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1. Introduction

Let A denote the class of all analytic functions

f(z) = z +

∞∑
n=2

anz
n, (1)

which are regular in the unit disk U = {z : |z| < 1} and normalized by f(0) = 0,

f ′(0) = 1. The function f ∈ A is spirallike if Re
{
e−iα zf

′(z)
f(z)

}
> 0 for all z ∈ U and

for some α with |α| < π
2 . Also f(z) is convex spirallike if zf ′(z) is spirallike.

Let T denote the class consisting of functions f of the form f(z) = z −
∞∑
n=2

anz
n,

where an is a non-negative real number.

Definition 1. [1] Let IA be the Alexander integral operator defined as:

IA : A→ A, IA(F ) = f, where

f(z) =

z∫
0

F (t)

t
dt. (2)
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Definition 2. [1] Let Ia be the Bernardi integral operator defined as:

Ia : A→ A, Ia(F ) = f, a = 1, 2, 3, . . . , where

f(z) =
a+ 1

za

z∫
0

F (t) · ta−1dt. (3)

Definition 3. [1] Let Ic+δ be the integral operator defined as: Ic+δ : A → A, 0 <
u ≤ 1 , 1 ≤ δ <∞ , 0 < c <∞ ,

f(z) = Ic+δ(F )(z) = (c+ δ)

∫ 1

0
uc+δ−2F (uz)du. (4)

Remark 1. [1] For δ = 1 and c=1,2,. . . , from the integral operator Ic+δ we obtain
the Bernardi integral operator defined by (3).

Definition 4. [1] Let F ∈ A, F (z) = z + b2z
2 + · · ·+ bnz

n + . . ., and a ∈ R∗. We
define the integral operator L : A→ A by

f(z) = L(F )(z) =
1 + a

za

∫ z

0
F (t)

(
ta−1 + ta+1

)
dt . (5)

2. Preliminary results

We now defined UCSPT (α, β) and SPPT (α, β).

Definition 5. [2] Let UCSPT (α, β) be the class of functions f(z) = z −
∞∑
n=2

anz
n

which satisfy the condition

Re e−iα
(

1 +
zf ′′(z)

f ′(z)

)
≥
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ β,

|α| < π

2
, 0 ≤ β < 1.

Definition 6. [2] Let SPPT (α, β) be the class of functions f(z) = z −
∞∑
n=2

anz
n

which satisfy the condition

Re e−iα
zf ′(z)

f(z)
≥
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣+ β,

|α| < π

2
, 0 ≤ β < 1.
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Lemma 1. [3] Let f(z) = z −
∞∑
n=2

anz
n, an ≥ 0. Then

∞∑
n=2

(2n− cos α− β)nan ≤ cos α− β, (6)

if and only if f(z) is in UCSPT (α, β).

Lemma 2. [3] The function f given by f(z) = z−
∞∑
n=2

anz
n, an ≥ 0 is in SPPT (α, β)

if and only if
∞∑
n=2

(2n− cos α− β) an ≤ cos α− β. (7)

Corollary 3. [4] Let the function f(z) = z −
∞∑
n=2

anz
n, an ≥ 0 be in the class

UCSPT (α, β), |α| < π

2
, 0 ≤ β < 1, then

an ≤
cos α− β

n (2n− cos α− β)
, n ≥ 2. (8)

Corollary 4. [4] Let the function f(z) = z −
∞∑
n=2

anz
n, an ≥ 0 be in the class

SPPT (α, β), |α| < π

2
, 0 ≤ β < 1, then

an ≤
cos α− β

2n− cos α− β
, n ≥ 2. (9)

3. Main results

In what follows allong this article we consider |α| < π

2
and 0 ≤ β < 1 such that

cosα− β > 0.

Theorem 5. The Alexander integral operator defined by (2) preserves the class
UCSPT (α, β), that is: If F ∈ UCSPT (α, β), then f(z) = IAF (z) ∈ UCSPT (α, β),

for F (z) = z −
∞∑
n=2

anz
n, an ≥ 0.
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Proof. Let F ⊂ T, F (z) = z −
∞∑
n=2

anz
n, an ≥ 0. Then

f(z) = IAF (z) =

z∫
0

F (t)

t
dt =

=

z∫
0

1

t

(
t−

∞∑
n=2

an t
n

)
dt =

= z −
∞∑
n=2

an
n
zn

= z −
∞∑
n=2

bnz
n, with

bn =
an
n
≥ 0, n ≥ 2. It follows that f ∈ T. We have now to prove that f ∈

UCSPT (α, β). Using Lemma 1 we need to prove that:

∞∑
n=2

(2n− cos α− β)nbn ≤ cos α− β, (10)

for n ≥ 2, |α| < π

2
, 0 ≤ β < 1. This means:

∞∑
n=2

(2n− cos α− β)n
an
n
≤ cos α− β. (11)

But we have
an
n
≤ an, for n ≥ 2, and by using (6) and (11), we observe that

inequality (10) is fulfilled.This means that f ∈ UCSPT (α, β).

In a similarly way we obtain:

Theorem 6. The Alexander integral operator defined by (2) preserves the class
SPPT (α, β), that is: If F ∈ SPPT (α, β), then f(z) = IAF (z) ∈ SPPT (α, β), for

F (z) = z −
∞∑
n=2

anz
n, an ≥ 0.

Theorem 7. The integral operator Ic+δ defined by (4) preserves the class
UCSPT (α, β), that is: If F ∈ UCSPT (α, β), then f(z) = Ic+δ(F )(z) ∈ UCSPT (α, β),

for F (z) = z −
∞∑
n=2

an z
n, an ≥ 0 .
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Proof. Let F ∈ UCSPT (α, β), F (z) = z −
∞∑
n=2

anz
n, an ≥ 0.

We have, from Lemma 1

∞∑
n=2

(2n− cos α− β)nan ≤ cos α− β. (12)

From (4) we obtain f(z) = Ic+δ(F )(z) = z−
∞∑
n=2

c+ δ

c+ n+ δ − 1
an z

n, where 0 < c <

∞, 1 ≤ δ <∞.
We also remark that for 0 < c <∞, n ≥ 2 and 1 ≤ δ <∞,we have

0 <
c+ δ

c+ n+ δ − 1
< 1 (13)

Thus f ∈ T and by using Lemma 1 we have only to prove that.

∞∑
n=2

(2n− cos α− β)n
c+ δ

c+ n+ δ − 1
an ≤ cos α− β, (14)

where |α| < π

2
, 0 ≤ β < 1, 0 < c <∞ and 1 ≤ δ <∞.

By using the relation (13) we have

c+ δ

c+ n+ δ − 1
· an < an,

for 0 < c < ∞, n ≥ 2, 1 ≤ δ < ∞, and thus from (12) we conclude that the
condition (14) take place and thus the proof it is complete.

In a similarly way we obtain:

Theorem 8. The integral operator Ic+δ defined by (4) preserves the class
SPPT (α, β), that is: If F ∈ SPPT (α, β), then f(z) = Ic+δ(F )(z) ∈ SPPT (α, β),

for F (z) = z −
∞∑
n=2

an z
n, an ≥ 0 .

The following two results are proved by using the Remark 1:

Corollary 9. The Bernardi integral operator defined by (3) preserves the class
UCSPT (α, β), that is: If F ∈ UCSPT (α, β), then f(z) = IaF (z) ∈ UCSPT (α, β),

for F (z) = z −
∞∑
n=2

anz
n, an ≥ 0.
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Corollary 10. The Bernardi integral operator defined by (3) preserves the class
SPPT (α, β), that is: If F ∈ SPPT (α, β), then f(z) = IaF (z) ∈ SPPT (α, β), for

F (z) = z −
∞∑
n=2

anz
n, an ≥ 0.

Theorem 11. Let F ∈ UCSPT (α, β) with |α| < π

2
, 0 ≤ β < 1, F (z) = z −

∞∑
n=2

bnz
n,

bn ≥ 0. For f(z) = Ia(F )(z), f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U , where the inte-

gral operator Ia it is defined by (3), we have:

an ≤
(a+ 1)(cos α− β)

n(a+ n) (2n− cos α− β)
, n ≥ 2.

Proof. For f = Ia(F )(z) with F (z) = z −
∞∑
n=2

bnz
n and f(z) = z −

∞∑
n=2

anz
n we have

an = bn ·
a+ 1

a+ n
,

where a = 1, 2, 3, . . . , n ≥ 2.
The coefficient bounds for the functions belonging to the class UCSPT (α, β) are

bn ≤
cos α− β

n (2n− cos α− β)
.

For n ≥ 2 we obtain

an = bn ·
a+ 1

a+ n
≤

≤ cos α− β
n (2n− cos α− β)

· a+ 1

a+ n
=

=
(a+ 1)(cos α− β)

n(a+ n) (2n− cos α− β)

Hence the theorem is proved.

Theorem 12. Let F ∈ UCSPT (α, β) with |α| < π

2
, 0 ≤ β < 1, F (z) = z −

∞∑
n=2

bnz
n,

bn ≥ 0. For f(z) = L(F )(z), f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U , where the integral
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operator L it is defined by (5), we have:

a2 ≤
(a+ 1)(cos α− β)

2(a+ 2) (4− cos α− β)
,

a3 ≤
(a+ 1)(18− 2cos α− 4β)

3(a+ 3) (6− cos α− β)
,

an ≤
1

(n− 2)

(
cos α− β

2n− cos α− β
+

cos α− β
2n− 4− cos α− β

)
· a+ 1

a+ n
.

Proof. For f = L(F )(z) with F (z) = z −
∞∑
n=2

bnz
n and f(z) = z −

∞∑
n=2

anz
n we have:

a2 = b2 ·
a+ 1

a+ 2
,

a3 = (b3 + 1) · a+ 1

a+ 3
,

an = (bn + bn−2) ·
a+ 1

a+ n
,

where a ∈ R∗, n ≥ 4.
The coefficient bounds for the functions belonging to the class UCSPT (α, β) are :

bn ≤
cos α− β

n (2n− cos α− β)
.

For n ≥ 4 we obtain:

an = (bn + bn−2) ·
a+ 1

a+ n
≤

≤ cos α− β
n (2n− cos α− β)

· a+ 1

a+ n
+

+
cos α− β

(n− 2) (2n− 4− cos α− β)
· a+ 1

a+ n
,

an ≤
1

(n− 2)

(
cos α− β

2n− cos α− β
+

cos α− β
2n− 4− cos α− β

)
· a+ 1

a+ n
.

For n = 2 we have:

a2 = b2 ·
a+ 1

a+ 2
≤
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≤ cos α− β
2 (4− cos α− β)

· a+ 1

a+ 2
=

=
(a+ 1)(cos α− β)

2(a+ 2) (4− cos α− β)

Similarly for n = 3 we have:

a3 ≤
(

cos α− β
3(6− cos α− β)

+ 1

)
· a+ 1

a+ 3
,

a3 ≤
(a+ 1)(18− 2cos α− 4β)

3(a+ 3) (6− cos α− β)
.

Hence the theorem is proved.

In a similarly way we obtain:

Theorem 13. Let F ∈ SPPT (α, β) with |α| < π

2
, 0 ≤ β < 1, F (z) = z −

∞∑
n=2

bnz
n,

bn ≥ 0. For f(z) = Ia(F )(z), f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U , where the

integral operator Ia it is defined by (3), we have:

an ≤
(a+ 1)(cos α− β)

(a+ n) (2n− cos α− β)
, n ≥ 2.

Theorem 14. Let F ∈ SPPT (α, β) with |α| < π

2
, 0 ≤ β < 1, F (z) = z −

∞∑
n=2

bnz
n,

bn ≥ 0. For f(z) = L(F )(z), f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U , where the integral

operator L it is defined by (5), we have:

a2 ≤
(a+ 1)(cos α− β)

(a+ 2) (4− cos α− β)
,

a3 ≤
(a+ 1)(18− 2cos α− 4β)

(a+ 3) (6− cos α− β)
,

an ≤
(

cos α− β
2n− cos α− β

+
cos α− β

2n− 4− cos α− β

)
· a+ 1

a+ n
.
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