A SANDWICH THEOREM ON THE ϕ-LIKE FUNCTIONS INVOLVING $I_{N} \star \mathcal{L}_{C}(A, B)$ OPERATOR

A. Shokri, M. Heydari, A. A. Shokri, A. Rahimi, F. Pashaie

Abstract

In this paper, we introduce a new convolution operator $I_{n} \star \mathcal{L}_{c}(a, b)$. Several subordination and superordination results involving this operator are proved.

2010 Mathematics Subject Classification: 30C45.
Keywords: Analytic functions, Hadamard product (or Convolution), Subordination and superordination between analytic functions.

1. Introduction

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U:=\{z: \quad z \in \mathbb{C}$ and $|z|<1\}$. Let $H(U)$ be the linear space of all analytic functions in U. For a positive integer number n and $a \in \mathbb{C}$, we let

$$
H[a, n]:=\left\{f \in H(U): f(z)=a+\sum_{k=n}^{\infty} a_{k} z^{k}\right\} .
$$

Let $f, g \in A$, where f is given by (1) and g is defined by

$$
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} .
$$

Then the Hadamard product (or convolution) $f \star g$ of the functions f and g is defined by

$$
(f \star g)(z):=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g \star f)(z) .
$$

For two functions f and g, analytic in U, we say that the function f is subordinate to g in U, and we denote it by $f(z) \prec g(z)$, if there exists a Schwarz function w, which is analytic in U with $w(0)=0$ and $|w(z)|<1$ for $(z \in U)$, such that [1-15]

$$
f(z)=g(w(z)), \quad(z \in U)
$$

Indeed, it is known that

$$
f(z) \prec g(z) \quad \Rightarrow \quad f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U) .
$$

Furthermore, if the function g is univalent in U, then we have the following equivalence:

$$
f(z) \prec g(z) \quad \Leftrightarrow \quad f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U) .
$$

Let $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the differential subordination $\varphi\left(p(z), z p^{\prime}(z)\right) \prec h(z)$ then p is called a solution of the differential subordination [12-18]. The univalent function q is called a dominant of the solutions of the differential subordination, $p \prec q$. If p and $\varphi\left(p(z), z p^{\prime}(z)\right)$ are univalent in U and satisfy the differential superordination $h(z) \prec \varphi\left(p(z), z p^{\prime}(z)\right)$ then p is called a solution of the differential superordination. An analytic function q is called subordinant of the solution of the differential superordination if $q \prec p$ [19-26].

Denote by $D^{\alpha}: A \rightarrow A$ the operator defined by

$$
D^{\alpha} f(z):=\frac{z}{(1-z)^{\alpha+1}} \star f(z), \quad \alpha>-1,
$$

where (\star) refers to the Hadamard product or convolution. Then implies that

$$
D^{n} f(z)=\frac{z\left(z^{n-1} f^{(n)}(z)\right)}{n!}, \quad n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
$$

We note that $D^{0} f(z)=f(z)$ and $D^{\prime} f(z)=z f^{\prime}(z)$. The operator $D^{n} f$ is called Ruscheweyh derivative of n'th order of f [27-29]. Ali et al [2,3] defined and studied an integral operator $I_{n}: A \rightarrow A$ analogous to $D^{n} f$ as follows: Let $f_{n}(z)=\frac{z}{(1-z)^{n+1}}$, $n \in \mathbb{N}_{0}$ and let $f_{n}^{(-1)}$ be defined such that

$$
\begin{equation*}
f_{n}(z) \star f_{n}^{(-1)}(z)=\frac{z}{(1-z)} . \tag{2}
\end{equation*}
$$

Then

$$
I_{n} f(z)=f_{n}(z) \star f_{n}^{(-1)}(z)=\left[\frac{z}{(1-z)^{n+1}}\right]^{(-1)} \star f(z)
$$

Note that $I_{0} f(z)=z f^{\prime}(z)$ and $I_{1} f(z)=f(z)$. The operator I_{n} is called the Noor Integral of n'th order of f. Using (1), (2) and a well-known identity for $D^{n} f$, we have

$$
\begin{equation*}
(n+1) I_{n} f(z)-n I_{n+1}(z)=z\left(I_{n+1} f(z)\right)^{\prime} . \tag{3}
\end{equation*}
$$

Using hypergeometric functions ${ }_{2} F_{1}$, (2) becomes

$$
I_{n} f(z)=\left[z_{2} F_{1}(1,1 ; n+1, z)\right] \star f(z)
$$

where ${ }_{2} F_{1}(a, b ; c, z)$ is defined by

$$
{ }_{2} F_{1}(a, b ; c, z)=1+\frac{a b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\cdots
$$

For two functions $f_{j}(z),(j=1,2)$, given by

$$
f_{j}(z)=z+\sum_{k=2}^{\infty} a_{k j} z^{k}, \quad(j=1,2)
$$

In terms of the Pochhammer symbol (or the shifted factorial), define $(k)_{n}$ by $(k)_{0}=$ 1 , and $(k)_{n}=k(k+1)(k+2) \cdots(k+n-1),(n \in \mathbb{N})$, and then define a function $\phi_{c}(a, b)$ by

$$
\begin{equation*}
\phi_{c}(a, b)=1+\sum_{n=1}^{\infty}\left(\frac{c}{c+n}\right) \frac{(a)_{n}}{(b)_{n}} \tag{4}
\end{equation*}
$$

where $a \in \mathbb{R}, b \in \mathbb{R} \mathbb{Z}_{0}^{-} ; c \in \mathbb{C} \mathbb{Z}_{0}^{-},\left(\mathbb{Z}_{0}^{-}:=\{0,-1,-2, \ldots\}\right)$. Corresponding to the function $\phi_{c}(a, b)$, given by (1), we introduce the following convolution operator,

$$
\begin{equation*}
\mathcal{L}_{c}(a, b)=\phi_{c}(a, b) \star\left(\frac{f(z)}{z}\right), \quad(f \in A) \tag{5}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
Z\left(\phi_{c}(a, b)\right)^{\prime}=a \phi_{c}(a+1, b)-a \phi_{c}(a, b) \tag{6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
Z\left(\mathcal{L}_{c}(a, b) f\right)^{\prime}(z)=a \mathcal{L}_{c}(a+1, b) f(z)-a \mathcal{L}_{c}(a, b) f(z) \tag{7}
\end{equation*}
$$

we define the Hadamard product (or convolution) of $I_{n} f(z)$ and $\mathcal{L}_{c}(a, b) f(z)$ by

$$
\begin{align*}
I_{n} f(z) \star \mathcal{L}_{c}(a, b) f(z) & =\left[\frac{z}{(1-z)^{n+1}}\right]^{(-1)} \star f(z) \star \phi_{c}(a, b) \star \frac{f(z)}{z} \\
& =\left(\frac{f(z)}{z}\right)^{2}(1-z)^{n+1} \star \phi_{c}(a, b) \\
& =\left[\left(\frac{f(z)}{z}\right)^{2}(1-z)^{n+1}\right]\left[1+\sum_{n=1}^{\infty}\left(\frac{c}{c+n}\right) \frac{(a)_{n}}{(b)_{n}}\right] \tag{8}
\end{align*}
$$

Furthermore, we have

$$
\frac{z\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) f(z)\right]^{\prime}}{\phi\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) f(z)\right]}=(n+1)(c+1) \frac{z\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]^{\prime}}{\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]}-(n+1)(c+1) .
$$

Definition 1. Let ϕ be an analytic function in a domain containing $f(U), \phi(0)=0$ and $\phi^{\prime}(0)>0$. The function $\left[I_{n} \star \mathcal{L}_{c}(a, b) f\right] \in A$ is called ϕ-like if

$$
\begin{equation*}
\operatorname{Re} \frac{z\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]^{\prime}}{\phi\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]}>0, \quad(z \in U) \tag{9}
\end{equation*}
$$

Definition 2. Let ϕ be analytic function in a domain containing $f(U), \phi(0)=0$, $\phi^{\prime}(0)=1$ and $\phi(\omega) \neq 0$ for $\omega \in f(U)-0$. Let $q(z)$ be a fixed analytic function in $U, q(0)=1$. The function $\left[I_{n} \star \mathcal{L}_{c}(a, b) f\right] \in A$ is called ϕ-like with respect to

$$
\begin{equation*}
\frac{z\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]^{\prime}}{\phi\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]} \prec q(z), \quad(z \in U) \tag{10}
\end{equation*}
$$

2. Preliminaries

To derive our main results, we need the following definitions and lemmas.
Definition 3. A function $L(z, t),(z \in U, \quad t \geq 0)$ is said to be a subordination chain if $L(0, t)$ is analytic and univalent in U for all $t \geq 0, L(z, 0)$ is continuously differentiable on $[0,1)$ for all $z \in U$ and $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for all $0 \leq t_{1} \leq t_{2}$.

Remark 1. Denote by Q the set of all functions f that are analytic and injective on $\bar{U}-E(f)$, where

$$
E(f)=\left\{\varepsilon \in \partial U: \quad \lim _{z \rightarrow \varepsilon} f(z)=\infty\right\}
$$

and such that $f^{\prime}(\varepsilon) \neq 0$ for $\varepsilon \in \partial U-E(f)$. The subclass of Q for which $f(0)=a$, $(a \in \mathbb{C})$, is denoted by $Q(a)$.

Lemma 1. The function $L(z, t): U \times[0, \infty) \rightarrow \mathbb{C}$ of the form

$$
L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\cdots, \quad\left(a_{1}(t) \neq 0 ; t \geq 0\right)
$$

and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$ is a subordination chain if and only if

$$
\operatorname{Re}\left(\frac{z \partial L / \partial z}{\partial L / \partial t}\right)>0, \quad(z \in U ; t \geq 0)
$$

A. Shokri, M. Heydari, A. A. Shokri, A. Rahimi, F. Pashaie - A sandwich ...

Proof. See [11].
Lemma 2. Suppose that the function $H: \mathbb{C}^{2} \rightarrow \mathbb{C}$ satisfies the condition $\operatorname{Re}(H(i s, t)) \leq$ 0 for all real s and for all

$$
t \leq-\frac{n\left(1+s^{2}\right)}{2}, \quad(n \in \mathbb{N})
$$

If the function

$$
p(z)=1+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots,
$$

is analytic in U and $\operatorname{Re}\left(H\left(p(z), z p^{\prime}(z)\right)>0,(z \in U)\right.$, then $\operatorname{Re}(p(z))>0,(z \in U)$.
Proof. See [11].
Lemma 3. Let $k, \gamma \in \mathbb{C}$ with $k \neq 0$ and let $h \in H(U)$ with $h(0)=c$. If $\operatorname{Re}(k h(z)+$ $\gamma)>0,(z \in U)$, then the solution of the following differential equation:

$$
q(z)+\frac{z q^{\prime}(z)}{k q(z)+\gamma}=h(z), \quad(z \in U, q(0)=c)
$$

is analytic in U and satisfies the inequality given by $\operatorname{Re}(k q(z)+\gamma)>0,(z \in U)$.
Proof. See [11].
Lemma 4. Let $p \in Q(a)$ and

$$
q(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots, \quad(q \neq a, n \in \mathbb{N}) .
$$

be analytic in U. If q is not subordinate to p, then there exists two points

$$
z_{0}=r_{0} e^{i \theta} \in U, \quad \text { and } \quad \varepsilon_{0} \in \partial U / E(f),
$$

such that $q\left(U_{r 0}\right) \subset p(U), q\left(z_{0}\right)=p\left(\varepsilon_{0}\right)$ and $z_{0} q^{\prime}\left(z_{0}\right)=m_{0} \varepsilon_{0} p^{\prime}\left(\varepsilon_{0}\right),(m \geq n)$.
Proof. See [11].
Lemma 5. Let $q \in H[a, 1]$ and $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Also set

$$
\phi\left(q(z), z q^{\prime}(z)\right) \equiv h(z), \quad(z \in U)
$$

Let

$$
L(z, t):=\phi\left(q(z), t z q^{\prime}(z)\right),
$$

be a subordination chain and $p \in H[a, 1] Q(a)$. Then $h(z) \prec \phi\left(p(z), z p^{\prime}(z)\right)$ implies that $q(z) \prec p(z)$. Furthermore, if $\phi\left(q(z), z q^{\prime}(z)\right)=h(z)$ has a univalent solution $q \in Q(a)$, then q is the best subordinate.
Proof. See [11].

3. Main Results

We begin by presenting our first subordination property given by Theorem 6, below. For convenience, let

$$
A_{0}:=\left\{f \in A:\left[I_{n} \star \mathcal{L}_{c}(a, b)\right] f(z) \neq 0, \quad(z \in U)\right\}
$$

Theorem 6. Let $f, g \in A$ and $a \in \mathbb{C}, \operatorname{Re}(n c)>0$. Further let

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)}\right)>-\delta, \quad\left(z \in U, \varphi(z):=\frac{z\left[I_{n} \star \mathcal{L}_{c}(a, b) g(z)\right]^{\prime}}{\phi\left[I_{n} \star \mathcal{L}_{c}(a, b) g(z)\right]}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta:=\frac{1+(n c)^{2}-\left|1-(n c)^{2}\right|}{4 \operatorname{Re}(n c)} \tag{12}
\end{equation*}
$$

Then the subordination

$$
\frac{z\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]^{\prime}}{\phi\left[I_{n} \star \mathcal{L}_{c}(a, b) f(z)\right]} \prec \frac{z\left[I_{n} \star \mathcal{L}_{c}(a, b) g(z)\right]^{\prime}}{\phi\left[I_{n} \star \mathcal{L}_{c}(a, b) g(z)\right]}
$$

implies that

$$
\frac{z\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) f(z)\right]^{\prime}}{\phi\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) f(z)\right]} \prec \frac{z\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) g(z)\right]^{\prime}}{\phi\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) g(z)\right]}
$$

Furthermore, the function $\frac{z\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) g(z)\right]^{\prime}}{\phi\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) g(z)\right]}$ is the best dominant.
Proof. Let the functions F, G and Q be defined by

$$
\begin{gather*}
F:=\frac{z\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) f(z)\right]^{\prime}}{\phi\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) f(z)\right]}, \quad G:=\frac{z\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) g(z)\right]^{\prime}}{\phi\left[I_{n+1} \star \mathcal{L}_{c+1}(a, b) g(z)\right]} \\
Q:=1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)} \tag{13}
\end{gather*}
$$

We assume here, without loss of generality, that G is analytic and univalent on \bar{U} and $G^{\prime}(\varepsilon) \neq 0,(|\varepsilon|=1)$. If not, then we replace F and G by $F(\rho z)$ and $G(\rho z)$, respectively, with $0<\rho<1$. These new functions have the desired properties on \bar{U}, and we can use them in the proof of our result. Therefore, the result would follow by letting $\rho \rightarrow 1$. We first show that $\operatorname{Re}(Q(z))>0,(z \in U)$. By virtue of (1) and the definitions of G, we know that

$$
\begin{equation*}
\varphi(z)=G(z)+\frac{1}{n c} z G^{\prime}(z) \tag{14}
\end{equation*}
$$

> A. Shokri, M. Heydari, A. A. Shokri, A. Rahimi, F. Pashaie - A sandwich ...

Differentiating both sides of (14) with respect to z yields

$$
\begin{equation*}
\varphi^{\prime}(z)=\left(1+\frac{1}{n c}\right) G(z)+\frac{1}{n c} z G^{\prime \prime}(z) . \tag{15}
\end{equation*}
$$

Combining (13) and (15), we easily get

$$
\begin{equation*}
1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)}=Q(z)+\frac{z Q^{\prime}(z)}{Q(z)+n c}=h(z), \quad(z \in U) . \tag{16}
\end{equation*}
$$

It follows from (11) and (16) that

$$
\begin{equation*}
\operatorname{Re}(h(z)+n c)>0, \quad(z \in U) \tag{17}
\end{equation*}
$$

Moreover, by Lemma 2.5, we conclude that the differential equation (16) has a solution $Q \in H(U)$ with $h(0)=Q(0)=1$. Let $H(u, v):=u+\frac{v}{u+n c}+\delta$, where δ is given by (12). From (16) and (17), we obtain

$$
\operatorname{Re}\left(H\left(Q(z), z Q^{\prime} z\right)\right)>0, \quad(z \in U)
$$

To verify the condition that

$$
\begin{equation*}
\operatorname{Re}(H(i s, t)) \leq 0, \quad\left(s \in \mathbb{R} ; t \leq-\frac{n\left(1+s^{2}\right)}{2}\right) \tag{18}
\end{equation*}
$$

we proceed it as follows:

$$
\operatorname{Re}(H(i s, t))=\operatorname{Re}\left(i s+\frac{t}{i s+n c}+\sigma\right)=\frac{t n}{|i s+n c|^{2}}+\sigma \leq-\frac{\psi(n, s)}{2|i s+n c|^{2}},
$$

where

$$
\begin{equation*}
\psi(n, s):=(n-2 \delta) s^{2}-4 \sigma n s-2 \sigma n^{2}+n . \tag{19}
\end{equation*}
$$

For δ given by (12), we note that the coefficient of s^{2} in the quadratic expression $\psi(n, s)$ given by (19) is positive or equal to zero. Furthermore, we observe that the quadratic expression $\psi(n, s)$ by s in (19) is a perfect square, which implies that (18) holds. Thus, by Lemma 2.4, we conclude that $\operatorname{Re}(Q(z))>0,(z \in U)$. Let $f \in H(U)$, then f is convex if and only if $f^{\prime}(0) \neq 0$ and $\operatorname{Re}\left\{1+\left(f^{\prime \prime}(z)\right) /\left(f^{\prime}(z)\right)\right\}>0$, $z \in U$. Now by the definition of Q, we know that G is convex. To prove $F \prec G$, let the function L be defined by

$$
\begin{equation*}
L(z, t):=G(z)+\frac{t}{n} z G^{\prime}(z), \quad(z \in U ; 0 \leq t<\infty) . \tag{20}
\end{equation*}
$$

Since G is convex and $n>0$, then

$$
\left.\frac{\partial L(z, t)}{\partial z}\right|_{z=0}=G^{\prime}(0)\left(1+\frac{t}{n}\right) \neq 0, \quad(z \in U ; 0 \leq t<\infty)
$$

and

$$
\operatorname{Re}\left(\frac{z \partial L / \partial z}{\partial L / \partial t}\right)=\operatorname{Re}(n+t Q(z))>0, \quad(z \in U)
$$

Therefore, by Lemma 2.3, we deduce that P is a subordination chain. It follows from the definition of subordination chain that $\varphi(z)=G(z)+\frac{1}{n} z G^{\prime}(z)=L(z, 0)$ and $L(z, 0) \prec L(z, t),(0 \leq t<\infty)$, which implies that

$$
\begin{equation*}
L(\varepsilon, t) \notin L(U, 0)=\varphi(U), \quad(\varepsilon \in U ; 0 \leq t<\infty) . \tag{21}
\end{equation*}
$$

If F is not subordinate to G, by Lemma 2.6, we know that there exist two points $z_{0} \in U$ and $\varepsilon_{0} \in \frac{\partial U}{E(f)}$ such that

$$
\begin{equation*}
F\left(z_{0}\right)=G\left(\varepsilon_{0}\right) \quad \text { and } \quad z_{0} F\left(z_{0}\right)=t \varepsilon_{0} G^{\prime}\left(\varepsilon_{0}\right), \quad(0 \leq t<\infty) \tag{22}
\end{equation*}
$$

Hence, by virtue of (1) and (22), we have

$$
L\left(\varepsilon_{0}, t\right)=G\left(\varepsilon_{0}\right)+\frac{t}{n} \varepsilon_{0} G^{\prime}\left(\varepsilon_{0}\right)=F\left(z_{0}\right)+\frac{1}{n} z_{0} F^{\prime}\left(z_{0}\right)=\frac{I_{n+1} f\left(z_{0}\right)}{z_{0}} \in \varphi(U) .
$$

This contradicts to (21). Thus, we deduce that $F \prec G$. Considering $F=G$, we see that the function G is the best dominant.

By similarly applying the method of proof of Theorem 3.1, as well as (1), we easily get the following result.

Corollary 7. Let $f, g \in A$ and $n>-1$. Further let

$$
\operatorname{Re}\left(1+\frac{z \chi^{\prime \prime}(z)}{\chi^{\prime}(z)}\right)>-\bar{\omega}, \quad\left(z \in U ; \chi(z):=\frac{I_{n} g(z)}{z}\right)
$$

where

$$
\begin{equation*}
\bar{\omega}:=\frac{1+(n+1)^{2}-\left|1-(n+1)^{2}\right|}{4(n+1)} . \tag{23}
\end{equation*}
$$

Then the subordination $\frac{I_{n} f(z)}{z} \prec \frac{I_{n} g(z)}{z}$, implies that $\frac{I_{n+1} f(z)}{z} \prec \frac{I_{n+1} g(z)}{z}$. Furthermore, the function $\frac{I_{n+1} g(z)}{z}$ is the best dominant.

If f is subordinate to F, then F is superordinate to f. We now derive the following superordination result.

Theorem 8. Let $f, g \in A_{p}$ and $n>0$. Further let

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)}\right)>-\delta, \quad\left(z \in U ; \varphi(z):=\frac{I_{n+1} g(z)}{z}\right), \tag{24}
\end{equation*}
$$

where δ is given by (12). If the function $\frac{I_{n+1} f(z)}{z}$ is univalent in U and $\frac{I_{n} f(z)}{z} \in Q$, then the subordination

$$
\frac{I_{n+1} g(z)}{z} \prec \frac{I_{n+1} f(z)}{z},
$$

implies that

$$
\frac{I_{n} g(z)}{z} \prec \frac{I_{n} f(z)}{z}
$$

Furthermore, the function $\frac{I_{n} g(z)}{z}$ is the best subordinate.
Proof. Suppose that the functions F and G and Q are defined by (13). By applying the similar method as in the proof of Theorem 3.1, we get $\operatorname{Re}(Q(z))>0,(z \in U)$. Next, to arrive at our desired result, we show that $G \prec F$. For this, we suppose that the function L be defined by (20). Since $n>0$ and G is convex, by applying a similar method as in Theorem 3.1, we deduce that L is subordination chain. Therefore, by Lemma 2.7, we conclude that $G \prec F$. Moreover, since the differential equation

$$
\varphi(z)=G(z)+\frac{1}{n} z G^{\prime}(z)=\phi\left(G(z), z G^{\prime}(z)\right)
$$

has a univalent solution G , it is the best subordinate.
Applying a similar proof as in Theorem 3.2, and using (1), the following results are easily obtained.

Corollary 9. Let $A_{p}=\left\{f \in H(U): f(z)=a+\sum_{k=p}^{\infty} a_{k} z^{k}\right\}, f, g \in A_{p}$ and $n>0$. Further let

$$
\operatorname{Re}\left(1+\frac{z \chi^{\prime \prime}(z)}{\chi^{\prime}(z)}\right)>-\bar{\omega}, \quad\left(z \in U ; \chi(z):=\frac{I_{n} g(z)}{z}\right)
$$

where $\bar{\omega}$ is given by (23). If the function $\frac{I_{n} f(z)}{z}$ is univalent in U and $\frac{I_{n+1} f(z)}{z} \in Q$, then the subordination

$$
\frac{I_{n} g(z)}{z} \prec \frac{I_{n} f(z)}{z},
$$

implies that

$$
\frac{I_{n+1} g(z)}{z} \prec \frac{I_{n+1} f(z)}{z} .
$$

Furthermore, the function $\frac{I_{n+1} g(z)}{z}$ is the best subordinate.

Combining the above mentioned subordination and super ordination results involving the operator I_{n}, the following "sandwich-type results" are derived.

Corollary 10. Let $f, g_{k} \in A,(k=1,2)$ and $n>0$. Further let

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)}\right)>-\delta, \quad\left(z \in U ; \varphi(z):=\frac{I_{n+1} g_{k}(z)}{z}, k=1,2\right) \tag{25}
\end{equation*}
$$

where δ is given by (12). If the function $\frac{I_{n+1} f(z)}{z}$ is univalent in U and $\frac{I_{n} f(z)}{z} \in Q$, then the subordination chain

$$
\frac{I_{n+1} g_{1}(z)}{z} \prec \frac{I_{n+1} f(z)}{z} \prec \frac{I_{n+1} g_{2}(z)}{z}
$$

implies that

$$
\frac{I_{n} g_{1}(z)}{z} \prec \frac{I_{n} f(z)}{z} \prec \frac{I_{n} g_{2}(z)}{z}
$$

Furthermore, the functions $\frac{I_{n} g_{1}(z)}{z}$ and $\frac{I_{n} g_{2}(z)}{z}$ are, respectively, the best subordinate.
Corollary 11. Let $f, g_{k} \in A,(k=1,2)$ and $n>0$. Further let

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z \chi_{k}^{\prime \prime}(z)}{\chi_{k}^{\prime}(z)}\right)>-\bar{\omega}, \quad\left(z \in U ; \chi_{k}(z):=\frac{I_{n} g_{k}(z)}{z}, k=1,2\right) \tag{26}
\end{equation*}
$$

where $\bar{\omega}$ is given by (12). If the function $\frac{I_{n} f(z)}{z}$ is univalent in U and $\frac{I_{n+1} f(z)}{z} \in Q$, then the subordination chain

$$
\frac{I_{n} g_{1}(z)}{z} \prec \frac{I_{n} f(z)}{z} \prec \frac{I_{n} g_{2}(z)}{z}
$$

implies that

$$
\frac{I_{n+1} g_{1}(z)}{z} \prec \frac{I_{n+1} f(z)}{z} \prec \frac{I_{n+1} g_{2}(z)}{z}
$$

Furthermore, the functions $\frac{I_{n+1} g_{1}(z)}{z}$ and $\frac{I_{n+1} g_{2}(z)}{z}$ are, respectively, the best subordinate.

Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions.
A. Shokri, M. Heydari, A. A. Shokri, A. Rahimi, F. Pashaie - A sandwich ...

References

[1] R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination on Schwarzian derivatives, J. Inequal. Appl. (2008), Article ID 712328, pp. 1-18.
[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malays.Math. Sci. Soc. 31 (2008), 193-207.
[3] R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions defined by the multiplier transformation, Math. Inequal. Appl. 12 (2009), 123-139.
[4] K. Al-Shaqsi and M. Darus, On certain subclasses of analytic functions defined by a multiplier transformation with two parameters, Appl. Math. Sci. (2009), in press.
[5] T. Bulboaca, Sandwich-type theorems for a class of integral operators, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 537-550. 10 Zhi-Gang Wang, Ri-Guang Xiang and M. Darus
[6] N. E. Cho and S. Owa, Double subordination-preserving properties for certain integral operators, J. Inequal. Appl. (2007), Article ID 83073, pp. 1-10.
[7] N. E. Cho and H. M. Srivastava, A class of nonlinear integral operators preserving subordination and superordination, Integral Transforms Spec. Funct. 18 (2007), 95-107.
[8] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
[9] J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math.Comput. 170 (2005), 399-409.
[10] M. Darus and K. Al-Shaqsi, On subordinations for certain analytic functions associated with generalized integral operator, Lobachevskii J. Math. 29 (2008), 90-97.
[11] P. L. Duren, Univalent Functions, Springer-Verlag, 1983.
[12] C. Ferreira and J. L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal.Appl. 298 (2004), 210-224.
[13] M. Garg, K. Jain and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006), 803-815.
[14] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725-733.
[15] S.-D. Lin, H. M. Srivastava and P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006), 817-827.
[16] Y. Ling and F.-S.Liu, The Choi-Saigo-Srivastava integral operator and a class of analytic functions, Appl. Math. Comput. 165 (2005), 613-621.
[17] J.-L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava- Attiya operator, Integral Transforms Spec. Funct. 19 (2008), 893-901.
[18] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308 (2005), 290-302.
[19] S. S. Miller and P. T. Mocanou, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
[20] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297-309.
[21] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Monograghs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel dekker, New York and Basel, 2000.
[22] S. S. Miller and P. T. Mocanu, Subordinats of differential superordinations, Complex Var. Theory Appl. 48 (2003), 815-826.
[23] S. S. Miller and P. T. Mocanu, Briot-Bouquet differential superordinations and sandwich theorems, J. Math. Anal. Appl. 329 (2007), 327-335.
[24] C. Pommerenke, Univalent fuctions, Vanderhoeck and Rupercht, Gottingen, 1975.
[25] J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009), 129-137.
[26] D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 18 (2007), 933-943.
[27] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3 (2006), article 8, pp. 1-11.
[28] T. N. Shanmugam, S. Sivasubramanian and H. M. Srivastava, Differential sandwich theorems for certain subclasses of analytic functions involving multiplier transformations, Integral Transforms Spec. Funct. 17 (2006), 889-899. A Family of Integral Operators Preserving Subordination and Superordination 11
[29] J. Sokol, Classes of analytic functions associated with the Choi-Saigo-Srivastava operator, J. Math. Anal.Appl. 318 (2006), 517-525.
A. Shokri, M. Heydari, A. A. Shokri, A. Rahimi, F. Pashaie - A sandwich ...

Ali Shokri

Faculty of Mathematical Science, University of Maragheh, P.O.Box 55181-83111, Maragheh, Iran.
email: shokri@maragheh.ac.ir
Mahdieh Heydari
Department of Mathematics, Payame Noor University, Tehran, Iran.
email: mahdiyehheidary@yahoo.com
Abbas Ali Shokri
Department of Mathematics,
Ahar Branch, Islamic Azad University, Ahar, Iran.
email: a-shokri@iau-ahar.ac.ir
Asghar Rahimi
Faculty of Mathematical Science,
University of Maragheh, P.O.Box 55181-83111, Maragheh, Iran.
email: rahimi@maragheh.ac.ir
Firooz Pashaie
Faculty of Mathematical Science,
University of Maragheh, P.O.Box 55181-83111,
Maragheh, Iran.
email: f_{-}pashaie@maragheh.ac.ir

