COEFFICIENT ESTIMATES FOR TWO NEW SUBCLASSES OF BI-UNIVALENT FUNCTIONS

Ş. Altinkaya, S. Yalçin

Abstract. In the present investigation, we introduce and investigate two new subclasses of the function Σ of bi-univalent functions defined in the open unit disc. We find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the function classes $\beta_{\Sigma}(h, \lambda, \mu)$ and $B_{\Sigma}(n, h, \lambda)$. The results presented in this paper improve or generalize the recent works of Keerthi and Raja [14] and Porwal and Darus [20].

2010 Mathematics Subject Classification: 30C45.
Keywords: Analytic and univalent functions, bi-univalent functions, coefficient bounds.

1. Introduction and Definitions

Let A denote the class of analytic functions in the unit disk

$$
U=\{z \in \mathbb{C}:|z|<1\}
$$

that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

and let S be the class of all functions from A which are univalent in U.
The Koebe one-quarter theorem [9] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z, \quad(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f(z) \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U. Let Σ denote the class of bi-univalent functions defined in the unit disk U. For a brief history and interesting examples of functions in the class Σ; see [4].

The research into Σ was started by Lewin ([16]).It focused on problems connected with coefficients and obtained the bound for the second coefficient. Several authors have subsequently studied similar problems in this direction (see [5], [19]). Recently, Srivastava et al. [22] introduced and investigated subclasses of the bi-univalent functions and obtained bounds for the initial coefficients; it was followed by such works as those by Murugunsundaramoorthy et al. [18], Frasin and Aouf [10], Çağlar et al. [7] and others (see, for example, [1, 3, 8, 14, 15, 17, 20, 24],).

Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, the only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions ($[2,6,11,12,13]$). The coefficient estimate problem for each of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem.

Definition 1. Let the functions $h, p: U \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\operatorname{Re}(h(z)), \operatorname{Re}(p(z))\}>0
$$

and

$$
h(0)=p(0)=1 .
$$

Definition 2. A function $f \in \Sigma$ is said to be in the class $\beta_{\Sigma}(h, \lambda, \mu), 0 \leq \mu \leq \lambda \leq$ 1, if the following conditions are satisfied:

$$
\begin{equation*}
\frac{\lambda \mu z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \mu+\lambda-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu) z f^{\prime}(z)+(1-\lambda+\mu) f(z)} \in h(U) \quad(z \in U) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda \mu w^{3} g^{\prime \prime \prime}(w)+(2 \lambda \mu+\lambda-\mu) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda \mu w^{2} g^{\prime \prime}(w)+(\lambda-\mu) w g^{\prime}(w)+(1-\lambda+\mu) g(w)} \in p(U) \quad(w \in U) \tag{3}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.
Definition 3. A function $f \in \Sigma$ is said to be $B_{\Sigma}(n, h, \lambda), n \in \mathbb{N}_{0}$ and $\lambda \geq 1$, if the following conditions are satisfied:

$$
\begin{equation*}
\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z} \in h(U) \quad(z \in U) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w} \in p(U) \quad(w \in U) \tag{5}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$ and D^{n} stands for Salagean derivative introduced by Salagean [21].

2. Coefficient Estimates

Theorem 1. Let f given by (1) be in the class $\beta_{\Sigma}(h, \lambda, \mu)$. Then
$\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda-\mu+2 \lambda \mu)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left[(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}\right]}}\right\}$
and

$$
\left|a_{3}\right| \leq \min \left\{\begin{array}{l}
\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8(1+2 \lambda-2 \mu+6 \lambda \mu)}, \\
\frac{\left[2(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}\right]\left|h^{\prime \prime}(0)\right|+(1+\lambda-\mu+2 \lambda \mu)^{2}\left|p^{\prime \prime}(0)\right|}{8(1+2 \lambda-2 \mu+6 \lambda \mu)\left[(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}\right]}
\end{array}\right\} .
$$

Proof. Let $f \in \beta_{\Sigma}(h, \lambda, \mu)$ and $0 \leq \mu \leq \lambda \leq 1$. It follows from (2) and (3) that

$$
\begin{equation*}
\frac{\lambda \mu z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \mu+\lambda-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu) z f^{\prime}(z)+(1-\lambda+\mu) f(z)}=h(z) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda \mu w^{3} g^{\prime \prime \prime}(w)+(2 \lambda \mu+\lambda-\mu) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda \mu w^{2} g^{\prime \prime}(w)+(\lambda-\mu) w g^{\prime}(w)+(1-\lambda+\mu) g(w)}=p(w), \tag{9}
\end{equation*}
$$

where $h(z)$ and $p(w)$ satisfy the conditions of Definiton 1. Furthermore, the functions $h(z)$ and $p(w)$ have the following Taylor-Maclaurin series expansions:

$$
h(z)=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w)=1+p_{1} w+p_{2} w^{2}+\cdots,
$$

respectively. Since

$$
\left.\left.\left.\begin{array}{rl}
\frac{\lambda \mu z^{3} f^{\prime \prime \prime}(z)+}{\lambda \mu z^{2} f^{\prime \prime}(z)+}(2 \lambda \mu+\lambda-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z) \\
+ & {\left[2(1+2 \lambda-2 \mu+6 \lambda \mu) a_{3}-(z)+(1-\lambda+\mu) f(z)\right.}
\end{array}=1+(1+\lambda-\mu+2 \lambda \mu) a_{2} z\right]+2 \lambda \mu\right)^{2} a_{2}^{2}\right] z^{2}+\cdots .
$$

and

$$
\begin{aligned}
& \frac{\lambda \mu w^{3} g^{\prime \prime \prime}(w)+(2 \lambda \mu+\lambda-\mu) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda \mu w^{2} g^{\prime \prime}(w)+(\lambda-\mu) w g^{\prime}(w)+(1-\lambda+\mu) g(w)}=1-(1+\lambda-\mu+2 \lambda \mu) a_{2} w \\
& \quad+\left[2(1+2 \lambda-2 \mu+6 \lambda \mu)\left(2 a_{2}^{2}-a_{3}\right)-(1+\lambda-\mu+2 \lambda \mu)^{2} a_{2}^{2}\right] w^{2}+\cdots,
\end{aligned}
$$

it follows from (8) and (9) that

$$
\begin{gather*}
(1+\lambda-\mu+2 \lambda \mu) a_{2}=h_{1} \tag{10}\\
2(1+2 \lambda-2 \mu+6 \lambda \mu) a_{3}-(1+\lambda-\mu+2 \lambda \mu)^{2} a_{2}^{2}=h_{2} \tag{11}
\end{gather*}
$$

and

$$
\begin{gather*}
-(1+\lambda-\mu+2 \lambda \mu) a_{2}=p_{1}, \tag{12}\\
2(1+2 \lambda-2 \mu+6 \lambda \mu)\left(2 a_{2}^{2}-a_{3}\right)-(1+\lambda-\mu+2 \lambda \mu)^{2} a_{2}^{2}=p_{2} . \tag{13}
\end{gather*}
$$

From (10) and (12) we obtain

$$
h_{1}=-p_{1},
$$

and

$$
\begin{equation*}
2(1+\lambda-\mu+2 \lambda \mu)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{14}
\end{equation*}
$$

By adding (11) to (13), we find that

$$
\begin{equation*}
\left[4(1+2 \lambda-2 \mu+6 \lambda \mu)-2(1+\lambda-\mu+2 \lambda \mu)^{2}\right] a_{2}^{2}=h_{2}+p_{2}, \tag{15}
\end{equation*}
$$

which gives us the desired estimate on $\left|a_{2}\right|$ as asserted in (6).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (13) from (11), we obtain

$$
\begin{equation*}
4(1+2 \lambda-2 \mu+6 \lambda \mu) a_{3}-4(1+2 \lambda-2 \mu+6 \lambda \mu) a_{2}^{2}=h_{2}-p_{2} \tag{16}
\end{equation*}
$$

Then, in view of (14) and (15), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{h_{2}-p_{2}}{4(1+2 \lambda-2 \mu+6 \lambda \mu)}
$$

and

$$
a_{3}=\frac{h_{2}+p_{2}}{4(1+2 \lambda-2 \mu+6 \lambda \mu)-2(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{h_{2}-p_{2}}{4(1+2 \lambda-2 \mu+6 \lambda \mu)} .
$$

as claimed. This completes the proof of Theorem 1.

Ş. Altınkaya, S. Yalçın - Coefficient estimates ...

Theorem 2. Let f given by (1) be in the class $B_{\Sigma}(n, h, \lambda), n \in \mathbb{N}_{0}, \lambda \geq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{(1+\lambda)^{2} 2^{2 n+1}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda) 3^{n}}}\right\} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{(1+\lambda)^{2} 2^{2 n+1}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda) 3^{n}}, \frac{\left|h^{\prime \prime}(0)\right|}{2(1+2 \lambda) 3^{n}}\right\} . \tag{18}
\end{equation*}
$$

Proof. Let $f \in B_{\Sigma}(n, h, \lambda), n \in \mathbb{N}_{0}, \lambda \geq 1$. It follows from (4) and (5) that

$$
\begin{equation*}
\frac{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}{z}=h(z) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}{w}=p(w) \tag{20}
\end{equation*}
$$

where $h(z)$ and $p(w)$ satisfy the conditions of Definiton 1.
It follows from (19) and (20) that

$$
\begin{align*}
& {\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right] a_{2}=h_{1},} \tag{21}\\
& {\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right] a_{3}=h_{2},} \tag{22}
\end{align*}
$$

and

$$
\begin{gather*}
-\left[(1-\lambda) 2^{n}+\lambda 2^{n+1}\right] a_{2}=p_{1} \tag{23}\\
{\left[(1-\lambda) 3^{n}+\lambda 3^{n+1}\right]\left(2 a_{2}^{2}-a_{3}\right)=p_{2}} \tag{24}
\end{gather*}
$$

From (21) and (23) we obtain

$$
h_{1}=-p_{1},
$$

and

$$
\begin{equation*}
(1+\lambda)^{2} 2^{2 n+1} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{25}
\end{equation*}
$$

By adding (24) to (22), we find that

$$
\begin{equation*}
2(1+2 \lambda) 3^{n} a_{2}^{2}=h_{2}+p_{2}, \tag{26}
\end{equation*}
$$

which gives us the desired estimate on $\left|a_{2}\right|$ as asserted in (17).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (24) from (22), we obtain

$$
2(1+2 \lambda) 3^{n} a_{3}-2(1+2 \lambda) 3^{n} a_{2}^{2}=h_{2}-p_{2} .
$$

Ş. Altınkaya, S. Yalçın - Coefficient estimates ...

Then, in view of (25) and (26), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{(1+\lambda)^{2} 2^{2 n+1}}+\frac{h_{2}-p_{2}}{2(1+2 \lambda) 3^{n}}
$$

and

$$
a_{3}=\frac{h_{2}+p_{2}}{2(1+2 \lambda) 3^{n}}+\frac{h_{2}-p_{2}}{2(1+2 \lambda) 3^{n}} .
$$

as claimed. This completes the proof of Theorem 2 .

3. Corollaries and Consequences

Corollary 3. If let

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1),
$$

then inequalities (6) and (7) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{1+\lambda-\mu+2 \lambda \mu}, \sqrt{\frac{2}{(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}}} \alpha\right\}
$$

and
$\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{\alpha^{2}}{1+2 \lambda-2 \mu+6 \lambda \mu}, \frac{2 \alpha^{2}}{(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}}\right\}$.
Corollary 4. If let
$h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1)$,
then inequalities (6) and (7) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{1+\lambda-\mu+2 \lambda \mu}, \sqrt{\frac{2(1-\beta)}{(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}}}\right\} .
$$

and
$\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{1-\beta}{1+2 \lambda-2 \mu+6 \lambda \mu}, \frac{2(1-\beta)}{(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}}\right\}$.

Remark 1. Corollary 3 and Corollary 4 provide an improvement estimates obtained by Keerthi and Raja [14].

Taking $\mu=0$ in Theorem 1, we get
Corollary 5. If $f \in \beta_{\Sigma}(h, \lambda)$ then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left(1+2 \lambda-\lambda^{2}\right)}}\right\} \tag{27}
\end{equation*}
$$

and
$\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8(1+2 \lambda)}, \frac{\left(3+6 \lambda-\lambda^{2}\right)\left|h^{\prime \prime}(0)\right|+(1+\lambda)^{2}\left|p^{\prime \prime}(0)\right|}{8(1+2 \lambda)\left(1+2 \lambda-\lambda^{2}\right)}\right\}$

Corollary 6. If let

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1),
$$

then inequalities (27) and (28) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{1+\lambda}, \sqrt{\frac{2}{1+2 \lambda-\lambda^{2}}} \alpha\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{(1+\lambda)^{2}}+\frac{\alpha^{2}}{1+2 \lambda}, \frac{2 \alpha^{2}}{1+2 \lambda-\lambda^{2}}\right\} .
$$

Corollary 7. If let
$h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1)$,
then inequalities (27) and (28) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{1+\lambda}, \sqrt{\frac{2(1-\beta)}{1+2 \lambda-\lambda^{2}}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(1+\lambda)^{2}}+\frac{1-\beta}{1+2 \lambda}, \frac{2(1-\beta)}{1+2 \lambda-\lambda^{2}}\right\} .
$$

Ş. Altınkaya, S. Yalçın - Coefficient estimates ...

Remark 2. Corollary 6 and Corollary 7 provide an improvement of the estimates obtained by Keerthi and Raja [14].

Taking $n=0$ or $n=0$ and $\lambda=1$ in Theorem 2, we get
Corollary 8. (see [23]) If $f \in B_{\Sigma}(h, \lambda)$ then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}}\right\} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}, \frac{\left|h^{\prime \prime}(0)\right|}{2(1+2 \lambda)}\right\} . \tag{30}
\end{equation*}
$$

Corollary 9. (see [23]) If $f \in H_{\Sigma}(h)$ then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}, \frac{\left|h^{\prime \prime}(0)\right|}{6}\right\}
$$

Corollary 10. If let

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1),
$$

then inequalities (17) and (18) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{(1+\lambda) 2^{n}}, \sqrt{\frac{2}{(1+2 \lambda) 3^{n}}} \alpha\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{(1+\lambda)^{2} 2^{2 n}}+\frac{2 \alpha^{2}}{(1+2 \lambda) 3^{n}}, \frac{2 \alpha^{2}}{(1+2 \lambda) 3^{n}}\right\} .
$$

Corollary 11. If let
$h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1)$,
then inequalities (17) and (18) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{(1+\lambda) 2^{n}}, \sqrt{\frac{2(1-\beta)}{(1+2 \lambda) 3^{n}}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(1+\lambda)^{2} 2^{2 n}}+\frac{2(1-\beta)}{(1+2 \lambda) 3^{n}}, \frac{2(1-\beta)}{(1+2 \lambda) 3^{n}}\right\}
$$

Remark 3. Corollary 10 and Corollary 11 provide an improvement of the estimates obtained by Porwal and Darus [20].

References

[1] Ş. Altınkaya, S. Yalçın, Initial coefficient bounds for a general class of biunivalent functions, International Journal of Analysis, Article ID 867871, (2014), 4 pp .
[2] Ş. Altınkaya, S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions, TWMS Journal of Pure and Applied Mathematics, in press.
[3] Ş. Altınkaya, S. Yalçın, Coefficient Estimates for Two New Subclasses of Biunivalent Functions with respect to Symmetric Points, Journal of Function Spaces, Article ID 145242, (2015) 5 pp.
[4] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babes-Bolyai. Mathematica, 31, 2, (1986), 70-77.
[5] D. A. Brannan, J. G. Clunie, Aspects of comtemporary complex analysis, (Proceedings of the NATO Advanced Study Instute Held at University of Durham:July 1-20, 1979). New York: Academic Press, (1980).
[6] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 352, 6, (2014) 479-484.
[7] M. Caglar, H. Orhan, N. Yagmur, Coefficient bounds for new subclasses of biunivalent functions, Filomat 27, (2013), 1165-1171.
[8] O. Crişan, Coefficient estimates certain subclasses of bi-univalent functions, Gen. Math. Notes, 16, 2, (2013), 93-1002.
[9] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259, (1983).
[10] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24, (2011), 1569-1573.
[11] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser.I 352, 1, (2014), 17-20.
[12] J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., ArticleID 190560, (2013), 4 pp.
[13] J. M. Jahangiri, S. G. Hamidi, S. A. Halim, Coefficients of bi-univalent functions with positive real part derivatives Bull. Malays. Math. Soc., in press, http://math.usm.my/bulletin/pdf/acceptedpapers/2013-04-050-R1.pdf.
[14] B. Srutha Keerthi, B. Raja, Coefficient inequality for certain new subclasses of analytic bi-univalent functions, Theoretical Mathematics and Applications, 3, 1, (2013), 1-10.
[15] X. F. Li, A. P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7, (2012),1495-1504.
[16] M. Lewin, On a coefficient problem for bi-univalent functions, Proceeding of the American Mathematical Society, 18, (1967), 63-68.
[17] N. Magesh, J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, International Mathematical Forum, 8, 27, (2013), 1337-1344.
[18] G. Murugunsundaramoorthy, N. Magesh, V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstr. Appl. Anal., Article ID 573017, (2013), 1-3.
[19] E. Netanyahu, The minimal distance of the image boundary from the orijin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32, (1969), 100-112.
[20] S. Porwal, M. Darus, On a new subclass of bi-univalent functions, J. Egypt. Math. Soc., 21, 3, (2013), 190-193.
[21] G. S. Salagean, Subclasses of univalent functions, in: Complex Analysis, Fifth Romanian Finish Seminar, Bucharest, 1, (1983), 362-372.
[22] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23, 10, (2010), 1188-1192.
[23] H. M. Srivastava, S. Bulut, M. Çağlar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27, 5, (2013), 831842.
[24] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters, 25 (2012), 990-994.

Şahsene Altınkaya
Department of Mathematics, Faculty of Arts and Science,

University of Uludag,
Bursa, Turkey
email: sahsene@uludag.edu.tr
Sibel Yalçın
Department of Mathematics, Faculty of Arts and Science, University of Uludag, Bursa, Turkey
email: syalcin@uludag.edu.tr

