1-r^{2}\right)} \leq \frac{\partial}{\partial r} \log \left|e^{h(z)-\overline{g(z)}}\right| \leq \frac{(3-2 \alpha) r^{2}+2(1-\alpha) r-1}{r\left(1-r^{2}\right)} \tag{22}
\end{gather*}
$$

Since

$$
\frac{(3-2 \alpha) r^{2}-2(1-\alpha) r-1}{r\left(1-r^{2}\right)}=-\frac{1}{r}+\frac{1}{1-r}+\frac{2 \alpha-3}{1+r},
$$

It follows that

$$
\begin{equation*}
\int \frac{(3-2 \alpha) r^{2}-2(1-\alpha) r-1}{r\left(1-r^{2}\right)} d r=\log \frac{(1+r)^{2 \alpha-3}}{r(1+r)} \tag{23}
\end{equation*}
$$

Similarly, since

$$
\frac{(3-2 \alpha) r^{2}+2(1-\alpha) r-1}{r\left(1-r^{2}\right)}=-\frac{1}{r}-\frac{1}{1-r}+\frac{3-2 \alpha}{1-r},
$$

it follows that

$$
\begin{equation*}
\int \frac{(3-2 \alpha) r^{2}+2(1-\alpha) r-1}{r\left(1-r^{2}\right)} d r=\log \frac{(1-r)^{2 \alpha-3}}{r(1+r)} . \tag{24}
\end{equation*}
$$

Considering (22), (23), (24) and integrating both sides of (22) we obtain

$$
\frac{(1+r)^{2 \alpha-3}}{r(1-r)} \leq \leq\left|e^{h(z)-\overline{g(z)}}\right| \leq \frac{(1-r)^{2 \alpha-3}}{r(1+r)}
$$

Corollary 6. Let $f(z)=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{H}^{*}(\alpha)$. Then,

$$
\left|\left(e^{h(z)-g(z)}\right)^{\frac{1}{2(1-\alpha)}}-1\right|<1 .
$$

This inequality is the Marx-Strohhacker inequality [4] for the starlike har- monic univalent functions of order α.
H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu - Some New Distortion Theo ...

Proof. Using Theorem 4, we have

$$
e^{h(z)-g(z)}=(1-\phi(z))^{-2(1-\alpha)} .
$$

This equality shows that

$$
e^{h(z)-g(z)}=\frac{1}{(1-\phi(z))^{-2(1-\alpha)}} \Rightarrow\left|\left(e^{h(z)-g(z)}\right)^{\frac{1}{2(1-\alpha)}}-1\right|=|-\phi(z)|<1
$$

Corollary 7. Let $f(z)=h(z)+\overline{g(z)}$ be an element of $\mathcal{S}_{H}^{*}(\alpha)$. Then,

$$
\left|h^{\prime}(z)-g^{\prime}(z)\right|<\frac{2(1-\alpha)}{1-r}
$$

Proof. Let $s(z):=\left(e^{h(z)-g(z)}\right)^{\frac{1}{2(1-\alpha)}}-1$. Then by Corollary 7 and (16), we have $s(0)=0,|s(z)|<1$ and $s(z)=z \phi(z)$. Since

$$
z \phi(z)=\left(e^{h(z)-g(z)}\right)^{\frac{1}{2(1-\alpha)}}-1
$$

?we have

$$
h(z)-g(z)=2(1-\alpha) \log (1+z \phi(z)) .
$$

So,

$$
h^{\prime}(z)-g^{\prime}(z)=\frac{2(1-\alpha)\left(\phi(z)+z \phi^{\prime}(z)\right)}{1+z \phi(z)}
$$

and hence

$$
\left|h^{\prime}(z)-g^{\prime}(z)\right| \leq \frac{2(1-\alpha)}{1-r}
$$

Acknowledgements The work presented here was partially supported by Işık University Scientific Research Funding Agency under Grant Number: BAP-14B102.

References

[1] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mapping of order α, JIPAM, Vol. 7, issue 4 Article 123 (2006).
[2] Z. Abdulhadi and D. Bshouty, Univalent functions $H \cdot \bar{H}(D)$., Trans. Amer. MAth. Soc., 305(1988), 841-849.
H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu - Some New Distortion Theo ...
[3] P. Duren, Harmonic Mappings in the Plane, Vol. 156 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge UK, (2004).
[4] A. W. Goodman, Univalent Functions, Volume I, Mariner publishing Company INC, Tampa Florida, (1983).
[5] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3, (1971), 369-374.
H. Esra Özkan Uçar

Department of Mathematics and Computer Science
İstanbul Kültür University,
İstanbul, Turkey
email: e.ozkan@iku.edu.tr
Melike Aydoğan
Department of Mathematics, Işık University,
İstanbul, Turkey
email: melike.aydogan@isikun.edu.tr
Yaşar Polatoğlu
Department of Mathematics and Computer Science
İstanbul Kültür University,
İstanbul, Turkey
email: y.polatoglu@iku.edu.tr

