ON SEMI-INVARIANT SUBMANIFOLDS OF A GENERALIZED KENMOTSU MANIFOLD ADMITTING A SEMI-SYMMETRIC METRIC CONNECTION

A. Turgut Vanli, R. Sari

AbStract. In this paper, semi-invariant submanifolds of a generalized Kenmotsu manifold endowed with a semi-symmetric metric connection are studied. Necessary and sufficient conditions are given on a submanifold of a generalized Kenmotsu manifold to be semi-invarinat submanifold with the semi-symmetric metric connection. Moreover, the integrability conditions of the distribution on semi-invariant submanifolds of a generalized Kenmotsu manifold with the semi-symmetric metric connection are studied.

2010 Mathematics Subject Classification: 53C17, 53C25, 53C40.
Keywords: generalized Kenmotsu manifold, semi-invariant submanifolds, semisymmetric metric connection.

1. Introduction

In [3] , K. Kenmotsu has introduced a Kenmotsu manifold. A. Turgut Vanlı and R. Sarı [6], introduced the notion of a generalized Kenmotsu manifold. Semi-invariant submanifolds are studied by some authors (for examples, M. Kobayashi [4], B.B. Sinha, A.K. Srivastava [5]). In [9], K. Yano have introduced a semi-symmetric metric connection on a Riemannian manifold. He studied some properties of the curvature tensor with respect to the semi-symmetric metric connection. In this paper, semiinvariant submanifolds of a generalized Kenmotsu manifold with a semi-symmetric metric connection are studied.

Let ∇ be a linear connection in an n-dimensional differentiable manifold M. The torsion tensor T of ∇ is given by

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y] .
$$

The connection ∇ is symmetric if torsion tensor T vanishes, otherwise it is nonsymmetric. A lineer connection ∇ is said to be a semi-symmetric connection if it
torsion tensor T is of the form $T(X, Y)=\eta(Y) X-\eta(X) Y$ where η is a 1 -form. The connection ∇ is metric connection if there is a Riemannian metric g in M such that $\nabla g=0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if it is the Levi-Civita connection.

The paper is organized as follows: In section 2, a brief introduction of a generalized Kenmotsu manifolds is given. A semi-symmetric metric connection on a generalized Kenmotsu manifold is defined. In section 3, some basic results for semiinvariant submanifolds of a generalized Kenmotsu manifold with the semi-symmetric metric connection are given. In last section, some necessary and sufficient conditions for integrability of certain distributions on semi-invariant submanifolds of a generalized Kenmotsu manifold with the semi-symmetric metric connection are obtained.

2. Semi-invariant submanifolds of generalized Kenmotsu manifold

In [8], K.Yano has introduced the notion of a f-structure on a differentianable manifold M, i.e., a tensor fields φ of type $(1,1)$ and rank $2 n$ satisfying $\varphi^{3}+\varphi=0$. The existence of which is equivalent to a reduction of the structural group of the tangent bundle to $U(n) \times O(s)$ [1]. Let M be $(2 n+s)$ dimensional and a differentiable manifold with a f-structure of rank $2 n$. If there exists on M vector fields ξ_{i}, $i \in\{1,2, \ldots, s\}$ and η^{i} are dual 1 -forms such that

$$
\begin{equation*}
\varphi^{2}=-I+\sum_{i=1}^{s} \eta^{i} \otimes \xi_{i}, \quad \eta^{i} \circ \xi_{j}=\delta_{i j} \tag{1}
\end{equation*}
$$

then M is called a f-manifold. Moreover, we have $\varphi \circ \xi_{i}=0, \eta^{i} \circ \varphi=0, i \in\{1,2, \ldots, s\}$ [2].

Let M be a $(2 n+s)$ dimensional f-manifold. M is called a metric f-manifold if there exists on M a Riemannian metric g such that

$$
\begin{equation*}
g(\varphi X, \varphi Y)=g(X, Y)-\sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y) \tag{2}
\end{equation*}
$$

In addition, we have

$$
\begin{equation*}
\eta^{i}(X)=g\left(X, \xi_{i}\right), \quad g(X, \varphi Y)=-g(\varphi X, Y) . \tag{3}
\end{equation*}
$$

Then, a 2-form Φ is defined by $\Phi(X, Y)=g(X, \varphi Y)$, for any $X, Y \in \Gamma(T M)$, called the fundamental 2 -form. Moreover, a metric f-manifold is normal if

$$
[\varphi, \varphi]+2 \sum_{i=1}^{s} d \eta^{i} \otimes \xi_{i}=0
$$

where $[\varphi, \varphi]$ is denoting the Nijenhuis tensor field associated to φ.
In [7], let $M,(2 n+s)$-dimensional a metric f-manifold. If there exists 2 -form Φ such that

$$
\eta^{1} \wedge \ldots \wedge \eta^{s} \wedge \Phi^{n} \neq 0
$$

on M then M is called an almost s-contact metric structure.
Definition 1. Let M be an almost s-contact metric manifold of dimension $(2 n+s)$, $s \geq 1$, with $\left(\varphi, \xi_{i}, \eta^{i}, g\right)$. M is said to be a generalized almost Kenmotsu manifold if for all $1 \leq i \leq s, 1-$ forms η^{i} are closed and $d \Phi=2 \sum_{i=1}^{s} \eta^{i} \wedge \Phi$. A normal generalized almost Kenmotsu manifold M is called a generalized Kenmotsu manifold [6].

In [6], A $(2 n+s), s \geqslant 1$, dimensional almost s-contact metric manifold \tilde{M} is a generalized Kenmotsu manifold if it satisfies the condition

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \varphi\right) Y=\sum_{i=1}^{s}\left\{g(\varphi X, Y) \xi_{i}-\eta^{i}(Y) \varphi X\right\} \tag{4}
\end{equation*}
$$

where $\widetilde{\nabla}$ denotes the Riemannian connection with respect to g.In [6], from the formula (4) we have

$$
\begin{equation*}
\widetilde{\nabla}_{X} \xi_{j}=-\varphi^{2} X \tag{5}
\end{equation*}
$$

Definition 2. Let M be a submanifold of the $(2 n+s)$-dimensional a generalized Kenmotsu manifold $\tilde{M} . M$ is called a semi-invariant submanifold if vector fields $\xi_{i}, i \in\{1,2, \ldots, s\}$ are tangent to M and there exists on M a pair of orthogonal distribution $\left\{D, D^{\perp}\right\}$ such that
(i) $T M=D \oplus D^{\perp} \oplus s p\left\{\xi_{1}, \ldots, \xi_{s}\right\}$
(ii) The distribution D is invariant under φ, that is $\varphi D_{x}=D_{x}$, for all $x \in M$
(iii) The distribution D^{\perp} is anti-invariant under φ, that is $\varphi D_{x}^{\perp} \subset T_{x}^{\perp} M$, for all $x \in M$,
where $T_{x} M$ is the tangent space of M at x.
A semi-invariant submanifold M is said to be an invariant (resp. anti-invariant) submanifold if we have $D_{x}^{\perp}=\{0\}$ (resp. $D_{x}=\{0\}$) for each $x \in M$. We say that M is a proper semi-invariant submanifold, which is neither an invariant nor an anti-invariant submanifold.

Let $\widetilde{\nabla}$ be the Riemannian connection of \tilde{M} with respect to the induced metric g. Then the Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X}^{*} Y+h(X, Y) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{\nabla}_{X} N=\nabla_{X}^{* \perp} N-A_{N} X \tag{7}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $N \in \Gamma(T M)^{\perp} . \nabla^{*}$ is the induced connection on $M, \nabla^{* \perp}$ is the connection in the normal bundle, h is the second fundamental from of M and A_{N} is the Weingarten endomorphism associated with N. The second fundamental form h and the shape operator A related by

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) \tag{8}
\end{equation*}
$$

Now, a linear connection $\bar{\nabla}$ is defined as

$$
\bar{\nabla}_{X} Y=\widetilde{\nabla}_{X} Y+\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\} .
$$

Theorem 1. Let $\widetilde{\nabla}$ be the Riemannian connection on a generalized Kenmotsu manifold \tilde{M}. Then the linear connection which is defined as

$$
\bar{\nabla}_{X} Y=\widetilde{\nabla}_{X} Y+\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\} \quad X, Y \in \Gamma(T M)
$$

is a semi-symmetric metric connection on \tilde{M}.
Proof. Let \bar{T} be the torsion tensor of $\bar{\nabla}$. Then,

$$
\begin{aligned}
\bar{T}(X, Y)= & \bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y] \\
= & \widetilde{\nabla}_{X} Y+\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\} \\
& -\widetilde{\nabla}_{Y} X-\sum_{i=1}^{s}\left\{\eta^{i}(X) Y-g(Y, X) \xi_{i}\right\}-[X, Y] \\
= & \sum_{i=1}^{s}\left\{\eta^{i}(Y) X-\eta^{i}(X) Y\right\} .
\end{aligned}
$$

Moreover we get,

$$
\begin{aligned}
\left(\bar{\nabla}_{X} g\right)(Y, Z)= & X[g(Y, Z)]-g\left(\bar{\nabla}_{X} Y, Z\right)-g\left(Y, \bar{\nabla}_{X} Z\right) \\
= & X[g(Y, Z)]-g\left(\widetilde{\nabla}_{X} Y+\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\}, Z\right) \\
& -g\left(Y, \widetilde{\nabla}_{X} Z+\sum_{i=1}^{s}\left\{\eta^{i}(Z) X-g(X, Z) \xi_{i}\right\}\right) \\
= & 0 .
\end{aligned}
$$

Corollary 2. Let $\widetilde{\nabla}$ be the Riemannian connection on a generalized Kenmotsu manifold \tilde{M}. Then the linear connection which is defined as

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\widetilde{\nabla}_{X} Y+\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\} \quad X, Y \in \Gamma(T M) \tag{9}
\end{equation*}
$$

is a semi-symmetric metric connection on \tilde{M}.
Theorem 3. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M}.Then we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \varphi\right) Y=2 \sum_{i=1}^{s}\left\{g(\varphi X, Y) \xi_{i}-\eta^{i}(Y) \varphi X\right\} \tag{10}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$.
Proof. From (4) and (9), we have

$$
\begin{gathered}
\left(\widetilde{\nabla}_{X} \varphi\right) Y=\sum_{i=1}^{s}\left\{g(\varphi X, Y) \xi_{i}-\eta^{i}(Y) \varphi X\right\} \\
\bar{\nabla}_{X} \varphi Y-\sum_{i=1}^{s}\left\{\eta^{i}(\varphi Y) X-g(X, \varphi Y) \xi_{i}\right\}-\varphi\left\{\bar{\nabla}_{X} Y-\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\}\right\} \\
=\sum_{i=1}^{s}\left\{g(\varphi X, Y) \xi_{i}-\eta^{i}(Y) \varphi X\right\} \\
\left(\bar{\nabla}_{X} \varphi\right) Y=\sum_{i=1}^{s}\left\{g(\varphi X, Y) \xi_{i}-\eta^{i}(Y) \varphi X-g(X, \varphi Y) \xi_{i}-\eta^{i}(Y) \varphi X\right\}
\end{gathered}
$$

Theorem 4. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with the semi-symmetric metric connection $\bar{\nabla}$. Then

$$
\begin{equation*}
\bar{\nabla}_{X} \xi_{j}=2 X-\sum_{i=1}^{s}\left\{\eta^{i}(X)+\eta^{j}(X)\right\} \xi_{i} \tag{11}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$.

Proof. Using (9) then we have

$$
\bar{\nabla}_{X} \xi_{j}=\widetilde{\nabla}_{X} \xi_{j}+\sum_{i=1}^{s}\left\{\eta^{i}\left(\xi_{j}\right) X-g\left(X, \xi_{j}\right) \xi_{i}\right\}
$$

from (5),

$$
\bar{\nabla}_{X} \xi_{j}=X-\sum_{i=1}^{s} \eta^{i}(X) \xi_{i}+\sum_{i=1}^{s}\left\{X-\eta^{j}(X) \xi_{i}\right\} .
$$

Example 1. Now, we construct an example of generalized Kenmotsu manifold for 4-dimensional.

Let, $n=1$ and $s=2$. The vector fields

$$
\begin{gathered}
e_{1}=f_{1}\left(z_{1}, z_{2}\right) \frac{\partial}{\partial x}+f_{2}\left(z_{1}, z_{2}\right) \frac{\partial}{\partial y} \\
e_{2}=-f_{2}\left(z_{1}, z_{2}\right) \frac{\partial}{\partial x}+f_{1}\left(z_{1}, z_{2}\right) \frac{\partial}{\partial y} \\
e_{3}=\frac{\partial}{\partial z_{1}}, \\
e_{4}=\frac{\partial}{\partial z_{2}}
\end{gathered}
$$

where f_{1} and f_{2} are given by

$$
\begin{aligned}
& f_{1}\left(z_{1}, z_{2}\right)=c_{2} e^{-\left(z_{1}+z_{2}\right)} \operatorname{Cos}\left(z_{1}+z_{2}\right)-c_{1} e^{-\left(z_{1}+z_{2}\right)} \operatorname{Sin}\left(z_{1}+z_{2}\right), \\
& f_{2}\left(z_{1}, z_{2}\right)=c_{1} e^{-\left(z_{1}+z_{2}\right)} \operatorname{Cos}\left(z_{1}+z_{2}\right)+c_{2} e^{-\left(z_{1}+z_{2}\right)} \operatorname{Sin}\left(z_{1}+z_{2}\right)
\end{aligned}
$$

for nonzero constant c_{1}, c_{2}. It is obvious that $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
g\left(e_{i}, e_{j}\right)= \begin{cases}1, & \text { for } i=j \\ 0, & \text { for } i \neq j\end{cases}
$$

for all $i, j \in\{1,2,3,4\}$ and given by the tensor product

$$
g=\frac{1}{f_{1}^{2}+f_{2}^{2}}(d x \otimes d x+d y \otimes d y)+d z_{1} \otimes d z_{1}+d z_{2} \otimes d z_{2}
$$

where $\left\{x, y, z_{1}, z_{2}\right\}$ are standart coordinates in \mathbb{R}^{4}. Let η^{1} and η^{2} be the 1-form defined by

$$
\eta^{1}(X)=g\left(X, e_{3}\right) \text { and } \eta^{2}(X)=g\left(X, e_{4}\right),
$$

respectively, for any vector field X on M and φ be the $(1,1)$ tensor field defined by

$$
\varphi\left(e_{1}\right)=e_{2}, \quad \varphi\left(e_{2}\right)=-e_{1}, \quad \varphi\left(e_{3}=\xi_{1}\right)=0, \quad \varphi\left(e_{4}=\xi_{2}\right)=0
$$

We have $\Phi\left(e_{1}, e_{2}\right)=-1$ and otherwise $\Phi\left(e_{i}, e_{j}\right)=0$ for $i<j$. Therefore, the essential non-zero component of Φ is

$$
\Phi\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=\frac{1}{f_{1}^{2}+f_{2}^{2}}=\frac{e^{2\left(z_{1}+z_{2}\right)}}{c_{1}^{2}+c_{2}^{2}}
$$

and hence

$$
\Phi=\frac{e^{2\left(z_{1}+z_{2}\right)}}{c_{1}^{2}+c_{2}^{2}} d x \wedge d y
$$

Consequently, the exterior derivative $d \Phi$ is given by

$$
d \Phi=\frac{2 e^{2\left(z_{1}+z_{2}\right)}}{c_{1}^{2}+c_{2}^{2}} d x \wedge d y \wedge\left(d z_{1}+d z_{2}\right) .
$$

Since $\eta^{1}=d z_{1}$ and $\eta^{2}=d z_{2}$, we find

$$
d \Phi=2\left(\eta^{1}+\eta^{2}\right) \wedge \Phi
$$

So, we have 4-dimensional a generalized Kenmotsu manifold [6]. Let ∇ be the Riemannian connection (the Levi-Civita connection) of g. Then, we have

$$
\begin{aligned}
{\left[e_{1}, e_{4}\right]=\left[e_{1}, e_{3}\right]=e_{1}+e_{2}, } & {\left[e_{2}, e_{4}\right]=\left[e_{2}, e_{3}\right]=e_{1}+e_{2}, } \\
{\left[e_{1}, e_{2}\right]=0, } & {\left[e_{3}, e_{4}\right]=0 . }
\end{aligned}
$$

By Koszul's formula, we get

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=\nabla_{e_{1}} e_{2}=\nabla_{e_{2}} e_{1}=\nabla_{e_{2}} e_{2}=-e_{3}-e_{4}, \\
\nabla_{e_{1}} e_{3}=\nabla_{e_{1}} e_{4}=\nabla_{e_{2}} e_{3}=\nabla_{e_{2}} e_{4}=e_{1}+e_{2}
\end{gathered}
$$

and anothers are zero.

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta^{1}(Y) X-g(X, Y) \xi_{1}+\eta^{2}(Y) X-g(X, Y) \xi_{2}
$$

is a semi-symmetric metric connection. Therefore, we have

$$
\begin{aligned}
\bar{\nabla}_{e_{1}} e_{1}=\bar{\nabla}_{e_{2}} e_{2}=-2\left(e_{3}+e_{4}\right), & \bar{\nabla}_{e_{2}} e_{1}=\bar{\nabla}_{e_{1}} e_{2}=-e_{3}-e_{4} \\
\bar{\nabla}_{e_{1}} e_{3}=\bar{\nabla}_{e_{1}} e_{4}=2 e_{1}+e_{2}, & \bar{\nabla}_{e_{2}} e_{3}=\bar{\nabla}_{e_{2}} e_{4}=e_{1}+2 e_{2} \\
-\bar{\nabla}_{e_{3}} e_{3}=\bar{\nabla}_{e_{4}} e_{3}=e_{4}, & \bar{\nabla}_{e_{3}} e_{4}=-\bar{\nabla}_{e_{4}} e_{4}=e_{3}
\end{aligned}
$$

and anothers are zero.

We denote by same symbol g both metrices on \tilde{M} and M. Let $\bar{\nabla}$ be the semisymmetric metric connection on \tilde{M} and ∇ be the induced connection on M. Then,

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+m(X, Y) \tag{12}
\end{equation*}
$$

where m is a tensor field of type $(0,2)$ on a semi-invariant submanifold M. Using (6) and (9) we have,

$$
\nabla_{X} Y+m(X, Y)=\nabla_{X}^{*} Y+h(X, Y)+\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\}
$$

So equation tangential and normal components from both the sides, we get

$$
\begin{gather*}
m(X, Y)=h(X, Y) \\
\nabla_{X} Y=\nabla_{X}^{*} Y+\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\} . \tag{13}
\end{gather*}
$$

From (13) and (7)

$$
\begin{aligned}
\nabla_{X} N & =\nabla_{X}^{*} N+\sum_{i=1}^{s}\left\{\eta^{i}(N) X-g(X, N) \xi_{i}\right\} \\
& =-A_{N} X+\sum_{i=1}^{s} \eta^{i}(N) X \\
& =\left(-A_{N}+a\right) X
\end{aligned}
$$

where $a=\sum_{i=1}^{s} \eta^{i}(N)$ is a function on M and $N \in \Gamma(T M)^{\perp}$.
Now, the Gauss and Weingarten formulas for semi-invariant submanifolds of a generalized Kenmotsu manifold with the semi-symmetric metric connection is

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{14}\\
\bar{\nabla}_{X} N=\left(-A_{N}+a\right) X+\nabla_{X}^{\perp} N \tag{15}
\end{gather*}
$$

for all $X, Y \in \Gamma(T M), N \in \Gamma(T M)^{\perp}, h$ second fundamental form of M and A_{N} is the Weingarten endomorphism associated with N. The second fundamental form h and the shape operator A related by

$$
\begin{equation*}
g(h(X, Y), N)=g\left(\left(-A_{N}+a\right) X, Y\right) \tag{16}
\end{equation*}
$$

Theorem 5. The connection induced on a semi-invariant submanifold of a generalized Kenmotsu manifold with the semi-symmetric metric connection is also a semi-symmetric metric connection.

Proof. From (14) we have

$$
\bar{T}(X, Y)=T(X, Y) \text { and }\left(\bar{\nabla}_{X} g\right)(Y, Z)=\left(\nabla_{X} g\right)(Y, Z)
$$

for any $X, Y \in \Gamma(T M)$, where T is the torsion tensor of ∇.
The projection morphisms of $T M$ to D and D^{\perp} are denoted by P and Q respectively. For any $X, Y \in \Gamma(T M)$ and $N \in \Gamma(T M)^{\perp}$, we have

$$
\begin{gather*}
X=P X+Q X+\sum_{i=1}^{s} \eta^{i}(X) \xi_{i} \tag{17}\\
\varphi N=B N+C N \tag{18}
\end{gather*}
$$

where $B N$ (resp. $C N$) denotes the tangential (resp. normal) component of φN.

3. Basic Results

Lemma 6. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with the semi-symmetric metric connection, then we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} \varphi\right) Y= & \left(\nabla_{X} P\right) Y+\left(-A_{Q Y}+a\right) X-B h(X, Y) \tag{19}\\
& +\left(\nabla_{X} Q\right) Y+h(X, P Y)-\operatorname{Ch}(X, Y) \\
\left(\bar{\nabla}_{X} \varphi\right) N= & \left(\nabla_{X} B\right) N+\left(-A_{C N}+a\right) X+P\left(-A_{N}+a\right) X \tag{20}\\
& +\left(\nabla_{X} C\right) N+h(X, B N)+Q\left(-A_{N}+a\right) X
\end{align*}
$$

for all $X, Y \in \Gamma(T M), N \in \Gamma(T M)^{\perp}$ where $a=\sum_{i=1}^{s} \eta^{i}(C N)=0$.
Proof. Using (17), (18), the Gauss and Weingarten formulas, necessary arrangements are made to obtain the desired.

Lemma 7. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with the semi-symmetric metric connection, we have

$$
\begin{gather*}
\left(\nabla_{X} P\right) Y+\left(-A_{Q Y}+a\right) X-B h(X, Y)=-2 \sum_{i=1}^{s} \eta^{i}(Y) P X \tag{21}\\
\left(\nabla_{X} Q\right) Y+h(X, P Y)-C h(X, Y)=-2 \sum_{i=1}^{s} \eta^{i}(Y) Q X \tag{22}
\end{gather*}
$$

$$
\begin{gather*}
\left(\nabla_{X} B\right) N+\left(-A_{C N}+a\right) X+P\left(-A_{N}+a\right) X=0 \tag{23}\\
\left(\nabla_{X} C\right) N+h(X, B N)+Q\left(-A_{N}+a\right) X=0 \tag{24}\\
g(P X, Y)=0 \tag{25}\\
g(Q X, Y)=0 \tag{26}
\end{gather*}
$$

for all $X, Y \in \Gamma(T M), N \in \Gamma(T M)^{\perp}$.
Proof. Using (10) in (19) and (20) we get (21)-,(26).
Corollary 8. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with semi-symmetric metric connection such that $\xi_{i} \in \Gamma(T M)$, we have

$$
\begin{gather*}
\left(\nabla_{X} P\right) \xi_{j}=-2 P X \tag{27}\\
\left(\nabla_{X} Q\right) \xi_{j}=-2 Q X \tag{28}\\
\left(\nabla_{\xi_{j}} B\right) N=0, \quad \nabla_{\xi_{j}} B=0 \tag{29}\\
\left(\nabla_{\xi_{j}} C\right) N=0, \quad \nabla_{\xi_{j}} C=0 . \tag{30}
\end{gather*}
$$

Lemma 9. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with the semi-symmetric metric connection such that $\xi_{i} \in \Gamma(T M)$, we have

$$
\begin{gather*}
\nabla_{X} \xi_{j}=2 X-\sum_{i=1}^{s}\left\{\eta^{i}(X)+\eta^{j}(X)\right\} \xi_{i}, \quad h\left(X, \xi_{j}\right)=0 \tag{31}\\
\nabla_{\xi_{i}} \xi_{j}=0, \quad h\left(\xi_{i}, \xi_{j}\right)=0, \quad A_{N} \xi_{j}=0 . \tag{32}
\end{gather*}
$$

Proof. Using (9)and (11) we have (31).In addition, we get

$$
0=g\left(h\left(X, \xi_{j}\right), N\right)=g\left(h\left(\xi_{j}, X\right), N\right)=g\left(A_{N} \xi_{j}, X\right)
$$

4. Integrability of distribution on a semi-invariant submanifold generalized Kenmotsu manifold

Theorem 10. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with the semi-symmetric metric connection. Then the distribution D is integrable.

Proof. We have

$$
\begin{aligned}
g\left([X, Y], \xi_{j}\right) & =g\left(\widetilde{\nabla}_{X} Y, \xi_{j}\right)-g\left(\widetilde{\nabla}_{Y} X, \xi_{j}\right) \\
& =-g\left(Y, \widetilde{\nabla}_{X} \xi_{j}\right)+g\left(X, \widetilde{\nabla}_{Y} \xi_{j}\right)
\end{aligned}
$$

for all $X, Y \in \Gamma(D)$. Using (9) and (11), we get

$$
\begin{aligned}
g\left([X, Y], \xi_{j}\right)= & -g\left(Y, \bar{\nabla}_{X} \xi_{j}-X+\sum_{i=1}^{s} g\left(X, \xi_{j}\right) \xi_{i}\right)+g\left(X, \bar{\nabla}_{Y} \xi_{j}-Y+\sum_{i=1}^{s} g\left(Y, \xi_{j}\right) \xi_{i}\right) \\
= & -g\left(Y, 2 X-\sum_{i=1}^{s}\left\{\eta^{i}(X)+\eta^{j}(X)\right\} \xi_{i}-X+\sum_{i=1}^{s} g\left(X, \xi_{j}\right) \xi_{i}\right) \\
& +g\left(X, 2 Y-\sum_{i=1}^{s}\left\{\eta^{i}(Y)+\eta^{j}(Y)\right\} \xi_{i}-Y+\sum_{i=1}^{s} g\left(Y, \xi_{j}\right) \xi_{i}\right) \\
= & 0 .
\end{aligned}
$$

So $\eta^{j}([X, Y])=0$ for $j=1,2, \ldots, s$. Then, we have $[X, Y] \in \Gamma(D)$.
Theorem 11. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with the semi-symmetric metric connection. The distribution $D \oplus$ $s p\left\{\xi_{1}, \ldots, \xi_{s}\right\}$ is integrable if and only if

$$
h(X, \varphi Y)=h(\varphi X, Y)
$$

for all $X, Y \in \Gamma\left(D \oplus s p\left\{\xi_{1}, \ldots, \xi_{s}\right\}\right)$ is satisfied.
Proof. Using (6) and (9), then

$$
\begin{aligned}
\varphi([X, Y]) & =\varphi\left(\nabla_{X}^{*} Y-\nabla_{Y}^{*} X\right) \\
& =\varphi\left(\widetilde{\nabla}_{X} Y-h(X, Y)-\widetilde{\nabla}_{Y} X+h(Y, X)\right) \\
& =\varphi\left(\bar{\nabla}_{X} Y-\sum_{i=1}^{s}\left\{\eta^{i}(Y) X-g(X, Y) \xi_{i}\right\}-\bar{\nabla}_{Y} X+\sum_{i=1}^{s}\left\{\eta^{i}(X) Y-g(Y, X) \xi_{i}\right\}\right) \\
& =\bar{\nabla}_{X} \varphi Y-\left(\bar{\nabla}_{X} \varphi\right) Y-\sum_{i=1}^{s} \eta^{i}(Y) \varphi X-\bar{\nabla}_{Y} \varphi X+\left(\bar{\nabla}_{Y} \varphi\right) X+\sum_{i=1}^{s} \eta^{i}(X) \varphi Y .
\end{aligned}
$$

for all $X, Y \in \Gamma(D)$. For (10) and (14), we have
$\varphi([X, Y])=\nabla_{X} \varphi Y-\nabla_{Y} \varphi X+\sum_{i=1}^{s}\left\{4 g(X, \varphi Y) \xi_{i}+\eta^{i}(Y) \varphi X-\eta^{i}(X) \varphi Y\right\}+h(X, \varphi Y)-h(\varphi X, Y)$.
Then, we have $[X, Y] \in \Gamma\left(D \oplus s p\left\{\xi_{1}, \ldots, \xi_{s}\right\}\right)$ if and only if $h(X, \varphi Y)=h(\varphi X, Y)$, where $\varphi([X, Y])$ shows the component of $\nabla_{X} Y$ from the ortohogonal complementary distribution of $D \oplus S p\left\{\xi_{1, \ldots,}, \xi_{s}\right\}$ in M. Then, we have $[X, Y] \in \Gamma\left(D \oplus s p\left\{\xi_{1}, \ldots, \xi_{s}\right\}\right)$ if and only if $h(X, \varphi Y)=h(Y, \varphi X)$.

Theorem 12. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold \tilde{M} with the semi-symmetric metric connection.

The distribution $D^{\perp} \oplus \operatorname{sp}\left\{\xi_{1}, \ldots, \xi_{s}\right\}$ is integrable if and only if

$$
A_{\varphi X} Y=A_{\varphi Y} X
$$

for all $X, Y \in \Gamma\left(D^{\perp} \oplus \operatorname{sp}\left\{\xi_{1}, \ldots, \xi_{s}\right\}\right)$ is satisfied.
Proof. We have for all $X, Y \in \Gamma\left(D^{\perp}\right)$

$$
\begin{aligned}
g\left([X, Y], \xi_{j}\right) & =g\left(\widetilde{\nabla}_{X} Y, \xi_{j}\right)-g\left(\widetilde{\nabla}_{Y} X, \xi_{j}\right) \\
& =-g\left(Y, \widetilde{\nabla}_{X} \xi_{j}\right)+g\left(X, \widetilde{\nabla}_{Y} \xi_{j}\right)
\end{aligned}
$$

Using (9) and (11), we have

$$
\begin{aligned}
g\left([X, Y], \xi_{i}\right)= & -g\left(Y, 2 X-\sum_{i=1}^{s}\left\{\eta^{i}(X)+\eta^{j}(X)\right\} \xi_{i}-X+\sum_{i=1}^{s} g\left(X, \xi_{j}\right) \xi_{i}\right) \\
& +g\left(X, 2 Y-\sum_{i=1}^{s}\left\{\eta^{i}(Y)+\eta^{j}(Y)\right\} \xi_{i}-Y+\sum_{i=1}^{s} g\left(Y, \xi_{j}\right) \xi_{i}\right) \\
= & 0 .
\end{aligned}
$$

Using (6) and (9), then

$$
\begin{aligned}
\varphi([X, Y]) & =\varphi\left(\nabla_{X}^{*} Y-\nabla_{Y}^{*} X\right) \\
& =\bar{\nabla}_{X} \varphi Y-\left(\bar{\nabla}_{X} \varphi\right) Y-\sum_{i=1}^{s} \eta^{i}(Y) \varphi X-\bar{\nabla}_{Y} \varphi X+\left(\bar{\nabla}_{Y} \varphi\right) X+\sum_{i=1}^{s} \eta^{i}(X) \varphi Y .
\end{aligned}
$$

For (10) and (15), we have

$$
\begin{aligned}
\varphi([X, Y])= & \left(-A_{\varphi Y}+a\right) X+\nabla_{X}^{\perp} \varphi Y-2 \sum_{i=1}^{s}\left\{g(\varphi X, Y) \xi_{i}-\eta^{i}(Y) \varphi X\right\}-\sum_{i=1}^{s} \eta^{i}(Y) \varphi X \\
& -\left(-A_{\varphi X}+a\right) Y-\nabla_{\frac{1}{Y}}^{\perp} \varphi X+2 \sum_{i=1}^{s}\left\{g(\varphi Y, X) \xi_{i}-\eta^{i}(X) \varphi Y\right\}+\sum_{i=1}^{s} \eta^{i}(X) \varphi Y \\
= & A_{\varphi X} Y-A_{\varphi Y} X+\nabla_{X}^{\perp} \varphi Y-\nabla_{Y}^{\perp} \varphi X+\sum_{i=1}^{s}\left\{4 g(X, \varphi Y) \xi_{i}+\eta^{i}(Y) \varphi X-\eta^{i}(X) \varphi Y\right\} .
\end{aligned}
$$

> A. Turgut Vanli, R. Sari - Semi-invariant submanifolds of ...

Then we obtain,

$$
[X, Y] \in \Gamma\left(D^{\perp} \oplus S p\left\{\xi_{1}, \ldots, \xi_{s}\right\}\right) \Rightarrow A_{\varphi X} Y=A_{\varphi Y} X
$$

Conversely
$\varphi^{2}([X, Y])=\varphi\left(A_{\varphi X} Y-A_{\varphi Y} X+\nabla \frac{\perp}{X} \varphi Y-\nabla \frac{\perp}{Y} \varphi X+\sum_{i=1}^{s}\left\{4 g(X, \varphi Y) \xi_{i}+\eta^{i}(Y) \varphi X-\eta^{i}(X) \varphi Y\right\}\right)$
$[X, Y]=\sum_{i=1}^{s}\left\{-\eta^{i}(Y) X+\eta^{i}(X) Y+\sum_{k=1}^{s}\left(\eta^{i}(Y) \eta^{k}(X) \xi_{k}-\eta^{i}(X) \eta^{k}(X) \xi_{k}\right)\right\}+\varphi\left(\nabla_{X}^{\perp} \varphi Y\right)-\varphi\left(\nabla_{\bar{Y}}^{\perp} \varphi X\right)$
then, we have $[X, Y] \in \Gamma\left(D^{\perp} \oplus S p\left\{\xi_{1}, \ldots, \xi_{s}\right\}\right)$.

References

[1] D.E. Blair, Geometry of manifolds with structural group $U(n) X O(s)$, J. Differ. Geom.,4,(1970),155-167.
[2] S. Goldberg and K. Yano, Globally framed f-Manifolds, Illinois J. Math.,15,(1971),456-474.
[3] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, (1972), 93-103.
[4] M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor N. S.,43,(1986)28-36.
[5] B. B. Sinha, A. K. Srivastava, Semi-invariant submanifolds of a Kenmotsu manifold with constant ϕ-holomorphic sectional curvature, Indian J. pure appl. Math., 23(1992),783-789.
[6] A. Turgut Vanli, R. Sari, Generalized Kenmotsu manifolds, arXiv:1406.1032v1.
[7] J. Vanzura, Almost r-contact structures, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26 (1972), 97-115.
[8] K. Yano, On a structure f satisfying $f^{3}+f=0$, Technical report No.12, Univ. of Washington, 1961.
[9] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15(1970),1579-1586.

Aysel Turgut Vanli
Department of Mathematics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara, Turkey
email: avanli@gazi.edu.tr
A. Turgut Vanli, R. Sari - Semi-invariant submanifolds of ...

Ramazan Sari
Department of Mathematics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara, Turkey
email: ramazansr@gmail.com

